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Preference of an alternative over another alternative is a useful way to express the opinion of decisionmaker. In the process of group
decisionmaking, preference relations are used in preference modelling of the alternatives under given criteria.The probability is an
important tool to deal with uncertainty; in many scenarios of decision making probabilities of different events affect the decision
making process directly. In order to deal with this issue, in this paper, hesitant probabilistic fuzzy preference relation (HPFPR) is
defined. Furthermore, consistency of HPFPR and consensus among decision makers are studied in the hesitant probabilistic fuzzy
environment. In this respect, many novel algorithms are developed to achieve consistency of HPFPRs and reasonable consensus
between decision makers and a final algorithm is proposed comprehending all other algorithms, presenting a complete decision
support model for group decision making. Lastly, we present a case study with complete illustration of the proposed model and
discussed the effects of probabilities on decision making validating the importance of the introduction of probability in hesitant
fuzzy preference relation.

1. Introduction

Fuzzy set theory was initially introduced by Zadeh [1] in 1965
as an extension of the classical set theory. In classical set
theory, an element either belongs to or does not belong to the
set. In fuzzy set theory, the gradual assessment of elements
of set is described by the membership function that is in[0, 1]. Fuzzy set theory can be used in which information is
vague, incomplete, or imprecise and it is successfully used in
decision making problems [2]. After the popularity of this
extension in set theory, several extensions and generalizations
of fuzzy sets have been introduced in the literature, for
example, interval-valued fuzzy sets, intuitionistic fuzzy sets,
interval-valued intuitionistic fuzzy sets, trapezoidal-valued
intuitionistic fuzzy sets, type-2 fuzzy sets, and fuzzymultisets.
These extensions have been successfully used in several
practical applications of real life problems and scientific
problems. Applications of these extensions can be found in
artificial intelligence, computer science, medicine, control
engineering, decision theory, expert systems, logic, manage-
ment science, operations research, pattern recognition, and

robotics. Torra felt that there are some limitations or deficien-
cies in these extensions. He proposed another extension of
fuzzy set theory which is named as hesitant fuzzy set (HFS)
theory [3]. This extension permits the several possible mem-
bership degrees of an element in [0, 1]. HFS provides a much
better description than the other extensions of fuzzy sets
where the difficulty of establishing the membership degree
and there is a specific set of possible values. Many studies
on HFS have been conducted, such as extensions of HFS
(see [4–9]).

Group decision making (GDM) is a procedure to find
the best/optimal alternative from a set of alternatives under
the basis of certain criteria and the alternatives are evaluated
by the group of decision makers for the criteria [10–14]. The
opinion of DMs may also be in the form of preference of
each pair of alternatives and provides a comparison of one
alternative over another and this comparison is a preference
relation; for some basics of preference relation see [15].
Preference relations have been developed and investigated
in different modes, like multiplicative preference relations
[16, 17], fuzzy preference relations [18], multiplicative fuzzy
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preference relation [10], incomplete fuzzy preference relation
[11, 19], linguistic preference relations [20, 21], intuitionis-
tic fuzzy preference relations [22, 23], and interval-valued
hesitant preference relations [6]. Due to several external
nonfeasible circumstances, like shortage of time, lack of
knowledge, and available data resources, DMs provided their
preferences opinion over the alternatives in the form of
several possible numerical values. All the discussed pref-
erence relations do not handle such kind of situations. To
overcome this problem, Zhu and Xu [24] introduced hesitant
fuzzy preference relation (HFPR). Here the preference of an
alternative over another alternative is a HFE; this HFE shows
all possible preference values that denote the hesitant degree
between two alternatives. HFPRs provide a better framework
for the description of the DMs’ hesitation while providing
their preferences among the alternatives [25–28].

In preference relations based decision making problems,
the concept of consistency plays an important role. It is
the level or degree of satisfaction among the values in
preference relation and these values are given by each DM
[29]. Consensus is also an important and valuable concept
in decision making problems based on preference relations.
Consensus measure is used for the mutual understanding
of DMs on the finally obtained alternatives [29]. Until now,
several researchers of this area successfully made some
progress to convert the preference relations as consistent and
generate a certain level of consensus in decision making
problems [30–33]. Nowadays, hesitant probabilistic fuzzy sets
received good attention in multicriteria decision making.
So, it is important to discuss the consistency and consensus
measure for these preference relations. In this paper, we
target to develop a group decisionmakingmodel for HPFPRs
where the consistency of the model and consensus among
the DMs are under consideration. Our proposed model is
efficient and practical; furthermore, it is strictly based on
theoretical foundations. Pang et al. introduce the idea of
probabilistic linguistic term set [34]. They also develop the
aggregation operator of this set and proposed the extended
TOPSIS version to handle the multicriteria group deci-
sion making problems. By getting the motivation from the
hesitant fuzzy set and probabilistic linguistic term set, Xu
and Zhou proposed the concept of hesitant probabilistic
fuzzy set [35]. They investigated several aggregation oper-
ators with properties for hesitant probabilistic fuzzy set. A
novel algorithm was developed to handle the multicriteria
group decision making problems for hesitant probabilistic
fuzzy set [36]. This concept was further extended to the
continuous form of hesitant probabilistic fuzzy set [37].
Distance measures were also discussed for the continuous
form and it was also applied to automotive industry safety
evaluation problem. In these no one discusses the preference
relations of the hesitant probabilistic fuzzy set. It is worth
defining the preference relations for this set and discussing
the consistency and consensus measure of the decision
model.

To accomplish these goals, this paper is structured in
the following way. In Section 2, some preliminary concepts
are discussed to understand our proposal. Section 3 is
devoted to design the basic structure of hesitant probabilistic

fuzzy preference relations. A distance measured between the
preference relations is developed, based on it, consistency
measure of preference relations is derived. Also, two novel
algorithms are designed to achieve acceptable consistency.
In Section 4, consensus measure is defined for the group
decision making and a novel algorithm is presented for
reaching acceptable consensus among decision makers. Sec-
tion 5 is dedicated to presenting a complete group decision
making model dealing with both issues of consistency and
consensus. In Section 6, numerical analysis of the developed
model through a case study is performed to understand
the importance of our proposal. Section 7 is dedicated for
comparison between proposed model and existing ones.
Section 8 ends the paper with some concluding remarks.

2. Preliminaries

Definition 1 (see [39]). For 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a fixed set, a
preference relation ≽ is a subset of 𝑋 × 𝑋, which satisfies the
following two:

(1) (Completeness) for all 𝑥𝑖 ∈ 𝑋 and for all 𝑥𝑗 ∈ 𝑋,
either 𝑥𝑖 ≽ 𝑥𝑗 or 𝑥𝑗 ≽ 𝑥𝑖; that is, (𝑥𝑖, 𝑥𝑗) ∈ ≽ or(𝑥𝑗, 𝑥𝑖) ∈ ≽.

(2) (Transitivity) for all 𝑥𝑖 ∈ 𝑋, for all 𝑥𝑗 ∈ 𝑋, and for all𝑥𝑘 ∈ 𝑋 if 𝑥𝑖 ≽ 𝑥𝑗 and 𝑥𝑗 ≽ 𝑥𝑘, then 𝑥𝑖 ≽ 𝑥𝑘; that is,(𝑥𝑖, 𝑥𝑗) ∈ ≽ and (𝑥𝑗, 𝑥𝑘) ∈ ≽ ⇒ (𝑥𝑖, 𝑥𝑘) ∈ ≽ .
Definition 2 (see [1, 40]). For𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a fixed set,
a HFPR is expressed by a matrix𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ⊆ 𝑋×𝑋, where𝑎𝑖𝑗 = {𝑎𝑠𝑖𝑗 | 𝑠 = 1, 2, 3, . . . , #𝑎𝑖𝑗} is a HFE, giving all the possible
preference degrees of the alternative𝑥𝑖 over 𝑥𝑗. Also 𝑎𝑖𝑗 satisfy
the following conditions for all 𝑖, 𝑗 ∈ 𝑁:𝑎𝜎(𝑠)𝑖𝑗 + 𝑎(#𝑎𝑖𝑗−𝜎(𝑠)+1)𝑗𝑖 = 1,𝑎𝑖𝑖 = {0.5} ,

#𝑎𝑖𝑗 = #𝑎𝑗𝑖, (1)

where 𝑎𝜎(𝑠)𝑖𝑗 is the 𝑠th smallest value in 𝑎𝑖𝑗 and also elements of𝑎𝑖𝑗 are arranged in increasing order.

The notion of the hesitant fuzzy set given by Torra [3]
is well known and has been successfully used to model
vagueness of real life. It allows decision makers to give
multiple membership values, but has the deficiency to deal
with probabilities of preference degrees. To make hesitant
fuzzy sets more compatible with real life, Xu and Zhou
[35] defined hesitant probabilistic fuzzy element (HPFE) and
hesitant probabilistic fuzzy set (HPFS).

Definition 3 (see [35]). Consider a fixed set 𝑅. The HPFS on𝑅 is defined as a mathematical symbol:𝐻𝑝 = {ℎ (𝛾𝑖 | 𝑝𝑖) | 𝛾𝑖, 𝑝𝑖} , (2)

where ℎ(𝛾𝑖 | 𝑝𝑖) is HPFE comprising the elements of the
form 𝛾𝑖 | 𝑝𝑖, expressing the hesitant fuzzy information with



Mathematical Problems in Engineering 3

probabilities to the set 𝐻𝑝, 0 ≤ 𝛾𝑖 ≤ 1, 𝑖 = 1, 2, 3, . . . , #ℎ,
where #ℎ is the number of elements in ℎ(𝛾𝑖 | 𝑝𝑖), 𝑝𝑖 ∈ [0, 1] is
the respective hesitant probability for 𝛾𝑖, and ∑#ℎ

𝑖=1 𝑝𝑖 = 1.
Score function, deviation function, and comparison laws

are given to compare different HPFEs.

Definition 4. For a HPFE ℎ(𝛾𝑖 | 𝑝𝑖) where 𝑖 = 1, 2, . . . , #ℎ,𝑠(ℎ) = ∑#ℎ
𝑖=1 𝛾𝑖𝑝𝑖 is called the score function of ℎ(𝛾𝑖 | 𝑝𝑖),

where #ℎ is the number of possible elements in ℎ(𝛾𝑖 | 𝑝𝑖).
Definition 5. For a HPFE ℎ(𝛾𝑖 | 𝑝𝑖) where 𝑖 = 1, 2, . . . , #ℎ,𝑑(ℎ) = ∑#ℎ

𝑖=1(𝛾𝑖 − 𝑠(ℎ))2𝑝𝑖 is called the deviation function ofℎ(𝛾𝑖 | 𝑝𝑖), where 𝑠(ℎ) = ∑#ℎ
𝑖=1 𝛾𝑖𝑝𝑖 is the score function of ℎ(𝛾𝑖 |𝑝𝑖) and #ℎ is the number of possible elements in ℎ(𝛾𝑖 | 𝑝𝑖).

The score and deviation functions are similar to the
expectation and variance of the randomvariable, respectively,
and, thus, the comparison laws for two HPFEs ℎ1 and ℎ2 can
be presented as follows:

If 𝑠(ℎ1) > 𝑠(ℎ2), then ℎ1 > ℎ2,
If 𝑠(ℎ1) = 𝑠(ℎ2) and 𝑑(ℎ1) > 𝑑(ℎ2), then ℎ1 < ℎ2,
If 𝑠(ℎ1) = 𝑠(ℎ2) and 𝑑(ℎ1) = 𝑑(ℎ2), then ℎ1 = ℎ2,
If 𝑠(ℎ1) = 𝑠(ℎ2) and 𝑑(ℎ1) < 𝑑(ℎ2), then ℎ1 > ℎ2.

3. Hesitant Probabilistic Fuzzy
Preference Relation

In order to build a completemodel for group decisionmaking
first some operations are defined for HPFEs of the same
length. Let ℎ(𝛾𝑖 | 𝑝𝑖), ℎ1(𝛾󸀠𝑖 | 𝑝󸀠𝑖 ), and ℎ2(𝛾󸀠󸀠𝑖 | 𝑝󸀠󸀠𝑖 ) be HPFEs
with #ℎ = #ℎ1 = #ℎ2.Thenℎ1 ⊕ ℎ2 = ⋃

𝛾󸀠
𝜎(𝑠)
|𝑝󸀠
𝜎(𝑠)
∈ℎ1,𝛾
󸀠󸀠
𝜎(𝑠)
|𝑝󸀠󸀠
𝜎(𝑠)
∈ℎ2

{𝛾󸀠𝜎(𝑠) + 𝛾󸀠󸀠𝜎(𝑠) | 𝑝󸀠𝜎(𝑠)
+ 𝑝󸀠󸀠𝜎(𝑠)} (3)

ℎ1 ⊖ ℎ2 = ⋃
𝛾󸀠
𝜎(𝑠)
|𝑝󸀠
𝜎(𝑠)
∈ℎ1,𝛾
󸀠󸀠
𝜎(𝑠)
|𝑝󸀠󸀠
𝜎(𝑠)
∈ℎ2

{𝛾󸀠𝜎(𝑠) − 𝛾󸀠󸀠𝜎(𝑠) | 𝑝󸀠𝜎(𝑠)
+ 𝑝󸀠󸀠𝜎(𝑠)} (4)

max (ℎ1, ℎ2) = ⋃
𝛾󸀠
𝜎(𝑠)
|𝑝󸀠
𝜎(𝑠)
∈ℎ1 ,𝛾
󸀠󸀠
𝜎(𝑠)
|𝑝󸀠󸀠
𝜎(𝑠)
∈ℎ2

{max (𝛾󸀠𝜎(𝑠), 𝛾󸀠󸀠𝜎(𝑠)) |
max (𝑝󸀠𝜎(𝑠) + 𝑝󸀠󸀠𝜎(𝑠))} (5)

min (ℎ1, ℎ2) = ⋃
𝛾󸀠
𝜎(𝑠)
|𝑝󸀠
𝜎(𝑠)
∈ℎ1 ,𝛾
󸀠󸀠
𝜎(𝑠)
|𝑝󸀠󸀠
𝜎(𝑠)
∈ℎ2

{min (𝛾󸀠𝜎(𝑠), 𝛾󸀠󸀠𝜎(𝑠)) |
min (𝑝󸀠𝜎(𝑠) + 𝑝󸀠󸀠𝜎(𝑠))} (6)

𝜔ℎ = ⋃
𝛾𝜎(𝑠)|𝑝𝜎(𝑠)∈ℎ

{𝜔𝛾𝜎(𝑠) | 𝜔𝑝𝜎(𝑠)} : 𝜔 ≥ 0, (7)

where 𝛾󸀠𝜎(𝑠) | 𝑝󸀠𝜎(𝑠) and 𝛾󸀠󸀠𝜎(𝑠) | 𝑝󸀠󸀠𝜎(𝑠) are 𝑠th elements of ℎ1(𝛾󸀠𝑖 |𝑝󸀠𝑖 ) and ℎ2(𝛾󸀠󸀠𝑖 | 𝑝󸀠󸀠𝑖 ), respectively.
For simplicity ℎ(𝛾𝑖 | 𝑝𝑖) will be written as ℎ throughout

this paper.
To allow decision makers to provide the preferences

in hesitant probabilistic environment, we define hesitant
probabilistic fuzzy preference relation (HPFPR).

