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Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of
data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the
unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem,
it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of
radial basis functions (RBFs) is proposed. To be more specific, we divide the parameter search space into linear and nonlinear
parameter subspaces. We use a hierarchical genetic algorithm (HGA) to minimize a model selection criterion, which allows us
to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular
Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective
parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach,
we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful
methods based on RBF networks has been included.

1. Introduction

In the literature, there are many methods to tackle the curve
fitting problem, which remains challenging and elusive. In
this study, the goal is to build a compact representation of the
curve that corresponds to the best estimate of the unknown
relationship between two variables from a set of data points.
Curve fitting is a fundamental tool in scientific and engineer-
ing applications such as system identification, data analysis
and visualization, geometric modeling, CAD/CAM systems,
medical imaging, and reverse engineering [1–6].

The curve fitting problem has been mainly addressed by
using typical methods based on linear models [7–10]. These
methods consider that, given a set of data points, any function
can be properly approximated on a specific interval using a
linear combination of a set of 𝑚 fixed functions often called
basis functions. The main basis functions used to address

the curve fitting problem are polynomials, piecewise polyno-
mials (splines), and radial basis functions (RBFs). RBFs have
typically shown a successful performance in methods based
on interpolation, such as in [11, 12].

In [13], the authors present a method for spike classifica-
tion enhancement based on the 3-Gaussian model fitting. In
[14], the peak wavelength detection accuracy in fiber Bragg
grating sensors is improved by using a wavelet filter and
curve fitting based on RBF. In [15], it is demonstrated that a
Gaussian curve fitting substantially reduces themeasurement
errors of spectrally distorted FBG sensors by employing a
binary search algorithm that calculates and compares MSE
values at only logically selected positions. In [12] the authors
propose a method based on RBF interpolation to subpixel
mapping of remote sensing images by fully exploiting the
spatial information in the input images. The method uses
RBF interpolation to predict the soft values at each subpixel.
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However, the interpolation methods present some limita-
tions, especially when the number of data samples increases
or the set of data samples is disturbed by noise.Thus, in order
to solve the limitations of the interpolation methods, other
methods have been proposed based on regression techniques.
Nevertheless, these methods require the specification of
global parameters such as the number of RBFs or centre
locations to perform their solution. If this is not the case,
if the basis functions and any parameters which they might
contain change, then themodel is nonlinear and the adequate
choice of parameters becomes a continuous multimodal and
multivariate nonlinear optimization problem, which must
be addressed using modern techniques of Computational
Intelligence.

In [16] the authors propose a method based on curve
fitting with Gaussian functions for modeling carotid and
radial artery pulse pressure waveforms. The method uses a
fixed number of Gaussian functions, and their parameters are
determined by using an algorithm based on particle swarm.
Neural networks based on RBF have been applied to curve
fitting in [17]. This paper considers fitting noisy curves using
two neural networks: the multilayer feed forward network
and the radial basis function network. A comparative analysis
shows that when the noise level increases, the RBF net-
works are best suited for the reconstruction of noisy curves.
However, most of these approaches use parameter values
predefined without any justification, that is, in an empirical
way. In [18], the spread parameter value of a neural network
is selected by trial and error from a reasonably small interval
previously determined.

It is found that RBFs have rarely been applied to curve
fitting by using a linear combination to change the number
of radial basis functions and simultaneously to optimize their
parameters.This paper elucidates the feasibility of using RBFs
in a linear combination to fit a set of data points disturbed
by noise; that is, we propose a new method to tackle the
curve fitting problem using a strictly linear combination of
RBFs. The proposed approach divides the parameter search
space into linear and nonlinear parameter subspaces. We
use a hierarchical genetic algorithm to minimize a model
selection criterion, which allows us to automatically and
simultaneously determine the nonlinear parameters: spread,
centre locations, and number of RBFs. The coefficients of the
linear model (linear parameters) are computed solving a set
of linear equations using the least-squares method through
Singular Value Decomposition (SVD) method. In order to
validate the efficacy of the proposed approach, we perform
an experimental study with several tests on smooth functions
benchmarks. The comparative analysis with two successful
methods based on RBF networks has been included.

2. Background

2.1. Radial Basis Functions. RBFs are a particular class of
functions whose value depends only on the distance from the
centre. Specifically, their response decreases (local response)
or increases (global response) monotonically with respect to

Table 1: Types of RBFs commonly used.

Name Function
Linear 𝜙(𝑥) = 𝑟

Cubic spline 𝜙(𝑥) = 𝑟
3

Thin-plate spline 𝜙(𝑥) = 𝑟
2 log(𝑟)

Multiquadric 𝜙(𝑥) = √1 + 𝑟
2

Gaussian 𝜙(𝑥) = exp−𝑟
2
/𝜎
2

the distance from a central point. In general, a radial basis
function is represented by the following equation:

Φ (𝑥) = 𝜙 (|𝑥 − 𝑐|) , (1)

where | ⋅ | denotes the norm used to measure the distance
between any point 𝑥 and the centre 𝑐 of the basis function
and 𝜙(⋅) is a specific type of RBF. Usually, the norm used
is Euclidean distance [19], and the types of RBFs commonly
used are expressed in Table 1, where 𝑟 = |𝑥 − 𝑐|.

2.2. Linear Models. A linear model for a function 𝑦(𝑥) can be
expressed as a linear combination of a set of𝑚 basis functions
as

𝑓 (𝑥) =

𝑚

∑

𝑖=1

𝜆
𝑖
Φ
𝑖
(𝑥) , (2)

where 𝜆
𝑖
are coefficients and Φ

𝑖
(𝑥) are the basis functions

of the model. In a linear model, the basis functions and
any parameter which they might contain are fixed. Its ability
to fit different functions is derived from the freedom to
choose different coefficient values. Otherwise, if the basis
functions or its parameters are not fixed, then the model is
a nonlinear model. Any set of basis functions can be used
as basis set; however, models containing only basis functions
from a particular class have a special interest [20].

2.3. Hierarchical Genetic Algorithms. HGA is a revised ver-
sion of a genetic algorithm, which is an optimization scheme
based on the biological evolution. Unlike the traditional
genetic algorithm where the genotype structure is fixed, the
chromosome in the HGA does not have these restrictions.
The HGA has a bicoded chromosome scheduled in a hier-
archical mode, which consists of two kinds of genes: control
and parametric genes [21].

Located at the first level, the control genes are encoded
as binary digits, while parametric genes at the next levels
are encoded as real numbers generally, and their activation
depends upon the value of associated control genes. Specifi-
cally, the control genes activate or inactivate the parametric
genes; this is particularly important to determine the phe-
notype with different lengths within the same chromosomal
representation. Hence, HGA will search over a larger search
space and converge to the right solution with an increasingly
high degree of accuracy.

2.4. Curve Fitting with RBFs. The goal of curve fitting is to
find the best estimate of the unknown functional relationship
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𝑓 from a set of 𝑛 pairs of measurements (𝑥
𝑖
, 𝑦
𝑖
), where 𝑦

𝑖
is

the 𝑖th observation at the point 𝑥
𝑖
. This relationship can be

expressed as

𝑦
𝑖
= 𝑓 (𝑥

𝑖
) + 𝜖
𝑖
, (3)

where 𝑖 = 1, . . . , 𝑛 and the term 𝜖
𝑖
represents the 𝑖th element

of a vector with zero-mean random error.
In this study, we assume that 𝑓 is a smooth function,

which can be properly approximated on the interval [𝑎, 𝑏]
by a linear combination of a set of 𝑚 basis functions. The
linear model is constructed from𝑚 basis functions placed at
certain locations considering that 𝐶 = {𝑐

1
, . . . , 𝑐max} is a set

of max locations placed along the domain of the independent
variable𝑥 and that themodel has atmostmax basis functions.
Under these assumptions, the function𝑓 can bewritten as the
following linear combination:

𝑓 (𝑥) =

𝑚

∑

𝑖=1

𝜆
𝑖
𝜙
𝑖
(




𝑥 − 𝑐
𝑖





) , (4)

where 𝑚 ≤ max and 𝜆
𝑖
is the coefficient associated with 𝑖th

basis function Φ
𝑖
, which is defined on the set of centres 𝐶.

If the type of basis function Φ is specified beforehand,
we can define 𝑓 completely if we find the number 𝑚 of basis
functions and the parameters associated with them and then
we calculate the model coefficients 𝜆

𝑖
.