Definition 6 (HPFPR). Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛} be the set
of alternatives. The HPFPR is a matrix 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛, whereℎ𝑖𝑗 = {ℎ𝑠𝑖𝑗 | 𝑝𝑠𝑖𝑗 : 𝑠 = 1, 2, 3, . . . , #ℎ𝑖𝑗} is the HPFE expressing
the possible preference degrees of the alternative 𝑥𝑖 over 𝑥𝑗
with probabilities and with 𝑗 > 𝑖 satisfying the following
conditions: ℎ𝜎(𝑠)𝑖𝑗 + ℎ𝜎(𝑠)𝑗𝑖 = 1,𝑝𝜎(𝑠)𝑖𝑗 = 𝑝𝜎(𝑠)𝑗𝑖 ,

#ℎ𝑖𝑗 = #ℎ𝑗𝑖,ℎ𝜎(𝑠)𝑖𝑖 = 12 ,ℎ𝜎(𝑠)𝑖𝑗 < ℎ𝜎(𝑠+1)𝑖𝑗 ,ℎ𝜎(𝑠+1)𝑗𝑖 < ℎ𝜎(𝑠)𝑗𝑖 ,
(8)

where ℎ𝜎(𝑠)𝑖𝑗 | 𝑝𝜎(𝑠)𝑖𝑗 and ℎ𝜎(𝑠)𝑗𝑖 | 𝑝𝜎(𝑠)𝑗𝑖 are the 𝑠th elements in ℎ𝑖𝑗
and ℎ𝑗𝑖, respectively.
Remark 7. The above definition is very much alike to the
definition of probabilistic hesitant fuzzy preference relation
proposed by Zhou and Xu [41, Definition 4]. They takeℎ𝑖𝑖 = {12 | 1} : 𝑖 = 1, 2, . . . , 𝑛. (9)

But if one adopted the technique of 𝛽-normalization, that
is, making the length of ℎ𝑖𝑗 the same by adding elements to
HPFEs of shorter length, it implicates numerous errors and
difficulties when dealing with consistency of HPFPRs and
consensus amongdecisionmakers based on𝛽-normalization.
So fixing the length of diagonal elements to one does not
match with the condition ∑#ℎ

𝑠=1 𝑝𝜎(𝑠)𝑖𝑖 = 1. So by allowing
variation, the probabilities of diagonal HPFEs helps us to
maintain the spirit of HPFE in discussing consistency and
consensus in the context of 𝛽-normalization.The diversity in
probabilities of diagonal preference degrees does not cause
any harm; the net impact remains the same as the sum of all
probabilities is 1.

Often the length of HPFEs has been different, but to apply
the above defined operations (3), (4), and (7), the length is
needed to be equal for all HPFEs. Some elements will be
added to HPFE who has less elements, but the information
it provides that should not be changed. Now, the definition
of normalized hesitant probabilistic fuzzy preference relation
(NHPFPR) is proposed.
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Definition 8 (normalized HPFPR). A HPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛
is called NHPFPR if the length of all ℎ𝑖𝑗 is the same for all𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Let ℎ = {ℎ𝑖 | 𝑝𝑖 : 𝑖 = 1, 2, 3, . . . , #ℎ} be a HPFE. For
preference degrees ℎ𝑖 Zhu et al. [28] define a way to add
elements in HFE; for an optimized parameter 0 ≤ 𝜁 ≤ 1 the
preference degree that will be added to ℎ𝑖 is 𝜁ℎ+ + (1 − 𝜁)ℎ−,
where ℎ+ is the largest and ℎ− is the smallest among ℎ𝑖. The
decisionmaker can choose the value of 𝜁 according to his risk
preferences. The added element will be ℎ+ and ℎ− for 𝜁 = 1
and 𝜁 = 0, respectively, which demonstrate the optimistic and
pessimistic approach of decision maker proposed by Xu and

Xia [42]. In hesitant probabilistic fuzzy environment, some
way is needed to assign probability to the added preference
degree such that the information of HPFPR is not changed.
There are many ways to do it; one option is to assign 0 to
added preference degree 𝜁ℎ+ + (1 − 𝜁)ℎ−, but for the extreme
cases pessimistic approach, that is, 𝜁 = 0, and optimistic
approach, that is, 𝜁 = 1, the added element in HPFE isℎ− | 𝑝−/(𝑑 − #ℎ + 1) and ℎ+ | 𝑝+/(𝑑 − #ℎ + 1), respectively,
where 𝑑 is the required length of HPFEs and 𝑝− and 𝑝+ are
the probabilities of ℎ− and ℎ+, respectively.

For a given HPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛, we normalize it as
follows. Let𝑑 = max{#ℎ𝑖𝑗} and 𝑖, 𝑗 = 1, 2, . . . , 𝑛. For optimized
parameter 𝜁 = 0,

ℎ𝑖𝑗 = {{{{{{{{{{{{{{{
ℎ𝑖𝑗, #ℎ𝑖𝑗 = 𝑑;{{{{{{{{{ℎ𝜎(1)𝑖𝑗 | 𝑝𝜎(1)𝑖𝑗𝑑 − #ℎ𝑖𝑗 + 1 , . . . , ℎ𝜎(1)𝑖𝑗 | 𝑝𝜎(1)𝑖𝑗𝑑 − #ℎ𝑖𝑗 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑−#ℎ𝑖𝑗+1

, ℎ𝜎(2)𝑖𝑗 | 𝑝𝜎(2)𝑖𝑗 , ℎ𝜎(3)𝑖𝑗 | 𝑝𝜎(3)𝑖𝑗 , . . . , ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 | 𝑝𝜎(#ℎ𝑖𝑗)𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
#ℎ𝑖𝑗−1

}}}}}}}}} , #ℎ𝑖𝑗 < 𝑑. (10)

For 𝜁 = 1,
ℎ𝑖𝑗

= {{{{{{{{{{{{{{{
ℎ𝑖𝑗, #ℎ𝑖𝑗 = 𝑑;{{{{{{{{{ℎ𝜎(1)𝑖𝑗 | 𝑝𝜎(1)𝑖𝑗 , ℎ𝜎(2)𝑖𝑗 | 𝑝𝜎(2)𝑖𝑗 , . . . , ℎ𝜎(#ℎ𝑖𝑗−1)𝑖𝑗 | 𝑝𝜎(#ℎ𝑖𝑗−1)𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

#ℎ𝑖𝑗−1

, ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 | 𝑝𝜎(#ℎ𝑖𝑗)𝑖𝑗𝑑 − #ℎ𝑖𝑗 + 1 , . . . , ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 | 𝑝𝜎(#ℎ𝑖𝑗)𝑖𝑗𝑑 − #ℎ𝑖𝑗 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑑−#ℎ𝑖𝑗+1

}}}}}}}}} , #ℎ𝑖𝑗 < 𝑑. (11)

For 0 < 𝜁 < 1, for 𝑖 < 𝑗
ℎ𝑖𝑗
= {{{{{{{{{{{

ℎ𝑖𝑗, #ℎ𝑖𝑗 = 𝑑;{{{{{ℎ𝜎(1)𝑖𝑗 | 𝑝𝜎(1)𝑖𝑗 , . . . , ℎ𝜎(𝑡𝑖𝑗)𝑖𝑗 | 𝑝𝜎(𝑡𝑖𝑗)𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑡𝑖𝑗

, 𝜁ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 + (1 − 𝜁) ℎ𝜎(1)𝑖𝑗 | 0, . . . , 𝜁ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 + (1 − 𝜁) ℎ𝜎(1)𝑖𝑗 | 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑑−(#ℎ𝑖𝑗)

, ℎ𝜎(𝑡𝑖𝑗+1)𝑖𝑗 | 𝑝𝜎(𝑡𝑖𝑗+1)𝑖𝑗 , . . . , ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 | 𝑝𝜎(#ℎ𝑖𝑗)𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(#ℎ𝑖𝑗)−𝑡𝑖𝑗

}}}}} , #ℎ𝑖𝑗 < 𝑑,
ℎ𝑗𝑖
= {{{{{{{{{{{

ℎ𝑗𝑖, #ℎ𝑗𝑖 = 𝑑;{{{{{ℎ𝜎(1)𝑗𝑖 | 𝑝𝜎(1)𝑗𝑖 , . . . , ℎ𝜎(𝑡𝑗𝑖)𝑗𝑖 | 𝑝𝜎(𝑡𝑗𝑖)𝑗𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑡𝑗𝑖

, (1 − 𝜁) ℎ𝜎(1)𝑗𝑖 + 𝜁ℎ𝜎(#ℎ𝑗𝑖)𝑗𝑖 | 0, . . . , (1 − 𝜁) ℎ𝜎(1)𝑗𝑖 + 𝜁ℎ𝜎(ℎ𝑗𝑖)𝑗𝑖 | 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑑−(#ℎ𝑗𝑖)

, ℎ𝜎(𝑡𝑗𝑖+1)𝑗𝑖 | 𝑝𝜎(𝑡𝑗𝑖+1)𝑗𝑖 , . . . , ℎ𝜎(#ℎ𝑗𝑖)𝑗𝑖 | 𝑝𝜎(#ℎ𝑗𝑖)𝑗𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(#ℎ𝑗𝑖)−𝑡𝑗𝑖

}}}}} , #ℎ𝑗𝑖 < 𝑑,
(12)

where 𝑡𝑖𝑗 = 𝑡𝑗𝑖 = max𝑠∈{1,2,...,#ℎ𝑖𝑗}ℎ𝜎(𝑠)𝑖𝑗 ≤ 𝜁ℎ𝜎(#ℎ𝑖𝑗)𝑖𝑗 + (1 − 𝜁)ℎ𝜎(1)𝑖𝑗 . Now𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 is NHPFPR; next we deal with consist-
ency.
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Example 9. Let

𝐻1 = ( {.5 | 1} {0.1196 | 0.4481, 0.3567 | 0.5519} {0.2898 | 1} {0.1702 | 0.1906, 0.231 | 0.4432, 0.9392 | 0.3662}{0.880 4 | 0.4481, 0.643 3 | 0.5519} {.5 | 1} {0.0712 | 0.0575, 0.566 | 0.9425} {0.3587 | 0.2586, 0.7928 | 0.7414}{0.710 2 | 1} {0.928 8 | 0.0575, 0.434 | 0.9425} {.5 | 1} {0.5053 | 0.9692, 0.7557 | 0.0308}{0.829 8 | 0.1906, 0.769 | 0.4432, 0.060 8 | 0.3662} {0.641 3 | 0.2586, 0.207 2 | 0.7414} {0.494 7 | 0.9692, 0.244 3 | 0.0308} {.5 | 1} ) ,
𝐻2
= ( {.5 | 1} {0.331 | 0.4663, 0.4815 | 0.53, 0.7136 | 0.0036} {0.3152 | 0.5797, 0.3269 | 0.1281, 0.5828 | 0.2921} {0.3593 | 0.5865, 0.5943 | 0.2853, 0.8714 | 0.1281}{0.669 | 0.4663, 0.518 5 | 0.53, 0.286 4 | 0.0036} {.5 | 1} {0.4762 | 0.6629, 0.7996 | 0.3371} {0.2436 | 1}{0.684 8 | 0.5797, 0.673 1 | 0.1281, 0.417 2 | 0.2921} {0.523 8 | 0.6629, 0.200 4 | 0.3371} {.5 | 1} {0.1829 | 0.1629, 0.3216 | 0.404, 0.8871 | 0.4331}{0.640 7 | 0.5865, 0.405 7 | 0.2853, 0.128 6 | 0.1281} {0.756 4 | 1} {0.817 1 | 0.1629, 0.678 4 | 0.404, 0.112 9 | 0.4331} {.5 | 1} ) .

(13)

Then 𝐻1 and 𝐻2 are HPFPRs. Now by taking optimized
parameters 0, 1 for 𝐻1 and 𝐻2, respectively, the following
NHPFPR are obtained.

𝐻1
= ( {.5 | .3333, .5 | .3333, .5 | .3333} {0.1196 | 0.2241, 0.1196 | 0.2241, 0.3567 | 0.5519} {0.2898 | .3333, 0.2898 | .3333, 0.2898 | .3333} {0.1702 | 0.1906, 0.231 | 0.4432, 0.9392 | 0.3662}{0.880 4 | 0.2241, 0.880 4 | 0.2241, 0.643 3 | 0.5519} {.5 | .3333, .5 | .3333, .5 | .3333} {0.0712 | 0.0287, 0.0712 | 0.0287, 0.566 | 0.9425} {0.3587 | 0.1293, 0.3587 | 0.1293, 0.7928 | 0.7414}{0.710 2 | .3333, 0.710 2 | .3333, 0.710 2 | .3333} {0.928 8 | 0.0287, 0.928 8 | 0.0287, 0.434 | 0.9425} {.5 | .3333, .5 | .3333, .5 | .3333} {0.5053 | 0.4846, 0.5053 | 0.4846, 0.7557 | 0.0308}{0.829 8 | 0.1906, 0.769 | 0.4432, 0.060 8 | 0.3662} {0.641 3 | 0.1293, 0.641 3 | 0.1293, 0.207 2 | 0.7414} {0.494 7 | 0.4846, 0.494 7 | 0.4846, 0.244 3 | 0.0308} {.5 | .3333, .5 | .3333, .5 | .3333} ) ,
𝐻2
= ( {.5 | .3333, .5 | .3333, .5 | .3333} {0.331 | 0.4663, 0.4815 | 0.53, 0.7136 | 0.0036} {0.3152 | 0.5797, 0.3269 | 0.1281, 0.5828 | 0.2921} {0.3593 | 0.5865, 0.5943 | 0.2853, 0.8714 | 0.1281}{0.669 | 0.4663, 0.518 5 | 0.53, 0.286 4 | 0.0036} {.5 | .3333, .5 | .3333, .5 | .3333} {0.4762 | 0.6629, 0.7996 | 0.1686, 0.7996 | 0.1686} {0.2436 | .3333, 0.2436 | .3333, 0.2436 | .3333}{0.684 8 | 0.5797, 0.673 1 | 0.1281, 0.417 2 | 0.2921} {0.523 8 | 0.6629, 0.200 4 | 0.1686, 0.200 4 | 0.1686} {.5 | .3333, .5 | .3333, .5 | .3333} {0.1829 | 0.1629, 0.3216 | 0.404, 0.8871 | 0.4331}{0.640 7 | 0.5865, 0.405 7 | 0.2853, 0.128 6 | 0.1281} {0.756 4 | .3333, 0.756 4 | .3333, 0.756 4 | .3333} {0.817 1 | 0.1629, 0.678 4 | 0.404, 0.112 9 | 0.4331} {.5 | .3333, .5 | .3333, .5 | .3333} ) .

(14)

3.1. Consistency Measure of Hesitant Probabilistic Fuzzy Pref-
erence Relation. In order to obtain valuable decision from
preference relations they should be consistent in a sense that,
let us say, 𝑥1 is preferable to 𝑥2 and 𝑥2 is preferable to 𝑥3 then𝑥1 must be preferable to 𝑥3. Several authors have pursued
consistency issues for preference relations [1, 21, 32, 33, 43].

Additive consistency for fuzzy preference degrees is well
known; actually Tanino [44] defined the additive consistency
for fuzzy preference relation based on moderate stochastic
transitivity, well known in the probabilistic choice theory
[45, page 27]. Furthermore, many kinds of transitivity are
proposed and studied for probabilities in comparing the
preferences in the choice theory.

Considering HPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 by (10), (11) calculate
NHPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛. The weak stochastic transitivity for
probability means𝑝𝜎(𝑠)𝑖𝑘 ≥ 12 ∧ 𝑝𝜎(𝑠)𝑘𝑗 ≥ 12 󳨐⇒𝑝𝜎(𝑠)𝑖𝑗 ≥ 12 . (15)

This will provide a platform to define consistency for
HPFPR.

Definition 10 (consistency). For a given HPFPR,𝐻 = (ℎ𝑖𝑗)𝑛×𝑛
and its NHFPR𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 with optimized parameter 𝜁. Ifℎ𝜎(𝑠)𝑖𝑗 = ℎ𝜎(𝑠)𝑖𝑘 − ℎ𝜎(𝑠)𝑗𝑘 + 12 , (16)

𝑝𝜎(𝑠)𝑖𝑘 ≥ 12 ∧ 𝑝𝜎(𝑠)𝑘𝑗 ≥ 12 󳨐⇒𝑝𝜎(𝑠)𝑖𝑗 ≥ 12 , (17)

for all 𝑖, 𝑗, 𝑘 = 1, 2, 3, . . . , 𝑛, then𝐻 is called consistentHPFPR
with optimized parameter 𝜁.

But many times preference relations are not consistent
and, for meaningful decision making, some level of consis-
tency is required in the least if it is not fully consistent. For
preference degrees, take the summation of (16) for all 𝑘𝑛ℎ𝜎(𝑠)𝑖𝑗 = 𝑛∑

𝑘=1

(ℎ𝜎(𝑠)𝑖𝑘 − ℎ𝜎(𝑠)𝑗𝑘 ) + 𝑛2 ; (18)

therefore, ℎ𝜎(𝑠)𝑖𝑗 = 1𝑛 𝑛∑
𝑘=1

(ℎ𝜎(𝑠)𝑖𝑘 − ℎ𝜎(𝑠)𝑗𝑘 ) + 12 . (19)

Thus, (19) is satisfied by a consistent HPFPR, if not putℎ̃𝜎(𝑠)𝑖𝑗 = 1𝑛 𝑛∑
𝑘=1

(ℎ𝜎(𝑠)𝑖𝑘 − ℎ𝜎(𝑠)𝑗𝑘 ) + 12 ; (20)

one can check that the preference degrees ℎ̃𝜎(𝑠)𝑖𝑗 obtained
from the above equation are consistent. For probabilities,
matter is not that simple; somemechanism is needed tomake
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consistent probabilities with all the restrictions of HPFPR
like 𝑝𝜎(𝑠)𝑖𝑗 = 𝑝𝜎(𝑠)𝑗𝑖 and ∑#ℎ𝑖𝑗

𝑠=1 𝑝𝜎(𝑠)𝑖𝑗 = 1. Let 𝑝𝜎(𝑠)𝑖𝑘 ≥ 1/2 and𝑝𝜎(𝑠)𝑘𝑗 ≥ 1/2.Then define

𝑝𝜎(𝑠)𝑖𝑗 fl
𝑝𝜎(𝑠)𝑖𝑘 + 𝑝𝜎(𝑠)𝑘𝑗2 ≥ 12 , (21)

to keep account for all 𝑘 = 1, 2, . . . , 𝑛 and keeping in mind∑#ℎ𝑖𝑗
𝑠=1 𝑝𝜎(𝑠)𝑖𝑗 = 1 we modify (21) as

𝑝𝜎(𝑠)𝑖𝑗
= (𝑝𝜎(𝑠)𝑖1 + 𝑝𝜎(𝑠)1𝑗 ) /2 + (𝑝𝜎(𝑠)𝑖2 + 𝑝𝜎(𝑠)2𝑗 ) /2 + ⋅ ⋅ ⋅ + (𝑝𝜎(𝑠)𝑖𝑛 + 𝑝𝜎(𝑠)𝑛𝑗 ) /2𝑛 . (22)

Hence ∑#ℎ𝑖𝑗
𝑠=1 𝑝𝜎(𝑠)𝑖𝑗 = 1 and 𝑝𝜎(𝑠)𝑖𝑗 = 𝑝𝜎(𝑠)𝑗𝑖 and if 𝑝𝜎(𝑠)𝑖𝑘 ≥ 1/2

and 𝑝𝜎(𝑠)𝑘𝑗 ≥ 1/2 for all 𝑘 = 1, 2, . . . , 𝑛 then surely 𝑝𝜎(𝑠)𝑖𝑗 ≥ 1/2.
But, it is possible that 𝑝𝜎(𝑠)𝑖𝑘 ≥ 1/2 and 𝑝𝜎(𝑠)𝑘𝑗 ≥ 1/2 are not
true for some 𝑘 that will lead to a situation where 𝑝𝜎(𝑠)

𝑖𝑘
≥(1/2) ∧ 𝑝̃𝜎(𝑠)𝑘𝑗 ≥ 1/2 and 𝑝𝜎(𝑠)𝑖𝑗 < 1/2. Now if another convex

combination is calculated by (22) then obtained probability
will increase. These observations lead to the following novel
algorithm producing a sequence of HPFPRs convergent to
fully consistent HPFPR.

Algorithm 11 (consistent HPFPR calculator).

Input. HPFPR𝐻 and optimized parameter 𝜁.
Output. NHPFPR 𝐻, consistent HPFPR 𝐻̃, and number of
iterations 𝑡.
Step 1. Compute NHPFPR 𝐻 by (10) or (11). Let 𝑡 = 0 and𝐻̃(0) = (ℎ(0)𝑖𝑗 )𝑛×𝑛 be defined as

ℎ̃(0)𝑖𝑗 = {1𝑛 𝑛∑
𝑘=1

(ℎ𝜎(𝑠)𝑖𝑘 − ℎ𝜎(𝑠)𝑗𝑘 ) + 12 | 𝑝𝜎(𝑠)𝑖𝑗 : 𝑠
= 1, 2, 3, . . . , 𝑑} . (23)

Step 2. If the following condition is true, then go to Step 4;
otherwise, go to Step 3.

(𝑝(𝑡)𝑖𝑘 )𝜎(𝑠) ≥ 12 ∧ (𝑝(𝑡)𝑘𝑗 )𝜎(𝑠) ≥ 12 󳨐⇒(𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) ≥ 12 , ∀ (𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛) . (24)

Step 3. 𝐻̃(𝑡+1) = (ℎ̃(𝑡+1)𝑖𝑗 )𝑛×𝑛 is defined asℎ̃(𝑡+1)𝑖𝑗
= {{{{{(ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠) | 1𝑛 𝑛∑

𝑘=1

((𝑝(𝑡)
𝑖𝑘
)𝜎(𝑠) + (𝑝(𝑡)

𝑘𝑗
)𝜎(𝑠)2 ) : 𝑠

= 1, 2, 3, . . . , 𝑑}}}}} ;
(25)

put 𝑡 = 𝑡 + 1. Go to Step 2.

Step 4. Output NHPFPR 𝐻, consistent HPFPR 𝐻̃(𝑡), and
number of iterations 𝑡.
Step 5. End.

Proposition 12. Let𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 be aHPFPRwith its NHFPR𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 with optimized parameter 𝜁. 
en 𝐻̃ = (ℎ̃𝑖𝑗)𝑛×𝑛
output of Algorithm 11 is consistent HPFPR.

Proof. Definition 10, (23) and (24) directly imply this propo-
sition.

This result also gives the following theorem.

Proposition 13. Consider a HPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛, its NHFPR𝐻 = (ℎ𝑖𝑗)𝑛×𝑛, and 𝐻̃ = (ℎ̃𝑖𝑗)𝑛×𝑛 consistent HPFPR with
optimized parameter 𝜁. 
en, 𝐻 is consistent if and only if𝐻 = 𝐻̃.

The above algorithm is quite efficient; to see this fact, we
generate 1000 random HPFPRs with different values of 𝑛,𝑑 and apply Algorithm 11 to find their consistent HPFPRs.
Table 1 shows the average value of the number of iterations in
Algorithm 11.

Example 14. Take 𝐻1, 𝐻2 and their optimized parameter the
same as in Example 9. Then by Algorithm 11, the following
consistent HPFPRs 𝐻̃1 and 𝐻̃2 are obtained.

𝐻̃1
= ((
(

{.5 | 0.2574, .5 | 0.2894, .5 | 0.4532} {0.3173 | 0.2567, 0.3325 | 0.2882, 0.3959 | 0.4551} {0.1088 | 0.2576, 0.124 | 0.2891, 0.4214 | 0.4533} {0.1535 | 0.2575, 0.1839 | 0.2895, 0.7684 | 0.453}{0.682 7 | 0.2567, 0.667 5 | 0.2882, 0.604 1 | 0.4551} {.5 | 0.2559, .5 | 0.287, .5 | 0.457} {0.2915 | 0.2569, 0.2915 | 0.2879, 0.5256 | 0.4552} {0.3361 | 0.2568, 0.3513 | 0.2883, 0.8725 | 0.4549}{0.891 2 | 0.2576, 0.876 | 0.2891, 0.578 6 | 0.4533} {0.708 5 | 0.2569, 0.708 5 | 0.2879, 0.474 4 | 0.4552} {.5 | 0.2578, .5 | 0.2888, .5 | 0.4534} {0.5447 | 0.2577, 0.5599 | 0.2892, 0.8469 | 0.4531}{0.846 5 | 0.2575, 0.816 1 | 0.2895, 0.231 6 | 0.453} {0.663 9 | 0.2568, 0.648 7 | 0.2883, 0.127 5 | 0.4549} {0.455 3 | 0.2577, 0.440 1 | 0.2892, 0.153 1 | 0.4531} {.5 | 0.2576, .5 | 0.2897, .5 | 0.4527}
))
)

,
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𝐻̃2
= ( {.5 | 0.4915, .5 | 0.3192, .5 | 0.1893} {0.4042 | 0.4702, 0.4603 | 0.3303, 0.7095 | 0.1995} {0.4035 | 0.4631, 0.5519 | 0.2889, 0.6658 | 0.248} {0.1978 | 0.4228, 0.3906 | 0.3291, 0.7925 | 0.2481}{0.595 8 | 0.4702, 0.539 7 | 0.3303, 0.290 5 | 0.1995} {.5 | 0.449, .5 | 0.3413, .5 | 0.2097} {0.4994 | 0.4418, 0.5916 | 0.2999, 0.4563 | 0.2582} {0.2937 | 0.4015, 0.4303 | 0.3402, 0.5829 | 0.2583}{0.596 5 | 0.4631, 0.448 1 | 0.2889, 0.334 2 | 0.248} {0.500 6 | 0.4418, 0.408 4 | 0.2999, 0.543 7 | 0.2582} {.5 | 0.4347, .5 | 0.2585, .5 | 0.3068} {0.2943 | 0.3944, 0.3387 | 0.2987, 0.6267 | 0.3069}{0.802 2 | 0.4228, 0.609 4 | 0.3291, 0.207 5 | 0.2481} {0.706 3 | 0.4015, 0.569 7 | 0.3402, 0.417 1 | 0.2583} {0.705 7 | 0.3944, 0.661 3 | 0.2987, 0.373 3 | 0.3069} {.5 | 0.354, .5 | 0.339, .5 | 0.307} ) .

(26)

Remark 15. To see the consistency of HPFPR geometrically,
three area graphs of fuzzy preference degrees [ℎ𝜎(𝑠)𝑖𝑗 ], proba-
bilities of preference degrees [𝑝𝜎(𝑠)𝑖𝑗 ], and score values [ℎ𝜎(𝑠)𝑖𝑗 ∗𝑝𝜎(𝑠)𝑖𝑗 ] are made. The procedure to make these graphs is
explained for 𝐻̃1, as follows.

Threematrices ,𝑃, and 𝑆 of order 4×12 of fuzzy preference
values, probability values, and score values are made from
HPFPR 𝐻̃1,

𝐹 = [[[[[[
.5 .5 .5 .3959 .3325 .3173 .4214 .124 .1088 .7684 .1839 .1535.6827 0.6675 .6041 .5 .5 .5 .5256 .2915 .2915 .8725 .3513 .3361.8912 .876 .5786 .7085 .7085 .4744 .5 .5 .5 .8469 .5599 .5447.8465 .8161 .2316 .6639 .6487 .1275 .4553 .4401 .1531 .5 .5 .5

]]]]]] ,
𝑃 = [[[[[[

.4532 .2894 .2573 .4551 .2882 .2567 .4533 .2891 .2576 .453 .2895 .2575.4551 .2882 .2567 .457 .287 .2559 .4552 .2879 .2569 .4549 .2883 .2568.4533 .2891 .2576 .4552 .2879 .2569 .4534 .2888 .2578 .4531 .2892 .2577.453 .2895 .2575 .4549 .2883 .2568 .4531 .2892 .2577 .4527 .2897 .2576
]]]]]] ,

𝑆 = [[[[[[
.2266 .1447 .1287 .1802 .0958 .0814 .191 .0359 .028 .348 .0532 .0395.2749 .1924 .1752 .2285 .1435 .128 .2392 .0839 .0749 .3969 .1013 .0863.2623 .2533 .2295 .216 .204 .0182 .2267 .1444 .1289 .3837 .1619 .1403.2363 .218 .1049 .187 .1705 .058 .1273 .1173 .0694 .2264 .1448 .1288

]]]]]] .
(27)

The area graphs are made of the above matrices by using
Matlab drawing tool bar. Figures 1, 2, and 3 and Figures 4,
5, and 6 show the comparison of area graphs for fuzzy pref-
erence degrees, probability values, and score values between𝐻1, 𝐻̃1 and 𝐻2, 𝐻̃2, respectively. The areas are more smooth
for consistent HPFPRs 𝐻̃1 and 𝐻̃2.

Once the consistent HPFPR is found, we are in a position
to make HPFPR acceptably consistent by defining consis-
tency measure. In order to define consistency measure, first
distance between two HPFEs is defined. Let ℎ1 = {𝛾𝑠1 | 𝑝𝑠1 :𝑠 = 1, 2, 3, . . . , #ℎ} and ℎ2 = {𝛾𝑠2 | 𝑝𝑠2 : 𝑠 = 1, 2, 3, . . . , #ℎ2}
with #ℎ1 = #ℎ2 = #ℎ.Then𝐷(ℎ1, ℎ2)= ∑𝛾𝜎(𝑠)1 |𝑝𝜎(s)1 ∈ℎ1,𝛾𝜎(𝑠)2 |𝑝𝜎(𝑠)2 ∈ℎ2 max (󵄨󵄨󵄨󵄨󵄨𝛾𝜎(𝑠)1 − 𝛾𝜎(𝑠)2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑝𝜎(𝑠)1 − 𝑝𝜎(𝑠)2 󵄨󵄨󵄨󵄨󵄨)

#ℎ . (28)

Based on the above equation the distance between two
HPFPRs is defined as follows.

Definition 16 (distance). Consider two HPFPRs 𝐻1 =(ℎ𝑖𝑗,1)𝑛×𝑛 and 𝐻2 = (ℎ𝑖𝑗,2)𝑛×𝑛 and their NHPFPRs 𝐻1 =(ℎ𝑖𝑗,1)𝑛×𝑛 and𝐻2 = (ℎ𝑖𝑗,2)𝑛×𝑛.The distance is defined as

𝐷(𝐻1, 𝐻2) = 2𝑛 (𝑛 + 1) 𝑛∑𝑖≤𝑗𝐷(ℎ𝑖𝑗,1, ℎ𝑖𝑗,2) . (29)

It is clear that the following properties are satisfied for𝐷(𝐻1, 𝐻2):
(1) 0 ≤ 𝐷(𝐻1, 𝐻2) ≤ 1;
(2) 𝐷(𝐻1, 𝐻2) = 𝐷(𝐻2, 𝐻1);
(3) 𝐻1 = 𝐻2 if and only if𝐷(𝐻1, 𝐻2) = 0.
While the decision maker provides its preference in form

of HPFPR, it should be noted that it can be used for decision
making with good results only if it has sufficient consistency.

Definition 17 (consistency index). For a given HPFPR 𝐻 =(ℎ𝑖𝑗)𝑛×𝑛, its NHPFPR𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 and consistentHPFPR 𝐻̃ =(ℎ̃𝑖𝑗)𝑛×𝑛 with optimized parameter 0 ≤ 𝜁 ≤ 1 obtained from
Algorithm 11. The consistency index of𝐻 is defined to be the
distance between𝐻 and 𝐻̃, denoted as

CI (𝐻) = 𝐷 (𝐻, 𝐻̃) . (30)

It is clear that CI(𝐻) = 0 if and only if 𝐻 is consistent.
Ideally, the decisionmaker should provide consistent HPFPR
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Figure 1: Area graphs of fuzzy preference degrees for𝐻1.
Table 1: Average value of iterations in Algorithm 11.𝑛 𝑑 𝜁 = 0 𝜁 = 1

4
4 1.684 1.679
3 1.357 1.373
2 1.068 1.069

5
5 2.527 2.429
4 1.988 1.958
3 1.405 1.439

6
6 2.924 2.948
5 2.824 2.796
4 2.242 2.25

7
7 2.664 2.839
6 3.14 3.17
5 3.148 3.168

8
8 2.168 2.192
7 2.777 2.732
6 3.254 3.38

9
9 1.65 1.644
8 2.067 2.005
7 2.634 2.653

10
10 1.301 1.345
9 1.56 1.496
8 1.884 1.825

so that it can be used for meaningful decision making.
However, some margin of error should be provided to
decision maker relative to the practical problems.