3. Automatic Curve Fitting Using
RBF and HGA

In this study, we use a typical radial function with local
response, the Gaussian function. The popular Gaussian RBF
is radially symmetric with a maximum value at central point
𝑐. It is selected for maximal trend sensing with minimal
parameter representations for function approximation [22],
where such parameters are the centre 𝑐 when the maximum
value occurs (frequently called mean), and the width of the
function 𝜎 is referred to as spread.

When the type of basis functions has been specified, our
method applies the HGA to determine the number 𝑚 of the
basis functions (model structure) and the centre locations
and spreads (basis parameters) simultaneously. Then, the
coefficients of linear model are calculated using the least-
squares method through the Singular Value Decomposition
(SVD) method. To find the best estimate ̂

𝑓 of the unknown
functional relationship 𝑓 by using HGA, the fitness function
is defined to minimize a model selection criterion. Next, we
specified the main features of HGA.

3.1. Chromosome Encoding. To simultaneously determine the
number of the basis functions, the centre locations, and the
spread values, we propose a two-level bicoded description,
where each bit in the binary chromosome carries the impli-
cation of presence (“1”) or absence (“0”) of a specific basis
function in the solution.The real chromosome represents the
magnitude of the spread parameters of the basis functions.
We represent the chromosome of an individual as

𝜃 = {𝑏
1
, . . . , 𝑏max, 𝜎1, . . . , 𝜎max} , (5)

RBF centers

Parametric
genes

RBF spreads

Control
genes b1 b2 b3 · · ·

· · ·

· · ·

cmax

𝜎max

c1 c2 c3

𝜎1
𝜎2 𝜎3

a b

bmax

Figure 1: Hierarchical structure of a chromosome.

where each bit 𝑏
𝑖
is a control gene and 𝜎

𝑖
is a real value.

Each control bit simultaneously enables or disables one basis
function 𝜙 and its associated parameter 𝜎. In the present
paper, each control gene 𝑏

𝑖
corresponds to one basis function

located at a specific centre 𝑐
𝑖
. Therefore, if the 𝑖th control

gene is “1,” the 𝑖th basis function located in the 𝑖th centre
and with spread 𝜎

𝑖
exists in the candidate solution. We use

a fixed length binary string to represent the max number of
the basis functions 𝜙. The general structure of a chromosome
is graphically shown in Figure 1.

3.2. Fitness Function. To determine the model structure, as
well as the basis parameters, we propose a fitness function
based on the Akaikes Information Criterion (AIC). Origi-
nally, for parametric problems, this criterion was developed
as a measure of the fitness of the model and the complexity of
the model. The AIC is given by

AIC (
̂
𝑓) = 𝑛 log

𝑛

∑

𝑖=1

{𝑦
𝑖
−

̂
𝑓 (𝑥
𝑖
)}

2

+ 2𝑝, (6)

where 𝑛 is the number of points in ̂
𝑓 and ̂

𝑓 is the estimation
of 𝑓. The term 𝑝 is the number of the model parameters. In
AIC, the residual sum of squares in the first term is used as a
measure of the deviation of the estimated function ̂

𝑓 from 𝑓,
and the second term is a penalty for increasing the number
of parameters 𝑝. In this study, the number of parameters
consists of 𝑐, 𝜎, and 𝜆 for each basis function. As a result,
the number of parameters 𝑝 is 3 times the number of basis
function𝑚, and thus 𝑝 = 3𝑚.

3.3. Reproduction Process and Genetic Operators. Reproduc-
tion is the process whereby the best fit individual in the
population receives a corresponding large number of copies
in the next generation. We use the roulette wheel method as
a reproduction process. In this method, each individual in
the population has a roulette wheel slot sized in proportion
to its fitness value. This selection strategy favors the most fit
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individuals, but it gives a chance to the less fit individuals
to reproduce. Otherwise, in order to prevent premature
convergence, it tries to keep the selection pressure relatively
constant over the entire evolution process by using the sigma
scaling method [23], which is calculated according to

𝐹new =

{

{

{

𝐹act − (𝐹 − 𝑐 ⋅ 𝜎) if (𝐹act > 𝐹 − 𝑐 ⋅ 𝜎)

0 otherwise,
(7)

where 𝐹new is the new scaled fitness value, 𝐹act is the current
fitness value, 𝐹 is the average fitness, 𝜎 is the standard
deviation of the population, and 𝑐 is a constant that allows it
to control the selection pressure. In addition, elitism is used
in order to keep the elite individuals in the next population
to prevent losing the best solution found. After a collection
of good chromosomes is selected, they exchange information
using the crossover operator.