Definition 18 (acceptably consistent HPFPR). Consider a
HPFPR𝐻 = (ℎ𝑖𝑗)𝑛×𝑛. For a given tolerance value CI𝑟 HPFPR𝐻 is said to be acceptably consistent HPFPR if

CI (𝐻) ≤ CI𝑟. (31)

If a HPFPR is not even acceptably consistent, then the
decision maker should revisit and modify it. A novel algo-
rithm is proposed to make a HPFPR acceptably consistent.

Algorithm 19 (acceptably consistent HPFPR calculator).

Input. The HPFPR 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛, the consistency tolerance
value CI𝑟, and the parameter 𝛼 ∈ (0, 1).
Output. The acceptably consistent HPFPR 𝐻(𝑡), consistency
index CI(𝐻(𝑡)), and number of iterations value 𝑡.
Step 1. Compute𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 with optimized parameter 𝜁. Let𝑡 = 0,𝐻(0) = (ℎ(0)𝑖𝑗 )𝑛×𝑛 = 𝐻 = (ℎ𝑖𝑗)𝑛×𝑛.
Step 2. Calculate the consistent HPFPR 𝐻̃(𝑡) = (ℎ̃(𝑡)𝑖𝑗 )𝑛×𝑛 by
applying Algorithm 11 to𝐻(𝑡) and consistency index CI(𝐻(𝑡)),
where

CI (𝐻(𝑡)) = 2𝑛 (𝑛 + 1) 𝑛∑𝑖≤𝑗𝐷(ℎ(𝑡)𝑖𝑗 , ℎ̃(𝑡)𝑖𝑗 ) . (32)

Step 3. If CI(𝐻(𝑡)) ≤ CI𝑟, then go to Step 5; otherwise, go to
Step 4.

Step 4. Make the adjusted HPFPR𝐻(𝑡+1) = (ℎ(𝑡+1)𝑖𝑗 ), whereℎ(𝑡+1)𝑖𝑗 = 𝛼ℎ(𝑡)𝑖𝑗 ⊕ (1 − 𝛼) ℎ̃(𝑡)𝑖𝑗 . (33)

Let 𝑡 = 𝑡 + 1; now return to Step 2.

Step 5. Output ,𝐻(𝑡), and CI(𝐻(𝑡)).
Step 6. End.

This proposed algorithmwill be convergent as the follow-
ing result shows.

Theorem 20. Consider a HPFPR 𝐻, consistency tolerance
value 𝐶𝐼𝑟, and the sequence {𝐻(𝑡)} of HPFPRs generated by
Algorithm 19. 
en
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𝐶𝐼 (𝐻(𝑡+1)) < 𝐶𝐼 (𝐻(𝑡)) ∀𝑡,

lim
𝑡→∞

𝐶𝐼 (𝐻(𝑡)) = 0. (34)

Proof. From (23) and (33), it follows that

(ℎ̃(𝑡+1)𝑖𝑗 )𝜎(𝑠) = 1𝑛 𝑛∑
𝑘=1

((ℎ(𝑡+1)𝑖𝑘 )𝜎(𝑠) − (ℎ(𝑡+1)𝑗𝑘 )𝜎(𝑠)) + 12= 1𝑛 𝑛∑
𝑘=1

(𝛼 (ℎ(𝑡)𝑖𝑘 )𝜎(𝑠) + (1 − 𝛼) (ℎ̃(𝑡)𝑖𝑘 )𝜎(𝑠)
− 𝛼 (ℎ(𝑡)𝑗𝑘)𝜎(𝑠) − (1 − 𝛼) (ℎ̃(𝑡)𝑗𝑘)𝜎(𝑠)) + 12 = 𝛼(1𝑛

⋅ 𝑛∑
𝑘=1

((ℎ(𝑡)𝑖𝑘 )𝜎(𝑠) − (ℎ(𝑡)𝑗𝑘)𝜎(𝑠)) + 12) + (1 − 𝛼)(1𝑛
⋅ 𝑛∑
𝑘=1

((ℎ̃(𝑡)𝑖𝑘 )𝜎(𝑠) − (ℎ̃(𝑡)𝑗𝑘)𝜎(𝑠)) + 12) = (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠) ;
(35)

also (ℎ(𝑡+1)𝑖𝑗 )𝜎(𝑠) = 𝛼 (ℎ(𝑡)𝑖𝑗 )𝜎(𝑠) + (1 − 𝛼) (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠) . (36)

Thus, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡+1)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡+1)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼 (ℎ(𝑡)𝑖𝑗 )𝜎(𝑠) + (1 − 𝛼) (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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= 𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨< 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ;
(37)

therefore,

lim
𝑡→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨= lim
𝑡→∞

𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡−1)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(𝑡−1)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = ⋅ ⋅ ⋅= lim
𝑡→∞

𝛼𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(0)𝑖𝑗 )𝜎(𝑠) − (ℎ̃(0)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (38)

By (33), (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) < (𝑝(𝑡+1)𝑖𝑗 )𝜎(𝑠) < (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) , (39)

with each iteration (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠), will come closer to (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠).
As 𝐻̃(𝑡) is consistent; therefore, each iteration will make 𝐻(𝑡)
more consistent; that is, if ((𝑝(𝑡)

𝑖𝑘
)𝜎(𝑠) ≥ (1/2) ∧ (𝑝(𝑡)

𝑘𝑗
)𝜎(𝑠) ≥(1/2) ∧ (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) < 1/2), then by (33) and (25)󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝(𝑡+1)𝑖𝑗 )𝜎(𝑠) − (𝑝(𝑡+1)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) − (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (40)

and each iteration will increase (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠); thus eventually it
will be ≥1/2. Hence𝐻(𝑡) will become consistent when 𝑡 → ∞;
that is,

lim
𝑡→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝(𝑡)𝑖𝑗 )𝜎(𝑠) − (𝑝(𝑡)𝑖𝑗 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (41)

Finally, (37) and (40) imply

CI (𝐻(𝑡+1)) < CI (𝐻(𝑡)) ∀𝑡,
lim
𝑡→∞

CI (𝐻(𝑡)) = 0, (42)

following from (38) and (41).

The choice of parameters 𝑛, 𝑑, 𝛼 directly affects the per-
formance of Algorithm 19. For performance measurement of
Algorithm 19, 1000 random HPFPRs are generated and their
acceptably consistentHPFPRs are computed byAlgorithm 19,
the average iteration in Algorithm 19 with respect to different
parameters shown in Table 2. It is apparent that Algorithm 19
is quite efficient and, as for the effects of parameters, the
increase in value 𝛼 leads to more iteration in Algorithm 19
to compute consistent HPFPR; therefore, it is suggested to
choose𝛼 small. Also, the number of iterations inAlgorithm 19
is inversely proportional to the consistency index CI𝑟.
4. Consensus Measure in Group
Decision Making

For group decision making, let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the
set of alternatives and consider 𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑚}, the

Table 2: Average iterations values in Algorithm 19.𝑛 𝑑 CI𝑟
𝛼

0.1 0.3 0.6 0.8

4

4
0.05 1.001 1.939 3.226 6.88
0.1 0.996 0.999 1.898 3.659
0.15 0.939 0.959 0.998 1.824

3
0.05 1.001 1.939 3.528 7.326
0.1 0.991 0.997 2 4.084
0.15 0.954 0.95 1.208 2.169

2
0.05 1.05 1.882 3.527 7.415
0.1 0.982 1.054 2.089 4.1
0.15 0.868 0.891 1.297 2.404

5

5
0.05 1 1.976 3.095 6.851
0.1 1 1 1.978 3.71
0.15 0.989 0.994 1.017 1.854

4
0.05 1.004 1.992 3.418 7.266
0.1 1 1 1.989 4.021
0.15 0.999 0.997 1.123 2.214

3
0.05 1.001 1.992 3.767 7.709
0.1 1 1.002 2.123 4.43
0.15 0.994 0.997 1.403 2.575

6

6
0.05 1 1.994 3.028 6.776
0.1 1 1 1.991 3.654
0.15 1 1 1 1.818

5
0.05 1.001 1.999 3.2 7.025
0.1 1 1 1.997 3.942
0.15 1 1 1.016 2.074

4
0.05 1.001 2 3.606 7.446
0.1 1 1 2.011 4.249
0.15 0.999 1 1.178 2.443

7

7
0.05 1 1.993 3.009 6.659
0.1 1 1 1.991 3.487
0.15 0.998 1 0.999 1.732

6
0.05 1 1.998 3.05 6.912
0.1 1 1 1.999 3.816
0.15 1 1 1.001 1.972

5
0.05 1 2 3.261 7.125
0.1 1 1 2 4.023
0.15 1 1 1.022 2.168

8

8
0.05 1 1.993 3.002 6.526
0.1 1 1 1.984 3.317
0.15 1 1 1 1.599

7
0.05 1 2 3.009 6.831
0.1 1 1 1.997 3.658
0.15 1 1 1 1.867

6
0.05 1 2 3.078 7.003
0.1 1 1 2 3.927
0.15 1 1 1 2.026

9

9
0.05 1 1.993 3 6.396
0.1 1 1 1.978 3.229
0.15 1 1 1 1.474

8
0.05 1 2 3 6.676
0.1 1 1 1.998 3.47
0.15 1 1 1 1.74

7
0.05 1 2 3.01 6.92
0.1 1 1 2 3.786
0.15 1 1 1 1.942
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Table 2: Continued.𝑛 𝑑 CI𝑟
𝛼

0.1 0.3 0.6 0.8

10

10
0.05 1 1.986 3 6.326
0.1 1 1 1.973 3.164
0.15 1 1 1 1.367

9
0.05 1 1.994 3 6.543
0.1 1 1 1.995 3.308
0.15 1 1 1 1.58

8
0.05 1 2 3.002 6.798
0.1 1 1 2 3.618
0.15 1 1 1 1.864

set of decisionmakers providing their preferences inHPFPRs𝐻1 = (ℎ𝑖𝑗,1),𝐻2 = (ℎ𝑖𝑗,2), . . . , 𝐻𝑚 = (ℎ𝑖𝑗,𝑚), respectively. Also,
let 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑚) be the importance/weight vector of
decision makers in normalized form; that is, ∑𝑚𝑖=1 𝜔𝑖 = 1.
The Algorithm 19 provides the solution of consistency issue.
In order to make group decision, the following aggregation
operator is defined, which will be used to fuse all respective
NHPFPRs of decision makers.

Definition 21. Take a collection ofHPFEsℎ𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛)
with equal length and their weight vector 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛)
in normalized form; that is, ∑𝑛𝑖=1 𝜆𝑖 = 1. The hesitant
probabilistic fuzzy weighted averaging (HPFWA) operator is
defined as follows:

HPFWA (ℎ1, ℎ2, . . . , ℎ𝑛) = 𝑛⨁
𝑖=1

(𝜆𝑖ℎ𝑖)
= ⋃
𝛾𝜎(𝑠)1 |𝑝

𝜎(𝑠)
1 ∈ℎ1 ,𝛾

𝜎(𝑠)
2 |𝑝
𝜎(𝑠)
2 ∈ℎ2 ,...,𝛾

𝜎(𝑠)
𝑛 |𝑝
𝜎(𝑠)
𝑛 ∈ℎ𝑛

{ 𝑛∑
𝑖=1

𝜆𝑖𝛾𝜎(𝑠)𝑖 |
𝑛∑
𝑖=1

𝜆𝑖𝑝𝜎(𝑠)𝑖 } .
(43)

Also, if we take weight vector 𝜆 = (1/𝑛, 1/𝑛, . . . , 1/𝑛) then
the above operator is reduced to hesitant probabilistic fuzzy
averaging (HPFA) operator as

HPFA (ℎ1, ℎ2, . . . , ℎ𝑛) = 𝑛⨁
𝑖=1

(1𝑛ℎ𝑖)
= ⋃
𝛾𝜎(𝑠)1 |𝑝

𝜎(𝑠)
1 ∈ℎ1,𝛾

𝜎(𝑠)
2 |𝑝
𝜎(𝑠)
2 ∈ℎ2 ,...,𝛾

𝜎(𝑠)
𝑛 |𝑝
𝜎(𝑠)
𝑛 ∈ℎ𝑛

{ 𝑛∑
𝑖=1

1𝑛𝛾𝜎(𝑠)𝑖 |
𝑛∑
𝑖=1

1𝑛𝑝𝜎(𝑠)𝑖 } .
(44)

Theorem 22 (boundedness). If HPFEs ℎ𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛)
with equal length and their weight vector 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛)
in normalized form, that is, ∑𝑛𝑖=1 𝜆𝑖 = 1, then

min (𝜆1ℎ1, 𝜆2ℎ2, . . . , 𝜆𝑛ℎ𝑛)≤ 𝐻𝑃𝐹𝑊𝐴(ℎ1, ℎ2, . . . , ℎ𝑛)≤ (max (𝜆1ℎ1, 𝜆2ℎ2, . . . , 𝜆𝑛ℎ𝑛)) . (45)

Proof. From (5), (6), and (43), it is easy to yield the desired
result.

Theorem 23 (commutativity). If HPFEs ℎ𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛)
is a permutation of ℎ󸀠𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛) with equal length and
weight vector 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) of ℎ𝑖 is a permutation of 𝜆󸀠 =(𝜆󸀠1, 𝜆󸀠2, . . . , 𝜆󸀠𝑛) of ℎ󸀠𝑖 in normalized form, that is, ∑𝑛𝑖=1 𝜆𝑖 = 1
and ∑𝑛𝑖=1 𝜆󸀠𝑖 = 1, then𝐻𝑃𝐹𝑊𝐴(ℎ1, ℎ2, . . . , ℎ𝑛) = 𝐻𝑃𝐹𝑊𝐴(ℎ󸀠1, ℎ󸀠2, . . . , ℎ󸀠𝑛) . (46)

Proof. Since multiplication is commutative, so it is easy to
proof that HPFWA operator is also commutative.

Theorem 24 (monotonicity). If HPFEs ℎ𝑖 ≤ ℎ󸀠𝑖 for 𝑖 = 1, 2,3, . . . , 𝑛 with equal length and weight vector 𝜆 = (𝜆1, 𝜆2,. . . , 𝜆𝑛), that is, ∑𝑛𝑖=1 𝜆𝑖 = 1, then𝐻𝑃𝐹𝑊𝐴(ℎ1, ℎ2, . . . , ℎ𝑛) ≤ 𝐻𝑃𝐹𝑊𝐴(ℎ󸀠1, ℎ󸀠2, . . . , ℎ󸀠𝑛) . (47)

Proof. Since ℎ𝑖 ≤ ℎ󸀠𝑖 and 𝜆𝑖 ∈ [0, 1], then 𝜆𝑖ℎ𝑖 ≤ 𝜆𝑖ℎ󸀠𝑖 .
Hence HPFWA(ℎ1, ℎ2, . . . , ℎ𝑛) ≤ HPFWA(ℎ󸀠1, ℎ󸀠2, . . . , ℎ󸀠𝑛).

Proposition 25. Take 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, . . . , 𝑚)
HPFPRs given by decision makers and 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑚)
is the weight vector of decision makers with ∑𝑚𝑖= 𝜔𝑖 = 1. 
e
NHPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘) are computed with optimized param-
eters 𝜁𝑘 (𝑘 = 1, 2, . . . , 𝑚). 
en the HPFPR 𝐻𝑔 = (ℎ𝑖𝑗,𝑔)𝑛×𝑛
calculated as 𝐻𝑔 = ( 𝑚⨁

𝑘=1

𝜔𝑘ℎ𝑖𝑗,𝑘)
𝑛×𝑛

(48)

is HPFPR.

Proof. It follows from (3), (7), and (43).

The next result shows that the aggregated group HPFPR𝐻𝑔 obtained by (48) is consistent, provided all the individual
HPFPRs are consistent.