The crossover process selects genes from the parent
chromosomes and creates new offspring. In the uniform
crossover scheme, two parents are chosen to recombine into
a new individual. Each bit of the new individual is selected
from one of the parents depending on a fixed probability. We
use the uniform crossover operator for both the control and
the parametric genes with the same probability.

In the mutation process, there are also two types of
mutations. The bit mutation method is applied over the
control genes. With this method, each bit is inverted or not
depending on the mutation probability. For the parametric
genes mutation each numeric value 𝛾 is changed depending
on the same mutation probability according to

𝛾
𝑖
= 𝛾
𝑖
+ 𝛿 (rand − 0.5) , (8)

where 𝛿 is the maximum increment or decrement of the real
value and rand is a function that generates a random value
between 0 and 1.

4. Experimental Results

In order to evaluate the effectiveness of the proposed method
(HGA), we carried out numerical simulations on five test
functions, which aremathematically defined by the equations
in Table 2. Our experimental study includes a spatially inho-
mogeneous smooth function, that is, with a sharp peak (𝑓

3
),

an oscillating function but not periodic (𝑓
4
), and a function

with a discontinuity (𝑓
5
). Note that these test functions have

been used in previous studies [24–28] and they could be
considered as a benchmark in smooth functions. Further-
more, we present a comparisonwith thewell-knownmethods
based on radial basis neural networks (RBNN) and general
regression neural networks (GRNN).

The problem addressed in this paper is the automatic
curve fitting given a set of noisy data points. Thus, the
experimental setup was designed to study the effects of
varying the number of samples and noise levels on the curve
fitting task.The idea is that each test function is evaluated at 𝑛
design points 𝑥

𝑖
uniformly distributed over the interval [0, 1].

Here, a zero-mean normal noise with a known 𝜎 is added to

Table 2: Mathematical definition of test functions.

Test functions
𝑓
1
(𝑥) = sin3(2𝜋𝑥3)

𝑓
2
(𝑥) = (4𝑥 − 2) + 2exp(−16(4𝑥 − 2)

2
)

𝑓
3
(𝑥) = sin(𝑥) + 2exp(−30𝑥2)

𝑓
4
(𝑥) = sin(2(4𝑥 − 2)) + 2exp(−16(4𝑥 − 2)

2
)

𝑓
5
(𝑥) = 10(4𝑥 − 2)/(1 + 100(4𝑥 − 2)

2
)

Table 3: Setup for the HGA.

Parameter Value
Crossover probability 0.90
Mutation probability 0.15
Number of elite individuals 11
Generations 3000
Population size 300

the data set in order to have a specific signal-to-noise ratio
(SNR), defined as SD(𝑓)/𝜎.

For each function, a collection of 101 noisy data sets is
generated from each of the different configurations. In this
study we use three different SNR values (2, 3, and 4) and
three different sized samples for 𝑛 (50, 100, and 200), and
hence there are altogether 9 different configurations. Thus,
we tested our method over a total of 909 data sets for each
test function. For completeness, in test function, 3 design
points 𝑥

𝑖
are uniformly distributed in [−2, 2] and then they

are scaled to the interval [0, 1]. Finally, the proposed method
and the RBNNandGRNNmethodswere used to estimate the
test functions.

For the HGA, we use amaximal number of basis function
(𝑚 = 30) and 𝐶 is defined as a subset of design points. At
the beginning, the population is randomly initialized, each
control gene 𝑏

𝑖
is randomly selected from [0, 1], and each

parametric gene 𝜎
𝑖
is calculated as a random real number

defined over the range [0.1, 1.0]. The parameters used for
the HGA were tuned experimentally as in [29] and are
summarized in Table 3.

To compare and evaluate qualitatively the performance of
the methods, the best estimates obtained using each method
for the different configurations were obtained. These best
estimates correspond to the minimal MSE value obtained
using each method from the collection of 101 noisy data
sets generated from each specific configuration. For practical
reasons, we present only the results of 1 of the 9 configurations
from the experimental study. These results are shown in
Figure 2 and correspond to data sets with 50 samples and
SNR = 3. The figure suggests that the HGA has more ability
to adapt to discontinuities and sharp peaks in curves despite
the level of noise and the small number of samples in contrast
to GRNN and RBNN methods. These methods generate less
smooth curves with overfitting in some sections. Similar
results have been obtained for the other configurations.

For each simulated data set, the numerical measure
that was used to quantitatively evaluate the quality of
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Figure 2: Data and estimates correspond to the best function estimated from the experimental setup with 50 samples and SNR = 3. The
columns correspond from left to right to the GRNN, HGA, and RBNN methods, respectively (solid line estimated function; dashed line real
function). The rows correspond from top to bottom to test functions 1 to 5.



6 Mathematical Problems in Engineering

Table 4:Mean of the computed MSEs with estimated standard errors based on 101 data sets with 50 samples.

Test Method SNR = 2 SNR = 3 SNR = 4

1
RBNN 0.019261 ± 0.000658 0.008170 ± 0.000246 0.004879 ± 0.000139

GRNN 0.016372 ± 0.000510 0.007463 ± 0.000218 0.004504 ± 0.000133

HGA 0.016149 ± 0.000704 0.006008 ± 0.000268 0.003776 ± 0.000160

2
RBNN 0.159658 ± 0.005110 0.076066 ± 0.002543 0.045209 ± 0.001382

GRNN 0.133178 ± 0.003940 0.063440 ± 0.001958 0.038152 ± 0.001054

HGA 0.104318 ± 0.006079 0.052129 ± 0.002207 0.030713 ± 0.001295

3
RBNN 0.084509 ± 0.002430 0.043169 ± 0.001251 0.026841 ± 0.000652

GRNN 0.069057 ± 0.001997 0.033152 ± 0.000889 0.019380 ± 0.000496

HGA 0.054656 ± 0.002430 0.026877 ± 0.001443 0.012641 ± 0.000754

4
RBNN 0.072612 ± 0.002118 0.033507 ± 0.001000 0.018269 ± 0.000509

GRNN 0.061318 ± 0.001749 0.027931 ± 0.000723 0.016344 ± 0.000420

HGA 0.055247 ± 0.002197 0.027116 ± 0.001242 0.013517 ± 0.000612

5
RBNN 0.007108 ± 0.000104 0.005094 ± 0.000051 0.004412 ± 0.000028

GRNN 0.004042 ± 0.000102 0.002322 ± 0.000050 0.001768 ± 0.000033

HGA 0.004424 ± 0.000196 0.001990 ± 0.000125 0.001046 ± 0.000076

the estimated function ̂
𝑓 is the mean square error (MSE)

given by

MSE (
̂
𝑓) =

1

𝑛

𝑛

∑

𝑖=1

{
̂
𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖
)}

2

. (9)

The smaller MSE( ̂𝑓) value corresponds to a better quality of
̂
𝑓. To facilitate the comparison of the distribution of MSE
values among the different methods, we use the boxplot.
In descriptive statistics, a boxplot is a convenient visual
representation that partitions a data distribution through
their quartiles. Boxplots of theMSE( ̂𝑓) values for the different
configurations are shown in Figures 3, 4, and 5. In Figure 3,
the boxplots of MSE values for data sets with 50 samples are
shown. In each panel, the boxplots correspond to a specific
configuration. The columns correspond from left to right to
noise ratios 2, 3, and 4, respectively. The rows correspond
from top to bottom to the test functions 1 to 5. Similarly,
Figures 4 and 5 show the boxplots of MSE values for data sets
with 100 and 200 samples, respectively.