Theorem 26. Consider 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚)
HPFPRs given by decision makers and group HPFPR 𝐻𝑔 is
computed by (48). 
en𝐶𝐼 (𝐻𝑔) ≤ max

𝑘
{𝐶𝐼 (𝐻𝑘)} . (49)

Proof. Let 𝐻̃(𝑡)𝑔 = (ℎ̃(𝑡)𝑖𝑗,𝑔) and 𝐻̃(𝑡)
𝑘

= (ℎ̃(𝑡)
𝑖𝑗,𝑘

) (𝑘 = 1, 2, . . . , 𝑚) be
the sequences of HPFPRs generated by Algorithm 11 applied
to𝐻𝑔 and𝐻𝑘 (𝑘 = 1, 2, . . . , 𝑚), respectively. By (28)



Mathematical Problems in Engineering 13

𝐷(ℎ𝑖𝑗,𝑔, ℎ̃(𝑡)𝑖𝑗,𝑔) = ∑ℎ𝜎(𝑠)𝑖𝑗,𝑔 |𝑝𝜎(𝑠)𝑖𝑗,𝑔 ∈ℎ𝑖𝑗,𝑔 ,ℎ̃𝜎(𝑠)𝑖𝑗,𝑔 |𝑝𝜎(𝑠)𝑖𝑗,𝑔 ∈ℎ̃𝑖𝑗,𝑔 max (󵄨󵄨󵄨󵄨󵄨ℎ𝜎(𝑠)𝑖𝑗,𝑔 − ℎ̃𝜎(𝑠)𝑖𝑗,𝑔 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝜎(𝑠)𝑖𝑗,𝑔 − (𝑝(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨)𝑑 . (50)

Now󵄨󵄨󵄨󵄨󵄨󵄨󵄨ℎ𝜎(𝑠)𝑖𝑗,𝑔 − (ℎ̃(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑚∑𝑘=1𝜔𝑘ℎ𝜎(𝑠)𝑖𝑗,𝑘 − 1𝑛 𝑛∑
𝑙=1

(ℎ𝜎(𝑠)𝑖𝑙,𝑔 − ℎ𝜎(𝑠)𝑗𝑙,𝑔 ) + 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑚∑𝑘=1𝜔𝑘ℎ𝜎(𝑠)𝑖𝑗,𝑘 − 1𝑛 𝑛∑
𝑙=1

( 𝑚∑
𝑘=1

𝜔𝑘ℎ𝜎(𝑠)𝑖𝑙,𝑘 − 𝑚∑
𝑘=1

𝜔𝑘ℎ𝜎(𝑠)𝑗𝑙,𝑘) + 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑚∑𝑘=1𝜔𝑘(ℎ𝜎(𝑠)𝑖𝑗,𝑘 − 1𝑛 𝑛∑
𝑙=1

(ℎ𝜎(𝑠)𝑖𝑙,𝑘 − ℎ𝜎(𝑠)𝑗𝑙,𝑘 ) + 12)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ℎ𝜎(𝑠)𝑖𝑗,𝑔 − (ℎ̃(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑚∑𝑘=1𝜔𝑘 (ℎ𝜎(𝑠)𝑖𝑗,𝑘 − ℎ̃𝜎(𝑠)𝑖𝑗,𝑘 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ max
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨ℎ𝜎(𝑠)𝑖𝑗,𝑘 − ℎ̃𝜎(𝑠)𝑖𝑗,𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑max
𝑘

𝐷(ℎ𝑖𝑗,𝑘, ℎ̃(𝑡)𝑖𝑗,𝑘) .

(51)

Consider

(𝑝(1)𝑖𝑗,𝑔)𝜎(𝑠) = 12𝑛 𝑛∑
𝑙=1

(𝑝𝜎(𝑠)𝑖𝑙,𝑔 + 𝑝𝜎(𝑠)𝑙𝑗,𝑔 )
= 12𝑛 𝑛∑
𝑙=1

( 𝑚∑
𝑘=1

𝜔𝑘𝑝𝜎(𝑠)𝑖𝑙,𝑘 + 𝑚∑
𝑘=1

𝜔𝑘𝑝𝜎(𝑠)𝑙𝑗,𝑘 )
= 𝑚∑
𝑘=1

𝜔𝑘( 12𝑛 𝑛∑
𝑙=1

(𝑝𝜎(𝑠)𝑖𝑙,𝑘 + 𝑝𝜎(𝑠)𝑙𝑗,𝑘 ))
= 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(1)𝑖𝑗,𝑘)𝜎(𝑠) .
(52)

For the inductive step, suppose the following:

(𝑝(𝑟)𝑖𝑗,𝑔)𝜎(𝑠) = 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(𝑟)𝑖𝑗,𝑘)𝜎(𝑠) , (𝑖, 𝑗 = 1, 2, . . . , 𝑛) . (53)

Then

(𝑝(𝑟+1)𝑖𝑗,𝑔 )𝜎(𝑠) = 12𝑛 𝑛∑
𝑙=1

((𝑝(𝑟)𝑖𝑙,𝑔)𝜎(𝑠) + (𝑝(𝑟)𝑙𝑗,𝑔)𝜎(𝑠)) ; (54)

by supposition,(𝑝(𝑟+1)𝑖𝑗,𝑔 )𝜎(𝑠)
= 12𝑛 𝑛∑
𝑙=1

( 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(𝑟)𝑖𝑙,𝑘)𝜎(𝑠) + 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(𝑟)𝑙𝑗,𝑘)𝜎(𝑠))
= 𝑚∑
𝑘=1

𝜔𝑘( 12𝑛 𝑛∑
𝑙=1

((𝑝(𝑟)𝑖𝑙,𝑘)𝜎(𝑠) + (𝑝(𝑟)𝑙𝑗,𝑘)𝜎(𝑠)))
= 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(𝑟+1)𝑖𝑗,𝑘 )𝜎(𝑠) .
(55)

Hence, by principle of mathematical induction for all 𝑡 ∈ N

(𝑝(𝑡)𝑖𝑗,𝑔)𝜎(𝑠) = 𝑚∑
𝑘=1

𝜔𝑘 (𝑝(𝑡)𝑖𝑗,𝑘)𝜎(𝑠) , (𝑖, 𝑗 = 1, 2, . . . , 𝑛) . (56)

Therefore,󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝜎(𝑠)𝑖𝑗,𝑔 − (𝑝(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ max
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝜎(𝑠)𝑖𝑗,𝑘 − (𝑝(𝑡)𝑖𝑗,𝑘)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝑑max
𝑘

𝐷(ℎ𝑖𝑗,𝑘, ℎ̃(𝑡)𝑖𝑗,𝑘) . (57)

Equations (51) and (57) imply𝐷(ℎ𝑖𝑗,𝑔, ℎ̃(𝑡)𝑖𝑗,𝑔) ≤ max
𝑘

𝐷(ℎ𝑖𝑗,𝑘, ℎ̃(𝑡)𝑖𝑗,𝑘) ; (58)

thus by (30)

CI (𝐻𝑔) ≤ max
𝑘

{CI (𝐻𝑘)} . (59)

Now, the consensus is another very important aspect of
group decision making. To deal with the consensus issue
among all the individual decision makers, the following
consensus index is defined.

Definition 27 (consensus index). Let 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 =1, 2, 3, . . . , 𝑚) be𝑚HPFPRs provided by decisionmakers and
their NHPFPRs 𝐻𝑘 are obtained with optimized parameter𝜁𝑘 (𝑘 = 1, 2, . . . , 𝑚). The group HPFPR 𝐻𝑔 is computed by
(48). Then the group consensus index (GCI) of HPFPR𝐻𝑘 is
defined to be the distancemeasured between𝐻𝑘 and𝐻𝑔; that
is,

GCI (𝐻𝑘) = 𝐷 (𝐻𝑘, 𝐻𝑔) . (60)
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The agreement between individual decision maker with
group decision is measured by the distance between individ-
ual HPFPR𝐻𝑘 and group HPFPR𝐻𝑔.Therefore, GCI(𝐻𝑘) =0 means 𝑘th decision maker has full agreement with group
decision; otherwise, the smaller the value of GCI(𝐻𝑘) is, the
better the consensus will be. In many real life scenarios, it
is important to have consensus among all decision makers,
although we have to live with difference of opinion and it is
hard to reach complete consensus; for this reason a threshold
value can be decided based on practical nature of the problem
to allow the difference of opinion to some extent.

Definition 28 (acceptably consensus HPFPRs). Let 𝐻𝑘 =(ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚) be 𝑚 HPFPRs provided by
decision makers and their NHPFPRs 𝐻𝑘 are obtained with
optimized 𝜁𝑘 (𝑘 = 1, 2, . . . , 𝑚). Furthermore compute group
HPFPR 𝐻𝑔 and GCI(𝐻𝑘) (𝑘 = 1, 2, . . . , 𝑚). Consider GCI𝑟 a
tolerance value of consensusmeasure; thenHPFPR𝐻𝑘 is said
to be acceptably consensus with group HPFPR𝐻𝑔 if

GCI (𝐻𝑘) ≤ GCI𝑟. (61)

But it is possible that a decision maker has an unaccept-
able difference of opinion with group decision; in this regard
a novel algorithm is proposed to modify his HPFPR to reach
acceptable consensus.

Algorithm 29 (consensus improving algorithm).
Input. The tolerance value GCI𝑟 of consensus measure,
HPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚), and parameter𝛽 ∈ (0, 1).
Output. The acceptably consensus HPFPRs 𝐻(𝑡)

𝑘
, group con-

sensus index GCI(𝐻(𝑡)
𝑘
) (𝑘 = 1, 2, . . . , 𝑚), the group HPFPR𝐻(𝑡)𝑔 , and number of iterations value 𝑡.

Step 1. Compute𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 with optimized parameter 𝜁𝑘.
Let 𝑡 = 0,𝐻(0)

𝑘
= (ℎ(0)
𝑖𝑗,𝑘

)𝑛×𝑛 = 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛.
Step 2. Compute group HPFPR 𝐻(𝑡)𝑔 = (ℎ(𝑡)𝑖𝑗,𝑔)𝑛×𝑛 by using all
individual HPFPRs 𝐻(𝑡)

𝑘
(𝑘 = 1, 2, . . . , 𝑚) according to (48),

where ℎ(𝑡)𝑖𝑗,𝑔 = 𝑚⨁
𝑘=1

𝜔𝑘ℎ(𝑡)𝑖𝑗,𝑘. (62)

Step 3. Calculate GCI(𝐻(𝑡)
𝑘
) = 𝐷(𝐻(𝑡)

𝑘
, 𝐻(𝑡)𝑔 ) (𝑘 = 1, 2, . . . , 𝑚).

If GCI(𝐻(𝑡)
𝑘
) ≤ GCI𝑟 for all 𝑘 = 1, 2, . . . , 𝑚, then go to Step 5;

otherwise go to Step 4.

Step 4. Put𝐻(𝑡+1)
𝑘

= (ℎ(𝑡+1)
𝑖𝑗,𝑘

)𝑛×𝑛, whereℎ(𝑡+1)𝑘 = 𝛽ℎ(𝑡)𝑘 ⊕ (1 − 𝛽) ℎ(𝑡)𝑖𝑗,𝑔. (63)

Also let 𝑡 = 𝑡 + 1 and go to Step 2.

Step 5. Output the adjusted HPFPRs 𝐻(𝑡)
𝑘

= (ℎ(𝑡)
𝑖𝑗,𝑘

)𝑛×𝑛, the
group consistency index GCI(𝐻(𝑡)

𝑘
) (𝑘 = 1, 2, . . . , 𝑚), the

group HPFPR𝐻(𝑡)𝑔 , and number of iterations value 𝑡.
Step 6. End.

The convergence of the above algorithm follows from the
following result.

Theorem 30. Consider 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚)
HPFPRs given by decision makers. Let {𝐻(𝑡)

𝑘
} be the sequence

obtained from Algorithm 29. 
en𝐺𝐶𝐼 (𝐻(𝑡+1)𝑘 ) < 𝐺𝐶𝐼 (𝐻(𝑡)𝑘 ) ,
lim
𝑡→∞

𝐺𝐶𝐼 (𝐻(𝑡)𝑘 ) = 0 ∀𝑘 = 1, 2, . . . , 𝑚. (64)

Proof. By (62), (3), and (7),(ℎ(𝑡+1)𝑖𝑗,𝑔 )𝜎(𝑠) | (𝑝(𝑡+1)𝑖𝑗,𝑔 )𝜎(𝑠)= 𝑚∑
𝑙=1

𝜔𝑙 (ℎ(𝑡+1)𝑖𝑗,𝑙 )𝜎(𝑠) | 𝑚∑
𝑙=1

𝜔𝑙 (𝑝(𝑡+1)𝑖𝑗,𝑙 ) ; (65)

thus,󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡+1)𝑖𝑗,𝑘 )𝜎(𝑠) − (ℎ(𝑡+1)𝑖𝑗,𝑔 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽 (ℎ(𝑡)𝑖𝑗,𝑘)𝜎(𝑠)
+ (1 − 𝛽) (ℎ(𝑡)𝑖𝑗,𝑔)𝜎(𝑠) − 𝑚∑

𝑙=1

𝜔𝑙 (ℎ(𝑡+1)𝑖𝑗,𝑙 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽 (ℎ(𝑡)𝑖𝑗,𝑘)𝜎(𝑠) + (1 − 𝛽) (ℎ(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)
− 𝑚∑
𝑙=1

𝜔𝑙 (𝛽 (ℎ(𝑡)𝑖𝑗,𝑙)𝜎(𝑠) + (1 − 𝛽) (ℎ(𝑡)𝑖𝑗,𝑔)𝜎(𝑠))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽 (ℎ(𝑡)𝑖𝑗,𝑘)𝜎(𝑠) − 𝑚∑
𝑙=1

𝜔𝑙𝛽 (ℎ(𝑡)𝑖𝑗,𝑙)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝛽 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(ℎ(𝑡)𝑖𝑗,𝑘)𝜎(𝑠)− (ℎ(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ;

(66)

similarly, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝(𝑡+1)𝑖𝑗,𝑘 )𝜎(𝑠) − (𝑝(𝑡+1)𝑖𝑗,𝑔 )𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 𝛽 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝(𝑡)𝑖𝑗,𝑘)𝜎(𝑠) − (𝑝(𝑡)𝑖𝑗,𝑔)𝜎(𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (67)

Hence, 𝐷(ℎ(𝑡+1)𝑖𝑗,𝑘 , ℎ(𝑡+1)𝑖𝑗,𝑔 ) = 𝛽𝐷 (ℎ(𝑡)𝑖𝑗,𝑘, ℎ(𝑡)𝑖𝑗,𝑔) ; (68)



Mathematical Problems in Engineering 15

now by definition of GCI (60)

GCI (𝐻(𝑡+1)𝑘 , 𝐻(𝑡+1)𝑔 ) = 2𝑛 (𝑛 − 1) 𝑛∑𝑖<𝑗𝐷(ℎ(𝑡+1)𝑖𝑗,𝑘 , ℎ(𝑡+1)𝑖𝑗,𝑔 )
= 𝛽GCI (𝐻(𝑡)𝑘 , 𝐻(𝑡)𝑔 )< GCI (𝐻(𝑡)𝑘 , 𝐻(𝑡)𝑔 ) ;

(69)

it also implies

lim
𝑡→∞

GCI (𝐻(𝑡)𝑘 ) = lim
𝑡→∞

𝛽GCI (𝐻(𝑡−1)𝑘 )= lim
𝑡→∞

𝛽2GCI (𝐻(𝑡−2)𝑘 ) = ⋅ ⋅ ⋅= lim
𝑡→∞

𝛽𝑡GCI (𝐻(0)𝑘 ) = 0(𝑘 = 1, 2, . . . , 𝑚) .
(70)

Now, 1000 random sets of 𝑚 HPFPRs are generated and
Algorithm 29 is applied to develop consensus. The average
value of iterations of Algorithm 29 is presented in Table 3 for
different values of parameters.The readings of Table 3 suggest
that the increase in value of parameter 𝛽 has adverse effects
on the number of iterations of Algorithm 29. So, the value of
parameter 𝛽 must be small. The more iterations are needed
to develop consensus when GCI𝑟 is nearer to 1. Furthermore,
Algorithm 29 does not disturb the consistency of HPFPRs;
that is, if the individual HPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 =1, 2, 3, . . . , 𝑚) are consistent, then output of Algorithm 29 and
the adjusted HPFPRs𝐻(𝑡)

𝑘
= (ℎ(𝑡)
𝑖𝑗,𝑘

)𝑛×𝑛 are also consistent.
Proposition 31. Consider 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚)
HPFPRs given by decision makers. Let {𝐻(𝑡)

𝑘
} and {𝐻(𝑡)𝑔 } be the

sequences obtained from Algorithm 29. If max𝑘{𝐶𝐼(𝐻(𝑡)𝑘 )} ≤𝐶𝐼𝑟 then
max
𝑘

{𝐶𝐼 (𝐻(𝑡+1)𝑘 )} ≤ max
𝑘

{𝐶𝐼 (𝐻(𝑡)𝑘 )} ≤ 𝐶𝐼𝑟. (71)

Proof. It follows fromTheorem 20 and (63).

5. Decision Support Model for Group Decision
Making with HPFPRs

Now, the issues of consistency and consensus are addressed.
Algorithms 11–29 will provide the consistent individual HPF-
PRs and the group HPFPR with agreement among decision
makers. To comprehendfinal standing of the alternatives, first
for the alternative𝑥𝑖 the 𝑖th row of groupHPFPR is aggregated
by HPFA operator (44) and secondly the aggregated HPFEs
are ordered according to their score and deviation [35]. In
form of the following algorithm a complete decision model
is presented.

Algorithm 32 (decision support model).
Input. The HPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, . . . , 𝑚) made
by decision makers, the weight vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑚) of

Table 3: Average values of iterations in Algorithm 29.𝑛 𝑚 𝑑 GCI𝑟
𝛽

0.2 0.4 0.7 0.9

4

4 4
0.01 2.002 3.233 3.233 25.301
0.05 1 1.604 3.185 9.672
0.1 0.949 0.956 1.346 3.384

3 3
0.01 2 3.221 7.766 25.102
0.05 1.003 1.701 3.47 10.452
0.1 0.961 0.968 1.542 4.051

2 2
0.01 2.03 3.476 8.166 26.48
0.05 0.991 1.297 2.582 7.754
0.1 0.872 0.911 1.517 3.975

5

4 5
0.01 2 3.137 7.631 24.652
0.05 1 1.294 2.833 8.521
0.1 0.868 0.864 0.974 2.186

3 4
0.01 2 3.234 7.845 25.342
0.05 1 1.223 2.681 7.775
0.1 0.879 0.859 1.114 2.715

3 3
0.01 2.001 3.167 7.816 25.32
0.05 1 1.62 3.197 9.641
0.1 0.802 0.817 0.901 2.024

6

5 6
0.01 2 3.006 7.154 22.888
0.05 1 1.081 2.495 7.288
0.1 0.623 0.606 0.643 1.128

5 5
0.01 2 3.026 7.368 23.74
0.05 1 1.128 2.638 7.784
0.1 0.705 0.706 0.741 1.358

4 4
0.01 2 3.069 7.544 24.335
0.05 1 1.345 2.897 8.539
0.1 0.849 0.838 0.955 1.99

7

7 7
0.01 2 3 6.908 21.984
0.05 1 1.022 2.417 6.912
0.1 0.511 0.485 0.479 0.71

7 6
0.01 2 3.004 7.208 23.336
0.05 1 1.135 2.72 7.903
0.1 0.768 0.777 0.8 1.351

8 4
0.01 2 3.025 7.454 24.147
0.05 1 1.29 2.954 8.655
0.1 0.991 0.992 1.163 2.9

8

9 8
0.01 2 3 6.81 21.664
0.05 1 1.006 2.249 6.615
0.1 0.263 0.256 0.257 0.339

8 7
0.01 2 3 6.907 21.885
0.05 1 1.006 2.232 6.611
0.1 0.329 0.341 0.333 0.435

8 6
0.01 2 3.001 7.022 22.476
0.05 1 1.036 2.453 7.215
0.1 0.309 0.305 0.342 0.356

9

10 9
0.01 2 3 6.633 21.16
0.05 1 1.001 2.052 5.883
0.1 0.083 0.065 0.072 0.1

7 8
0.01 2 3 6.468 20.746
0.05 1 1.003 2.094 6.072
0.1 0.087 0.126 0.105 0.127

9 7
0.01 2 3 6.812 21.546
0.05 1 1.004 2.134 6.298
0.1 0.161 0.162 0.157 0.205
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Table 3: Continued.𝑛 𝑚 𝑑 GCI𝑟
𝛽

0.2 0.4 0.7 0.9

10

9 10
0.01 2 3 6.619 21.049
0.05 1 1 1.955 5.152
0.1 0.052 0.05 0.062 0.062

8 9
0.01 2 3 6.334 20.466
0.05 1 1 2.038 5.746
0.1 0.036 0.038 0.036 0.048

8 8
0.01 2 3 6.454 20.795
0.05 1 1 2.018 5.545
0.1 0.059 0.061 0.047 0.05

decision makers in normalized form, consistency tolerance
value CI𝑟, group consensus tolerance value GCI𝑟, the maxi-
mum number of iterations allowed 𝑡max, and the parameters0 < 𝛼, 𝛽 < 1 for modification.

Output. The final standing of all the alternatives.

Step 1. Compute NHPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 with optimized
parameters 𝜁𝑘. Put 𝑡 = 0 and 𝐻(0)

𝑘
= (ℎ(0)
𝑖𝑗,𝑘

)𝑛×𝑛 = 𝐻𝑘 =(ℎ𝑖𝑗,𝑘)𝑛×𝑛.
Step 2. Calculate the consistent HPFPRs 𝐻̃(𝑡)

𝑘
= (ℎ̃(𝑡)
𝑖𝑗,𝑘

)𝑛×𝑛 by
Algorithm 11 and consistency indexes CI(𝐻(𝑡)

𝑘
), where

CI (𝐻(𝑡)𝑘 ) = 2𝑛 (𝑛 − 1) 𝑛∑𝑖<𝑗𝐷(ℎ(𝑡)𝑖𝑗,𝑘, ℎ̃(𝑡)𝑖𝑗,𝑘) . (72)

Step 3. If CI(𝐻(𝑡)
𝑘
) ≤ CI𝑟 for all 𝑘 = 1, 2, . . . , 𝑚 then go to Step

5; otherwise, go to Step 4.

Step 4. Make the adjusted HPFPRs𝐻(𝑡+1)
𝑘

= (ℎ(𝑡+1)
𝑖𝑗,𝑘

), where
ℎ(𝑡+1)𝑖𝑗,𝑘 = {{{ℎ(𝑡)

𝑖𝑗,𝑘
, CI (𝐻(𝑡)

𝑘
) ≤ CI𝑟𝛼ℎ(𝑡)

𝑖𝑗,𝑘
⊕ (1 − 𝛼) ℎ̃(𝑡)𝑖𝑗,𝑘, CI (𝐻(𝑡)

𝑘
) > CI𝑟. (73)

Let 𝑡 = 𝑡 + 1; now return to Step 2.

Step 5. Apply HPFWA operator (43) to individual HPFPRs𝐻(𝑡)
𝑘

= (ℎ(𝑡)
𝑖𝑗,𝑘

)𝑛×𝑛 (𝑘 = 1, 2, . . . , 𝑚), to get group HPFPR𝐻(𝑡)𝑔 =(ℎ(𝑡)𝑖𝑗,𝑔)𝑛×𝑛, where ℎ(𝑡)𝑖𝑗,𝑔 = 𝑚⨁
𝑘=1

𝜔𝑘ℎ(𝑡)𝑖𝑗,𝑘. (74)

Step 6. Calculate GCI(𝐻(𝑡)
𝑘
) = 𝐷(𝐻(𝑡)

𝑘
, 𝐻(𝑡)𝑔 ) (𝑘 = 1, 2, . . . , 𝑚).

If GCI(𝐻(𝑡)
𝑘
) ≤ GCI𝑟 for all 𝑘 = 1, 2, . . . , 𝑚 or 𝑡 > 𝑡max, then

go to Step 8; otherwise, go to Step 7.

Step 7. Let𝐻(𝑡+1)
𝑘

= (ℎ(𝑡+1)
𝑖𝑗,𝑘

)𝑛×𝑛, whereℎ(𝑡+1)𝑘 = 𝛽ℎ(𝑡)𝑘 ⊕ (1 − 𝛽) ℎ(𝑡)𝑖𝑗,𝑔. (75)

Also let 𝑡 = 𝑡 + 1 and go to Step 5.

Step 8. Aggregate each 𝑖th-row of HPFPR 𝐻(𝑡)𝑔 by HPFA
operator (44),

ℎ𝑖,𝑔 = HPFA (ℎ(𝑡)𝑖1,𝑔, ℎ(𝑡)𝑖2,𝑔, . . . , ℎ(𝑡)𝑖𝑛,𝑔) = 𝑛⨁
𝑗=1

(1𝑛ℎ(𝑡)𝑖𝑗,𝑔) , (76)

to get collective preference degrees of alternative 𝑥𝑖 over all
other alternatives (𝑖 = 1, 2, . . . , 𝑛).
Step 9. Compute scores 𝑠(ℎ𝑖,𝑔) and deviations 𝑑(ℎ𝑖,𝑔) [35] as
follows:

𝑠 (ℎ𝑖,𝑔) = 𝑑∑
𝑠=1

ℎ𝜎(𝑠)𝑖,𝑔 𝑝𝜎(𝑠)𝑖,𝑔 ,
𝑑 (ℎ𝑖,𝑔) = 𝑑∑

𝑠=1

(ℎ𝜎(𝑠)𝑖,𝑔 − 𝑠 (ℎ𝑖,𝑔))2 𝑝𝜎(𝑠)𝑖,𝑔 ,𝑖 = (1, 2, . . . , 𝑛) .
(77)

Step 10. Determine the final ranking of alternatives 𝑥𝑖, 𝑖 =1, 2, 3, . . . , 𝑛 by comparing the score and deviation values of
respective ℎ𝑖,𝑔 and output the ranking vector.

Step 11. End

Flowchart of the decision making model is presented in
Figure 7.

6. Case Study

The proposed decision making model will be applied to a
practical problem of investment in Forex.

Example 33. The Flagship Investment Company (FIC) is
known for investment plans in different commodities in
Forex. The investors hire FIC for making profitable plans of
investments. An investor is interested to invest in four com-
modities: oil, gold, wheat, and copper denoted as 𝑥1, 𝑥2, 𝑥3,
and 𝑥4, respectively. He approached FIC to indicate which
commodity is more profitable to invest in. FIC makes a
committee of four economic experts 𝑒1, 𝑒2, 𝑒3, and 𝑒4. Each
expert will provide its preferences in terms of HPFPR
depending upon many factors like previous market rates,
market trends, possible future decisions of different regula-
tory bodies, economic stability, global peace situation, and
so on. The complex nature of the Forex required tools that
will model the vagueness and produce results closer to real
life. HPFPR will allow the economic experts to express their
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Figure 7: Flowchart of the proposed decision model.

hesitancy and provide the probabilities of different preference
degrees, which are bound to be different because of the factors
discussed above. Based on the experience and economic

knowledge, weight vector of experts is𝜔 = (0.1, 0.4, 0.2, 0.3)𝑇.
The economic expert 𝑒𝑘 provides his HPFPR 𝐻𝑘 (𝑘 =1, 2, 3, 4) as follows.

𝐻1 = ( {.5 | 1} {0.1174 | 0.2979, 0.910 | .7021} {0.4242 | 0.6622, 0.8341 | 0.3378} {0.2625 | 0.0636, 0.7956 | 0.9364}{0.8826 | 0.2979, 0.0900 | 0.7021} {.5 | 1} {0.1921 | 0.2236, 0.9289 | 0.7764} {0.2373 | 0.4313, 0.5785 | 0.5687}{0.5758 | 0.6622, 0.1659 | 0.3378} {0.8079 | 0.2236, 0.0711 | 0.2236} {.5 | 1} {0.2316 | 0.7145, 0.6211 | 0.2855}{0.7375 | 0.0636, 0.2044 | 0.9364} {0.7627 | 0.4313, 0.4214 | 0.5687} {0.7684 | 0.7145, 0.3789 | 0.2855} {.5 | 1} ) ,
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𝐻2 = ( {.5 | 1} {0.3674 | 0.5018, 0.3955 | 0.3181, 0.9880 | 0.1800} {0.0987 | 0.3339, 0.2619 | 0.6322, 0.5913 | 0.0338} {0.3197 | 0.2412, 0.8691 | 0.7588}{0.6326 | 0.5018, 0.6044 | 0.3181, 0.0120 | 0.1800} {.5 | 1} {0.1340 | 0.3627, 0.8909 | 0.1892, 0.9037 | 0.4481} {0.7440 | 1}{0.9013 | 0.3339, 0.7381 | 0.3339, 0.4087 | 0.0338} {0.8660 | 0.3627, 0.1091 | 0.1892, 0.0963 | 0.4481} {.5 | 1} {0.4111 | 0.7060, 0.9047 | 0.2940}{0.6803 | 0.2412, 0.1309 | 0.7588} {0.255 9 | 1} {0.5889 | 0.7060, 0.0953 | 0.2940} {.5 | 1} ) ,

𝐻3 = ( {.5 | 1} {0.1829 | 0.1317, 0.2399 | 0.4745, 0.5767 | 0.3938} {0.3817 | 0.7453, 0.9787 | 0.2547} {0.0596 | 0.2951, 0.7219 | 0.7049}{0.8171 | 0.1317, 0.7601 | 0.4745, 0.4232 | 0.3938} {.5 | 1} {0.5 | 0.1232, 0.5961 | 0.8767} {0.1499 | 0.2398, 0.7224 | 0.5387, 0.8175 | 0.2214}{0.6183 | 0.7453, 0.0213 | 0.2547} {0.5 | 0.1233, 0.4039 | 0.8767} {.5 | 1} {0.4538 | 0.5612, 0.8003 | 0.4388}{0.9404 | 0.2951, 0.2781 | 0.7049} {0.8501 | 0.2398, 0.2775 | 0.5387, 0.1825 | 0.2215} {0.5462 | 0.5612, 0.1997 | 0.4388} {.5 | 1} ) ,
𝐻4
= ( {.5 | 1} {0.0991 | 0.629, 0.7317 | 0.371} {0.3498 | 0.8924, 0.9447 | 0.1076} {0.1835 | 0.2908, 0.3685 | 0.5157, 0.7256 | 0.1936}{0.9009 | 0.629, 0.2683 | 0.371} {.5 | 1} {0.2481 | 0.7128, 0.5 | 0.2855, 0.9199 | 0.0017} {0.3786 | 0.6610, 0.6443 | 0.0808, 0.7948 | 0.2582}{0.6502 | 0.8924, 0.0553 | 0.1076} {0.7519 | 0.7128, 0.5 | 0.2855, 0.0801 | 0.0017} {.5 | 1} {0.1349 | 0.4378, 0.6225 | 0.163, 0.8759 | 0.3992}{0.8165 | 0.2908, 0.6315 | 0.5157, 0.2744 | 0.1936} {0.6214 | 0.6610, 0.3557 | 0.0808, 0.2052 | 0.2582} {0.8651 | 0.4378, 0.3775 | 0.163, 0.1241 | 0.3992} {.5 | 1} ) .

(78)

Step 1. NHPFPRs𝐻(0)
𝑘

= 𝐻𝑘 (𝑘 = 1, 2, 3, 4) are calculated by
(10) as follows.