In Figure 3, it can be observed that in most cases the
medians of the MSE values from HGA are lower than those
resulting from the other methods, although there is no
significant difference among the results. For example, in test
function 5 with 50 samples and SNR = 2 (bottom-left of the
figure), the GRNN performs a slightly smaller median of
the MSE value than the HGA method, but the difference is
not significant. In this case, the upper whisker of the MSE
values for the HGAmethod is considerably bigger than those
from the other methods, which implies a bigger dispersion
for 25% of their MSE values. The most significant difference
among the boxplots can be observed for test function 5 with
50 samples and SNR = 4 (bottom-right of the figure). In this
case, the upper quartile of the MSE values for the HGA is
under the first quartile of those from GRNN, which implies
that 75% of MSE values from HGA are lower than 75% of
MSE values from GRNN. In most cases in Figures 4 and 5,

the upper quartile of the MSE values for the HGA is under
the first quartile of those from the RBNN or GRNNmethods.
Although the whiskers of the boxplots from HGA have a
different size, in all cases the lower whisker is smaller than the
upper whisker, which implies an asymmetric distribution of
the MSE values. Although the distribution of the MSE values
for the HGA method is considerably bigger than those from
the other methods, in most cases they are lower than those
from the other methods.

Additionally, we compute the mean and standard error
of mean for MSE values from all methods. These results are
summarized in Tables 4, 5, and 6, corresponding to results
for data sets with 50, 100, and 200 samples, respectively. In
each table, the results corresponding to noise ratios 2, 3, and
4 are included. In Tables 7, 8, and 9 we include the results
corresponding to parameters for the best function estimated
from the experimental setup with 50 samples and SNR = 2, 3,
and 4, respectively.

To clarify the effects of varying the number of samples
and noise levels on the curve fitting task by using the HGA
method, we include Figures 6 and 7. The first figure shows
the best estimates obtained using HGA method for data sets
from left to right with 50, 100, and 200 samples and SNR =
3. The second figure shows the best estimates obtained by
using the HGA method for data sets with 50 samples and
SNR = 2, 3, and 4, from left to right, respectively. In both
figures, the rows correspond from top to bottom to the test
functions 1 to 5, respectively.Theperformance of themethods
significantly improves if the noise level is reduced or the
number of samples increases, as shown in Tables 4, 5, and 6,
and Figures 7 and 6.This comes as no surprise, because, as we
increase the number of samples or decrease the noise level, we
have more information to build the curve.

Finally, it could be assumed that the success of our
approach is due to the simultaneous global search performed
over all the parameters of the linear model. This shows the
potential of HGA to handle the loss of information and high
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Figure 3: Boxplots of MSE values for data sets with 50 samples. In each panel, the boxplots correspond to the algorithms tested for a specific
SNR. From left to right the columns correspond to SNR= 2, 3, and 4, respectively.The rows correspond from top to bottom to the test functions
1 to 5.
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Figure 4: Boxplots of MSE values for data sets with 100 samples. In each panel, the boxplots correspond to the algorithms tested for a specific
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1 to 5.
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Figure 5: Boxplots of MSE values for data sets with 200 samples. In each panel, the boxplots correspond to the algorithms tested for a specific
SNR. From left to right the columns correspond to SNR= 2, 3, and 4, respectively.The rows correspond from top to bottom to the test functions
1 to 5.
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Table 5:Mean of the computed MSEs with estimated standard errors based on 101 data sets with 100 samples.

Test Method SNR = 2 SNR = 3 SNR = 4

1
RBNN 0.009500 ± 0.000308 0.004182 ± 0.000141 0.002413 ± 0.000082

GRNN 0.016042 ± 0.000341 0.007198 ± 0.000150 0.004040 ± 0.000094

HGA 0.007340 ± 0.000399 0.003269 ± 0.000150 0.001877 ± 0.000087

2
RBNN 0.084075 ± 0.002368 0.037623 ± 0.001145 0.022545 ± 0.000542

GRNN 0.139300 ± 0.002681 0.059419 ± 0.001318 0.034220 ± 0.000686

HGA 0.056166 ± 0.002621 0.027498 ± 0.001296 0.014220 ± 0.000814

3
RBNN 0.049175 ± 0.001244 0.026765 ± 0.000574 0.018885 ± 0.000278

GRNN 0.066580 ± 0.001346 0.030152 ± 0.000643 0.017198 ± 0.000292

HGA 0.029524 ± 0.001533 0.011812 ± 0.000723 0.006706 ± 0.000410

4
RBNN 0.037467 ± 0.000964 0.017486 ± 0.000488 0.010188 ± 0.000284

GRNN 0.060238 ± 0.001136 0.026240 ± 0.000548 0.014598 ± 0.000295

HGA 0.030636 ± 0.001139 0.012113 ± 0.000589 0.006764 ± 0.000346

5
RBNN 0.006034 ± 0.000051 0.005044 ± 0.000030 0.004677 ± 0.000020

GRNN 0.003228 ± 0.000070 0.001473 ± 0.000030 0.000889 ± 0.000017

HGA 0.001964 ± 0.000088 0.000779 ± 0.000030 0.000549 ± 0.000039

Table 6:Mean of the computed MSEs with estimated standard errors based on 101 data sets with 200 samples.

Test Method SNR = 2 SNR = 3 SNR = 4

1
RBNN 0.005115 ± 0.000138 0.002373 ± 0.000078 0.001352 ± 0.000043

GRNN 0.015742 ± 0.000201 0.006733 ± 0.000101 0.003975 ± 0.000055

HGA 0.003302 ± 0.000211 0.001568 ± 0.000109 0.000949 ± 0.000067

2
RBNN 0.046566 ± 0.001347 0.020088 ± 0.000603 0.011702 ± 0.000313

GRNN 0.135356 ± 0.002033 0.059186 ± 0.000828 0.033560 ± 0.000464

HGA 0.030766 ± 0.002031 0.011812 ± 0.000853 0.007242 ± 0.000488

3
RBNN 0.025609 ± 0.000663 0.012887 ± 0.000282 0.009299 ± 0.000179

GRNN 0.065318 ± 0.000899 0.029221 ± 0.000416 0.017189 ± 0.000246

HGA 0.012078 ± 0.001150 0.004865 ± 0.000327 0.003424 ± 0.000233

4
RBNN 0.020309 ± 0.000532 0.009341 ± 0.000243 0.005035 ± 0.000147

GRNN 0.058907 ± 0.000878 0.026362 ± 0.000377 0.014725 ± 0.000215

HGA 0.014401 ± 0.001042 0.005852 ± 0.000367 0.003016 ± 0.000222

5
RBNN 0.003896 ± 0.000026 0.003310 ± 0.000013 0.003097 ± 0.000007

GRNN 0.003088 ± 0.000043 0.001378 ± 0.000022 0.000777 ± 0.000011

HGA 0.000912 ± 0.000050 0.000444 ± 0.000020 0.000310 ± 0.000013

noise level.The average execution time for themethods based
on neural networks was 0.29 seconds for experiments with
200 samples, compared to 132 seconds when using HGA.
However, this drawback can be solved if we consider a parallel
implementation of the model HGA. Our algorithm was
implemented in C++ language. All methods were executed
on a PC using an Intel Core i7 processor running at 2.2 GHz
with 8GB of RAM.

5. Conclusions

In this paper, we have proposed an efficient hierarchical
genetic algorithm to tackle the automatic curve fitting
problem. The method introduces a novel hierarchical gene
structure for the chromosomal representation that permits
the optimization of all free degrees of a linear model based
on RBFs. To be more specific, our algorithm finds the best

linear model using the fewest basis functions, optimal radii,
and centre locations, and coefficients of the model simulta-
neously. The method does not require subjective parameters
such as smooth factors or centre locations to perform the
solution. On the other hand, the main drawback is the
computational time required; however, it can be solved using
parallel computing in order to reduce costs. This study
focused on smooth functions, but it can be extended to
approximate unsmooth functions. The algorithm was tested
on several benchmark functions and compared to two suc-
cessful methods based on RBF neural networks. Simulation
results show that the proposed method presents qualitatively
and quantitatively better results than the methods based on
RBF neural networks because the method can handle the loss
of information and high noise level more effectively. One of
the attractive features of our method is that it can be easily
extended to surface fitting.
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Figure 6: Effect of varying the number of samples on the curve fitting task by using the HGAmethod. Data and estimates correspond to the
best function estimated from the experimental setup with SNR = 3 (solid line estimated function; dashed line real function). From left to right
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Figure 7: Effect of varying the signal-to-noise ratio on the curve fitting task by using the HGAmethod. Data and estimates correspond to the
best function estimated from the experimental setup for data sets with 50 samples (solid line estimated function; dashed line real function).
From left to right the columns correspond to SNR = 2, 3, and 4, respectively. The rows correspond from top to bottom to the test functions 1
to 5.
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Table 7: Basis functions corresponding to the best function esti-
mated from the experimental setup with 50 samples and SNR = 2.