𝐻(0)1
= ( {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.1174 | 0.149, 0.1174 | 0.149, 0.91 | 0.7021} {0.4242 | 0.3311, 0.4242 | 0.3311, 0.8341 | 0.3378} {0.2625 | 0.0318, 0.2625 | 0.0318, 0.7956 | 0.9364}{0.8826 | 0.149, 0.8826 | 0.149, 0.09 | 0.7020} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.1921 | 0.1118, 0.1921 | 0.1118, 0.9289 | 0.7764} {0.2373 | 0.2156, 0.2373 | 0.2156, 0.5785 | 0.5687}{0.5758 | 0.3311, 0.5758 | 0.3311, 0.1659 | 0.3378} {0.8079 | 0.1118, 0.8079 | 0.1118, 0.0711 | 0.7764} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.2316 | 0.3573, 0.2316 | 0.3573, 0.6211 | 0.2855}{0.7375 | 0.03180, 0.7375 | 0.03180, 0.2044 | 0.9364} {0.7627 | 0.2156, 0.7627 | 0.2156, 0.4215 | 0.5687} {0.7684 | 0.3573, 0.7684 | 0.3573, 0.3789 | 0.2855} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} ) ,
𝐻(0)2
= ( {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.3674 | 0.5018, 0.3955 | 0.3181, 0.988 | 0.18} {0.0987 | 0.3339, 0.2619 | 0.6322, 0.5913 | 0.0338} {0.3197 | 0.1206, 0.3197 | 0.1206, 0.8691 | 0.7588}{0.6326 | 0.5018, 0.6045 | 0.3181, 0.012 | 0.18} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.134 | 0.3627, 0.8909 | 0.1892, 0.9037 | 0.4481} {0.7441 | 0.3333, 0.7441 | 0.3333, 0.7441 | 0.3333}{0.9013 | 0.3339, 0.7381 | 0.6322, 0.4087 | 0.03383} {0.866 | 0.3626, 0.1091 | 0.1892, 0.0963 | 0.4481} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.4111 | 0.353, 0.4111 | 0.353, 0.9047 | 0.294}{0.6803 | 0.1206, 0.6803 | 0.1206, 0.1309 | 0.7588} {0.2559 | 0.3333, 0.2559 | 0.3333, 0.2559 | 0.3333} {0.5889 | 0.353, 0.5889 | 0.353, 0.0953 | 0.294} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} ) ,
𝐻(0)3
= ( {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.1829 | 0.1317, 0.2399 | 0.4744, 0.5767 | 0.3938} {0.3817 | 0.3727, 0.3817 | 0.3727, 0.9787 | 0.2547} {0.0596 | 0.1476, 0.0596 | 0.1476, 0.7219 | 0.7049}{0.8171 | 0.1317, 0.4745 | 0.7601, 0.4233 | 0.3938} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.5 | 0.0616, 0.5 | 0.0616, 0.5961 | 0.8767} {0.1499 | 0.2398, 0.7224 | 0.5387, 0.8175 | 0.2215}{0.6183 | 0.3727, 0.6183 | 0.3727, 0.0213 | 0.2547} {0.5 | 0.0616, 0.5 | 0.0616, 0.4039 | 0.8767} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.4538 | 0.2806, 0.4538 | 0.2806, 0.8003 | 0.4388}{0.9404 | 0.1476, 0.9404 | 0.1476, 0.2781 | 0.7049} {0.8501 | 0.239, 0.2776 | 0.5387, 0.1825 | 0.2214} {0.5462 | 0.2807, 0.5462 | 0.2807, 0.1997 | 0.4388} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} ) ,
𝐻(0)4
= ( {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.0991 | 0.3145, 0.0991 | 0.3145, 0.7317 | 0.371} {0.3498 | 0.4462, 0.3498 | 0.4462, 0.9447 | 0.1076} {0.1835 | 0.2908, 0.3685 | 0.5157, 0.7256 | 0.1936}{0.9009 | 0.3145, 0.9009 | 0.3145, 0.2683 | 0.371} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.2481 | 0.7128, 0.5 | 0.2855, 0.9199 | 0.0017} {0.3786 | 0.661, 0.6443 | 0.0808, 0.7948 | 0.2581}{0.6502 | 0.4462, 0.6502 | 0.4462, 0.0553 | 0.1076} {0.7519 | 0.7128, 0.5 | 0.2855, 0.0801 | 0.0017} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} {0.1349 | 0.4378, 0.6225 | 0.163, 0.8759 | 0.3992}{0.8165 | 0.2908, 0.6315 | 0.5157, 0.2744 | 0.1936} {0.6214 | 0.661, 0.3557 | 0.0808, 0.2052 | 0.2581} {0.8651 | 0.4378, 0.3775 | 0.163, 0.1241 | 0.3992} {.5 | 0.3333, .5 | 0.3333, .5 | 0.3333} ) .

(79)

Step 2. After calculating consistent HPFPRs 𝐻̃(0)
𝑘

= (ℎ̃0)
𝑖𝑗,𝑘

)𝑛×𝑛
by Algorithm 11 consistency indexes CI(𝐻(𝑡)

𝑘
) are computed

by (72) as follows:

CI (𝐻(0)1 ) = .1366,
CI (𝐻(0)2 ) = .2533,
CI (𝐻(0)3 ) = .2159,

CI (𝐻(0)4 ) = .2116.
(80)

Step 3. The consistency tolerance value CI𝑟 is decided to be0.01; therefore, all theHPFPRs𝐻(0)
𝑘

(𝑘 = 1, 2, 3, 4) are needed
to be adjusted.

Repeating Steps 2 to 4 in Section 5, we get the acceptably
consistent HPFPR,

𝐻(2)1
= ( {0.5 | 0.2293, 0.5 | 0.2293, 0.5 | 0.5414} {0.3705 | 0.2265, 0.3705 | 0.2265, 0.7373 | 0.547} {0.2984 | 0.237, 0.2984 | 0.237, 0.9195 | 0.5261} {0.1352 | 0.2288, 0.1352 | 0.2288, 0.8828 | 0.5425}{0.6295 | 0.2265, 0.6295 | 0.2265, 0.2627 | 0.547} {0.5 | 0.2274, 0.5 | 0.2274, 0.5 | 0.5452} {0.4219 | 0.2338, 0.4219 | 0.2338, 0.6873 | 0.5323} {0.2606 | 0.2296, 0.2606 | 0.2296, 0.6475 | 0.5407}{0.7015 | 0.237, 0.7015 | 0.237, 0.0804 | 0.5261} {0.5781 | 0.2338, 0.5781 | 0.2338, 0.3127 | 0.5323} {0.5 | 0.2447, 0.5 | 0.2447, 0.5 | 0.5106} {0.3356 | 0.2397, 0.3356 | 0.2397, 0.4649 | 0.5206}{0.8648 | 0.2288, 0.8648 | 0.2288, 0.1171 | 0.5425} {0.7394 | 0.2296, 0.7394 | 0.2296, 0.3525 | 0.5407} {0.6644 | 0.2397, 0.6644 | 0.2397, 0.5351 | 0.5206} {0.5 | 0.2343, 0.5 | 0.2343, 0.5 | 0.5315} ) ,
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𝐻(2)2
= ( {0.5 | 0.3272, 0.5 | 0.341, 0.5 | 0.3318} {0.3193 | 0.3466, 0.1865 | 0.324, 0.7001 | 0.3294} {0.1513 | 0.3341, 0.428 | 0.3516, 0.758 | 0.3144} {0.3152 | 0.3142, 0.3626 | 0.3196, 0.9903 | 0.3663}{0.6807 | 0.3466, 0.8135 | 0.324, 0.2999 | 0.3294} {0.5 | 0.3625, 0.5 | 0.3073, 0.5 | 0.3301} {0.3311 | 0.352, 0.7467 | 0.3303, 0.5659 | 0.3177} {0.4989 | 0.334, 0.6792 | 0.3048, 0.7939 | 0.3612}{0.8487 | 0.3341, 0.5718 | 0.3516, 0.242 | 0.3144} {0.6689 | 0.352, 0.2533 | 0.3303, 0.4341 | 0.3177} {0.5 | 0.3409, 0.5 | 0.3561, 0.5 | 0.303} {0.6608 | 0.3233, 0.4331 | 0.3295, 0.7336 | 0.3472}{0.6848 | 0.3142, 0.6374 | 0.3196, 0.0097 | 0.3663} {0.5011 | 0.334, 0.3201 | 0.3049, 0.2061 | 0.3612} {0.3392 | 0.3233, 0.5669 | 0.3295, 0.2663 | 0.3472} {0.5 | 0.3054, 0.5 | 0.3024, 0.5 | 0.3922} ) ,
𝐻(2)3
= ( {0.5 | 0.2437, 0.5 | 0.3263, 0.5 | 0.4301} {0.2883 | 0.2256, 0.1753 | 0.3335, 0.6098 | 0.4408} {0.2642 | 0.2486, 0.2783 | 0.3062, 0.7651 | 0.4452} {0.07175 | 0.243, 0.2276 | 0.3224, 0.9025 | 0.4347}{0.7117 | 0.2256, 0.8247 | 0.3335, 0.3902 | 0.4408} {0.5 | 0.2116, 0.5 | 0.338, 0.5 | 0.4504} {0.474 | 0.2295, 0.6016 | 0.3089, 0.6523 | 0.4615} {0.2812 | 0.2279, 0.5563 | 0.3321, 0.7944 | 0.44}{0.7358 | 0.2486, 0.7217 | 0.3062, 0.2349 | 0.4452} {0.526 | 0.2295, 0.3984 | 0.3089, 0.3477 | 0.4615} {0.5 | 0.2529, 0.5 | 0.2853, 0.5 | 0.4618} {0.3103 | 0.2489, 0.452 | 0.3032, 0.6429 | 0.4479}{0.9283 | 0.243, 0.7724 | 0.3224, 0.0975 | 0.4347} {0.7188 | 0.227, 0.44378 | 0.3321, 0.2056 | 0.44} {0.6897 | 0.2489, 0.548 | 0.3032, 0.3571 | 0.4479} {0.5 | 0.246, 0.5 | 0.3222, 0.5 | 0.4318} ) ,
𝐻(2)4
= ( {0.5 | 0.2437, 0.5 | 0.3263, 0.5 | 0.4301} {0.2883 | 0.2256, 0.1753 | 0.3335, 0.6098 | 0.4408} {0.2642 | 0.2486, 0.2783 | 0.3062, 0.7651 | 0.4452} {0.0717 | 0.243, 0.2276 | 0.3224, 0.9025 | 0.4347}{0.7117 | 0.2256, 0.8247 | 0.3335, 0.3902 | 0.4408} {0.5 | 0.2116, 0.5 | 0.338, 0.5 | 0.4504} {0.474 | 0.2295, 0.60158 | 0.3089, 0.6523 | 0.4615} {0.2812 | 0.2279, 0.5562 | 0.3321, 0.7944 | 0.44}{0.7358 | 0.2486, 0.7217 | 0.3062, 0.2349 | 0.4452} {0.5260 | 0.2295, 0.3984 | 0.3089, 0.3477 | 0.4615} {0.5 | 0.2529, 0.5 | 0.2853, 0.5 | 0.4618} {0.3103 | 0.2489, 0.452 | 0.3032, 0.6429 | 0.4479}{0.9283 | 0.243, 0.7724 | 0.3224, 0.0975 | 0.4347} {0.7188 | 0.2279, 0.4437 | 0.3321, 0.2056 | 0.44} {0.6897 | 0.2489, 0.548 | 0.3032, 0.3571 | 0.4479} {0.5 | 0.246, 0.5 | 0.3222, 0.5 | 0.4318} ) ,

(81)

and consistent HPFPRs,

𝐻̃(2)1
= ( {0.5 | 0.2304, 0.5 | 0.2304, 0.5 | 0.5392} {0.373 | 0.2299, 0.373 | 0.229, 0.7356 | 0.5403} {0.2972 | 0.2346, 0.2972 | 0.2346, 0.9204 | 0.5308} {0.1339 | 0.2317, 0.1339 | 0.2317, 0.8837 | 0.5365}{0.627 | 0.2299, 0.627 | 0.2299, 0.2644 | 0.5403} {0.5 | 0.2293, 0.5 | 0.2293, 0.5 | 0.5413} {0.4242 | 0.2341, 0.4242 | 0.2341, 0.6848 | 0.5319} {0.2608 | 0.2312, 0.2608 | 0.2312, 0.6482 | 0.5376}{0.7028 | 0.2346, 0.7028 | 0.2346, 0.0796 | 0.5308} {0.5758 | 0.2341, 0.5758 | 0.2341, 0.3152 | 0.5318} {0.5 | 0.2388, 0.5 | 0.2388, 0.5 | 0.5224} {0.3367 | 0.2359, 0.3367 | 0.2359, 0.46337 | 0.5281}{0.8661 | 0.2317, 0.8661 | 0.2317, 0.1163 | 0.5365} {0.7392 | 0.2312, 0.7392 | 0.2312, 0.3518 | 0.5376} {0.6633 | 0.2359, 0.6633 | 0.2359, 0.5367 | 0.5281} {0.5 | 0.2331, 0.5 | 0.2331, 0.5 | 0.5338} ) ,
𝐻̃(2)2
= ( {0.5 | 0.3305, 0.5 | 0.3340, 0.5 | 0.3355} {0.3188 | 0.3396, 0.18448 | 0.3253, 0.6971 | 0.335} {0.1519 | 0.334, 0.4297 | 0.338, 0.7597 | 0.328} {0.3152 | 0.3249, 0.363 | 0.3241, 0.9916 | 0.3511}{0.6812 | 0.3396, 0.8156 | 0.3253, 0.3029 | 0.335} {0.5 | 0.3488, 0.5 | 0.3166, 0.5 | 0.3346} {0.3331 | 0.3432, 0.7453 | 0.3292, 0.5625 | 0.3276} {0.4964 | 0.334, 0.6786 | 0.3153, 0.7944 | 0.3507}{0.8481 | 0.334, 0.5703 | 0.338, 0.2403 | 0.328} {0.6669 | 0.3432, 0.2547 | 0.3292, 0.4375 | 0.3276} {0.5 | 0.3376, 0.5 | 0.3417, 0.5 | 0.3206} {0.6633 | 0.3284, 0.4333 | 0.328, 0.7319 | 0.3436}{0.6848 | 0.3249, 0.637 | 0.3241, 0.0084 | 0.3511} {0.5036 | 0.33, 0.3214 | 0.3153, 0.2056 | 0.3507} {0.3367 | 0.328, 0.5667 | 0.328, 0.2681 | 0.3436} {0.5 | 0.3192, 0.5 | 0.3141, 0.5 | 0.3667} ) ,
𝐻̃(2)3
= ( {0.5 | 0.2402, 0.5 | 0.3221, 0.5 | 0.4377} {0.2893 | 0.2319, 0.1747 | 0.3251, 0.6101 | 0.4429} {0.263 | 0.2426, 0.2771 | 0.3115, 0.7629 | 0.4459} {0.07187 | 0.2408, 0.2293 | 0.321, 0.9043 | 0.4381}{0.7107 | 0.2319, 0.8253 | 0.3251, 0.3899 | 0.4429} {0.5 | 0.2237, 0.5 | 0.3281, 0.5 | 0.4481} {0.4737 | 0.2343, 0.6026 | 0.3145, 0.6528 | 0.4511} {0.2826 | 0.2326, 0.5546 | 0.3241, 0.7942 | 0.4434}{0.737 | 0.2426, 0.7227 | 0.3115, 0.2371 | 0.4459} {0.5263 | 0.2343, 0.3974 | 0.3145, 0.3472 | 0.4511} {0.5 | 0.245, 0.5 | 0.3009, 0.5 | 0.4541} {0.3088 | 0.2432, 0.452 | 0.3105, 0.6413 | 0.4463}{0.9281 | 0.2408, 0.7707 | 0.321, 0.0957 | 0.4381} {0.7174 | 0.2326, 0.4454 | 0.3241, 0.2058 | 0.4434} {0.6912 | 0.2432, 0.548 | 0.3105, 0.3587 | 0.4463} {0.5 | 0.2414, 0.5 | 0.32, 0.5 | 0.4386} ) ,
𝐻̃(2)4
= ( {0.5 | 0.4125, 0.5 | 0.3373, 0.5 | 0.2502} {0.2762 | 0.4365, 0.193 | 0.3148, 0.6047 | 0.2487} {0.2739 | 0.4331, 0.2612 | 0.3229, 0.8477 | 0.2441} {0.0824 | 0.4253, 0.3632 | 0.3178, 0.9496 | 0.257}{0.7238 | 0.4365, 0.806 | 0.3148, 0.3953 | 0.2487} {0.5 | 0.4606, 0.5 | 0.2922, 0.5 | 0.2471} {0.4977 | 0.4572, 0.5681 | 0.3003, 0.7429 | 0.2425} {0.3062 | 0.4493, 0.6701 | 0.2952, 0.8448 | 0.2554}{0.7262 | 0.4331, 0.7388 | 0.3229, 0.1523 | 0.2441} {0.5023 | 0.4572, 0.4319 | 0.3003, 0.2571 | 0.2425} {0.5 | 0.4537, 0.5 | 0.3084, 0.5 | 0.237} {0.3085 | 0.4459, 0.602 | 0.3033, 0.6019 | 0.2508}{0.9176 | 0.4253, 0.6368 | 0.3177, 0.0504 | 0.257} {0.6938 | 0.4493, 0.3299 | 0.2952, 0.1552 | 0.2554} {0.6915 | 0.4459, 0.398 | 0.3033, 0.3981 | 0.2508} {0.5 | 0.438, 0.5 | 0.2982, 0.5 | 0.2638} ) .