Test Basis 𝜆 𝐶 𝜎

1

Φ
1

2.624918 0.689655 0.175274
Φ
2

1.306060 0.827586 0.057716
Φ
3

−3.316849 0.896552 0.278344
Φ
4

2.739275 1.000000 0.126029

2

Φ
1

−18.659943 0.103448 2.150076
Φ
2

1.013608 0.448276 0.057623
Φ
3

2.113588 0.517241 0.043472
Φ
4

18.093719 0.620690 2.118272

3

Φ
1

−1.048773 0.206897 0.533407
Φ
2

1.155269 0.482759 0.027828
Φ
3

1.225578 0.517241 0.049997
Φ
4

1.236929 0.827586 0.423159

4

Φ
1

−9.654642 0.344828 0.409970
Φ
2

−1.730152 0.448276 0.083107
Φ
3

3.042676 0.482759 0.075049
Φ
4

11.017281 0.551724 0.656271
Φ
5

−7.058442 0.965517 0.455500

5

Φ
1

−0.079952 0.137931 0.358084
Φ
2

−0.374830 0.448276 0.108851
Φ
3

−0.580771 0.482759 0.035342
Φ
4

0.715895 0.517241 0.039981
Φ
5

0.225844 0.586207 0.193723

Table 8: Basis functions corresponding to the best function esti-
mated from the experimental setup with 50 samples and SNR = 3.

Test Basis 𝜆 𝐶 𝜎

1

Φ
1

2.581205 0.724138 0.162365
Φ
2

1.355051 0.827586 0.064088
Φ
3

−9.424124 0.862069 0.168524
Φ
4

6.909147 0.896552 0.168821

2

Φ
1

−17.234314 0.137931 1.933229
Φ
2

−1.310536 0.448276 0.086132
Φ
3

2.834948 0.482759 0.072595
Φ
4

16.774952 0.586207 1.913092

3

Φ
1

−1.116542 0.206897 0.391998
Φ
2

1.133581 0.482759 0.037636
Φ
3

1.355708 0.517241 0.032508
Φ
4

1.067411 0.793103 0.463377

4

Φ
1

−3.792799 0.344828 0.292119
Φ
2

2.455837 0.517241 0.070303
Φ
3

−1.031267 0.551724 0.044479
Φ
4

5.217404 0.655172 0.611903
Φ
5

−4.459106 1.000000 0.570569

5

Φ
1

−0.209363 0.448276 0.097197
Φ
2

−0.561304 0.482759 0.042001
Φ
3

0.580368 0.517241 0.035747
Φ
4

0.254328 0.551724 0.094056
Φ
5

−0.512819 0.724138 0.508370
Φ
6

0.607906 0.758621 0.402507

Table 9: Basis functions corresponding to the best function esti-
mated from the experimental setup with 50 samples and SNR = 4.

Test Basis 𝜆 𝐶 𝜎

1

Φ
1

2.019124 0.689655 0.158368
Φ
2

1.461036 0.827586 0.067736
Φ
3

−2.826506 0.862069 0.201430
Φ
4

1.857911 1.000000 0.126618

2

Φ
1

−8.652872 0.275862 1.484126
Φ
2

1.139507 0.482759 0.072935
Φ
3

0.928305 0.517241 0.052756
Φ
4

8.930352 0.896552 1.567421

3

Φ
1

−1.052161 0.137931 0.321876
Φ
2

1.214086 0.482759 0.041275
Φ
3

1.065797 0.517241 0.033858
Φ
4

0.987050 0.896552 0.404330

4

Φ
1

−4.415701 0.310345 0.292465
Φ
2

5.736092 0.448276 0.605733
Φ
3

1.014713 0.482759 0.056770
Φ
4

0.868994 0.517241 0.047533
Φ
5

−3.297666 0.931035 0.889548

5

Φ
1

−0.160610 0.344828 0.281685
Φ
2

−0.272302 0.448276 0.081592
Φ
3

−0.413769 0.482759 0.029738
Φ
4

0.464189 0.517241 0.023852
Φ
5

0.333063 0.551724 0.080594
Φ
6

0.101939 0.620690 0.396612

Given the performance characteristics of the proposed
approach, our future work will be to apply this method to
fit real experimental data. We are interested in extending our
approach to surface fitting, to experimentwith variable length
chromosomes and different basis functions.
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