(82)

Also, Figures 8, 9, 10, and 11 present the comparison between
the area graphs of score values for normalized, acceptably
consistent, and consistent HPFPRs made from 𝐻1, 𝐻2, 𝐻3,
and𝐻4, respectively, by the end of Step 4 in Algorithm 32.

Step 4. By Applying HPFWA operator (43) to individual
HPFPRs 𝐻(𝑡)

𝑘
= (ℎ(𝑡)
𝑖𝑗,𝑘

)𝑛×𝑛 (𝑘 = 1, 2, . . . , 𝑚) we get group
HPFPR𝐻(𝑡)𝑔 = (ℎ(𝑡)𝑖𝑗,𝑔)𝑛×𝑛 as follows:

𝐻(2)𝑔
= ( {0.5 | 0.3081, 0.5 | 0.3226, 0.5 | 0.3693} {0.3099 | 0.3237, 0.2228 | 0.3053, 0.6612 | 0.3711} {0.2403 | 0.325, 0.3224 | 0.3152, 0.8189 | 0.3598} {0.161 | 0.3113, 0.2903 | 0.3045, 0.9384 | 0.3843}{0.6901 | 0.3238, 0.7772 | 0.3053, 0.3388 | 0.3711} {0.5 | 0.3399, 0.5 | 0.2883, 0.5 | 0.3718} {0.427 | 0.3407, 0.5989 | 0.2952, 0.6611 | 0.3641} {0.3501 | 0.3294, 0.5681 | 0.2878, 0.7799 | 0.3827}{0.7597 | 0.325, 0.6776 | 0.3152, 0.1811 | 0.3598} {0.573 | .3407, 0.4011 | 0.2952, 0.3389 | 0.3641} {0.5 | 0.3411, 0.5 | 0.3053, 0.5 | 0.3537} {0.4195 | 0.3298, 0.4681 | 0.2964, 0.623 | 0.3738}{0.839 | 0.3114, 0.7097 | 0.3045, 0.0616 | 0.3843} {0.6499 | 0.3294, 0.4319 | 0.2878, 0.2201 | 0.3827} {0.5805 | 0.3298, 0.5319 | 0.2964, 0.3777 | 0.3738} {0.5 | 0.3179, 0.5 | 0.2885, 0.5 | 0.3936} ) . (83)

Step 5. The group consensus indexes are

GCI (𝐻(𝑡)1 ) = 0.0823,
GCI (𝐻(𝑡)2 ) = 0.0709,
GCI (𝐻(𝑡)3 ) = 0.0899,

GCI (𝐻(𝑡)4 ) = 0.0743.
(84)

Now GCI𝑟 is decided to be 0.1; therefore all the HPFPRs are
acceptably consensus with group HPFPR.

Step 6. Now, all the rows of HPFPR 𝐻𝑔 are aggregated by
HPFA operator (44) as follows:
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Figure 8: Area graphs of score values of𝐻1.
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Figure 9: Area graphs of score values of𝐻2.
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Figure 10: Area graphs of score values of𝐻3.
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Figure 11: Area graphs of score values of𝐻4.



Mathematical Problems in Engineering 21ℎ1,𝑔 = {0.3028 | 0.317, 0.3339 | 0.3119, 0.7296 | 0.3711}ℎ2,𝑔 = {0.4918 | 0.3334, 0.6111 | 0.2942, 0.57 | 0.3724}ℎ3,𝑔 = {0.563 | 0.3341, 0.5117 | 0.303, 0.4108 | 0.3628}ℎ4,𝑔 = {0.6424 | 0.3221, 0.5434 | 0.2943, 0.2897 | 0.3836} .
(85)

Step 7. By (77), scores and deviations of ℎ𝑖,𝑔 (𝑖 = 1, 2, 3, 4) are
calculated as follows.

𝑠 (ℎ1,𝑔) = .4709,𝑠 (ℎ2,𝑔) = .556,𝑠 (ℎ3,𝑔) = .4922,𝑠 (ℎ4,𝑔) = .4779,𝑑 (ℎ1,𝑔) = .0397,𝑑 (ℎ2,𝑔) = .0023,

𝑠 (ℎ3,𝑔) = .0042,𝑠 (ℎ4,𝑔) = .0236.
(86)

Step 8. Comparing scores and deviations computed in Step 7
provides us the following final preference ranking:𝑥2 > 𝑥3 > 𝑥4 > 𝑥1. (87)

Step 9. End.

Remark 34. Example 33 provides the complete illustration of
the proposed model dealing with consistency and creating
enough consensus among all economic experts. Based on the
results it is found that gold is the most profitable commodity,
whereas oil is the least preferable for investment.

6.1. Effects of Probability on Decision Making. In order to
show how important is the role played by the probabilities
of preference degrees two new versions are generated from
the HPFPRs 𝐻𝑘 = (ℎ𝑖𝑗,𝑘)𝑛×𝑛 (𝑘 = 1, 2, 3, 4) by changing the
probabilities only and preserving the preference degrees as
follows.

𝐻∗1 = ( {.5 | 1} {0.1174 | 0.2, 0.91 | 0.8} {0.4242 | 0.1, 0.8341 | 0.9} {0.2625 | 0.231, 0.7956 | 0.769}{0.8826 | 0.2, 0.0900 | 0.8} {.5 | 1} {0.1921 | 0.85, 0.9289 | 0.15} {0.2373 | 0.925, 0.5785 | 0.075}{0.5758 | 0.1, 0.1659 | 0.9} {0.8079 | 0.85, 0.0711 | 0.15} {.5 | 1} {0.2316 | 0.1, 0.6211 | 0.9}{0.7375 | 0.231, 0.2044 | 0.769} {0.7627 | 0.925, 0.4214 | 0.075} {0.7684 | 0.1, 0.3789 | 0.9} {.5 | 1} )
𝐻∗2 = ( {.5 | 1} {0.3674 | 0.1, 0.3955 | 0.1, 0.988 | 0.8} {0.0987 | 0.2, 0.2619 | 0.1, 0.5913 | 0.7} {0.3197 | 0.35, 0.8691 | 0.65}{0.6326 | 0.1, 0.6044 | 0.1, 0.0120 | 0.8} {.5 | 1} {0.1340 | 0.8, 0.8909 | 0.1, 0.9037 | 0.1} {0.7440 | 1}{0.9013 | 0.2, 0.7381 | 0.1, 0.4087 | 0.7} {0.8660 | 0.8, 0.1091 | 0.1, 0.0963 | 0.1} {.5 | 1} {0.4111 | 0.11, 0.9047 | 0.89}{0.6803 | 0.35, 0.1309 | 0.65} {0.255 9 | 1} {0.5889 | 0.11, 0.0953 | 0.89} {.5 | 1} )
𝐻∗3 = ( {.5 | 1} {0.1829 | 0.01, 0.2399 | 0.23, 0.5767 | 0.76} {0.3817 | 0.289, 0.9787 | 0.711} {0.0596 | 0.0586, 0.7219 | 0.9414}{0.8171 | 0.01, 0.7601 | 0.23, 0.4232 | 0.76} {.5 | 1} {0.5 | 0.7, 0.5961 | 0.3} {0.1499 | 0.8, 0.7224 | 0.1, 0.8175 | 0.1}{0.6183 | 0.289, 0.0213 | 0.711} {0.5 | 0.7, 0.4039 | 0.3} {.5 | 1} {0.4538 | 0.15, 0.8003 | 0.85}{0.9404 | 0.0586, 0.2781 | 0.9414} {0.8501 | 0.8, 0.2775 | 0.1, 0.1825 | 0.1} {0.5462 | 0.15, 0.1997 | 0.85} {.5 | 1} )
𝐻∗4 = ( {.5 | 1} {0.0991 | 0.05, 0.7317 | 0.95} {0.3498 | 0.15, 0.9447 | 0.85} {0.1835 | 0.1, 0.3685 | 0.05, 0.7256 | 0.85}{0.9009 | 0.05, 0.2683 | 0.95} {.5 | 1} {0.2481 | 0.75, 0.5 | 0.1, 0.9199 | 0.15} {0.3786 | 0.75, 0.6443 | 0.1, 0.7948 | 0.15}{0.6502 | 0.15, 0.0553 | 0.85} {0.7519 | 0.75, 0.5 | 0.1, 0.0801 | 0.15} {.5 | 1} {0.1349 | 0.15, 0.6225 | 0.1, 0.8759 | 0.75}{0.8165 | 0.1, 0.6315 | 0.05, 0.2744 | 0.85} {0.6214 | 0.75, 0.3557 | 0.1, 0.2052 | 0.15} {0.8651 | 0.15, 0.3775 | 0.1, 0.1241 | 0.75} {.5 | 1} )
𝐻∗∗1 = ( {.5 | 1} {0.1174 | 0.2979, 0.91 | 0.7021} {0.4242 | 0.9, 0.8341 | 0.1} {0.2625 | 0.9, 0.7956 | 0.1}{0.8826 | 0.2979, 0.0900 | 0.7021} {.5 | 1} {0.1921 | 0.85, 0.9289 | 0.15} {0.2373 | 0.925, 0.5785 | 0.075}{0.5758 | 0.9, 0.1659 | 0.1} {0.8079 | 0.85, 0.0711 | 0.15} {.5 | 1} {0.2316 | 0.1, 0.6211 | 0.9}{0.7375 | 0.9, 0.2044 | 0.1} {0.7627 | 0.925, 0.4214 | 0.075} {0.7684 | 0.1, 0.3789 | 0.9} {.5 | 1} )
𝐻∗∗2 = ( {.5 | 1} {0.3674 | 0.5018, 0.3955 | 0.3181, 0.9880 | 0.18} {0.0987 | 0.85, 0.2619 | 0.1, 0.5913 | 0.05} {0.3197 | 0.75, 0.8691 | 0.25}{0.6326 | 0.5018, 0.6044 | 0.3181, 0.0120 | 0.18} {.5 | 1} {0.1340 | 0.8, 0.8909 | 0.1, 0.9037 | 0.1} {0.7440 | 1}{0.9013 | 0.85, 0.7381 | 0.1, 0.4087 | 0.05} {0.8660 | 0.8, 0.1091 | 0.1, 0.0963 | 0.1} {.5 | 1} {0.4111 | 0.95, 0.9047 | 0.05}{0.6803 | 0.75, 0.1309 | 0.25} {0.255 9 | 1} {0.5889 | 0.95, 0.0953 | 0.05} {.5 | 1} )
𝐻∗∗3
= ( {.5 | 1} {0.1829 | 0.1317, 0.2399 | 0.4745, 0.5767 | 0.3938} {0.3817 | 0.89, 0.9787 | 0.11} {0.0596 | 0.9414, 0.7219 | 0.0586}{0.8171 | 0.1317, 0.7601 | 0.4745, 0.4232 | 0.3938} {.5 | 1} {0.5 | 0.9, 0.5961 | 0.1} {0.1499 | 0.8, 0.7224 | 0.1, 0.8175 | 0.1}{0.6183 | 0.89, 0.0213 | 0.11} {0.5 | 0.9, 0.4039 | 0.1} {.5 | 1} {0.4538 | 0.888, 0.8003 | 0.112}{0.9404 | 0.9414, 0.2781 | 0.0586} {0.8501 | 0.8, 0.2775 | 0.1, 0.1825 | 0.1} {0.5462 | 0.888, 0.1997 | 0.112} {.5 | 1} )
𝐻∗∗4 = ( {.5 | 1} {0.0991 | 0.629, 0.7317 | 0.371} {0.3498 | 0.9, 0.9447 | 0.1} {0.1835 | 0.8, 0.3685 | 0.05, 0.7256 | 0.15}{0.9009 | 0.629, 0.2683 | 0.371} {.5 | 1} {0.2481 | 0.8, 0.5 | 0.1, 0.9199 | 0.1} {0.3786 | 0.8, 0.6443 | 0.1, 0.7948 | 0.1}{0.6502 | 0.9, 0.0553 | 0.1} {0.7519 | 0.8, 0.5 | 0.1, 0.0801 | 0.1} {.5 | 1} {0.1349 | 0.9, 0.6225 | 0.05, 0.8759 | 0.05}{0.8165 | 0.8, 0.6315 | 0.05, 0.2744 | 0.15} {0.6214 | 0.8, 0.3557 | 0.1, 0.2052 | 0.1} {0.8651 | 0.9, 0.3775 | 0.05, 0.1241 | 0.05} {.5 | 1} ) .

(88)
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Table 4: Effects of probability on decision making.

HPFPRs Ranking of alternatives Best commodity𝐻1, 𝐻2, 𝐻3, 𝐻4 𝑥2 > 𝑥3 > 𝑥4 > 𝑥1 Gold𝐻∗1 , 𝐻∗2 , 𝐻∗3 , 𝐻∗4 𝑥1 > 𝑥2 > 𝑥3 > 𝑥4 Oil𝐻∗∗1 , 𝐻∗∗2 , 𝐻∗∗3 , 𝐻∗∗4 𝑥4 > 𝑥2 > 𝑥3 > 𝑥1 Copper

Remark 35. Inspection of Table 4 will reveal why it is
important to consider the probabilities of different preference
degrees. Many a time, decision makers are taking decisions
related to future scenarios like our case study. The future is
a mystery that cannot be predicted completely; probability is
a useful tool to deal with uncertainties. In real life scenarios
probability of different events can alter the decisions wemake
today.

7. Comparison with Existing Models

Preference relations are one of the important tools that
are used for practical decision making in different complex
scenarios. A wide number of researchers developed different
kinds of preference relations models as fuzzy [10, 11, 32, 40,
43], intuitionistic fuzzy [23, 26, 27], and hesitant fuzzy [6, 24,
28, 33, 38]. Of course fuzzy preference relations are subcase of
hesitant fuzzy preference relations, as we have discussed the
occurrence probability is considered to be the same which
is impractical as Table 4 reflects the impact of probabilities
on decision making. So, for this reason the proposed model
has provided better modelling of real world problems. In
hesitant probabilistic fuzzy environment Zhou and Xu [41]
proposed and studied probabilistic fuzzy preference relations.
The drawback and difference between their definition of
preference relation and proposed Definition 6 have already
been discussed in Remark 7. First, they proposed expected
consistency based upon multiplicative consistency of fuzzy
preference relation [44]; then based on expected consistency
multiobjective goal programming models are developed to
compute occurrence probability and priority weight vector.
Also, an iterative optimization algorithm to improve consis-
tency of nonconsistent preference relationswas designed.The
comparison is summarized as follows.

(i) Zhou and Xu’s definition [41, Definition 4] is not suit-
able for decision making based on 𝛽-normalization
principle, whereas proposedDefinition 6 is consistent
with𝛽-normalization; in factHPFPRs are normalized
following 𝛽-normalization principle.

(ii) They proposed expected consistency, taking a uni-
fying approach to handle both preference degrees
and their occurrence probabilities, whereas additive
consistency [44] and weak stochastic transitivity [45,
Page 27] are adopted for preference degrees and
probabilities, respectively, in our proposal.

(iii) They defined expected consistency index based on
priority weights computed from multiobjective goal
programming model made from expected consis-
tency, whereas for HPFPR 𝐻 Algorithm 11 (based
on convex combination technique) will provide its

corresponding NHPFPR𝐻 and consistent HPFPR 𝐻̃
and consistency index is defined to be the distance
between𝐻 and 𝐻̃, in our proposal.

(iv) They developed an algorithm which will replace the
preference degrees by optimal ones iteratively and
occurrence probabilities are computed accordingly to
improve consistency, whereas Algorithm 19 (based on
convex combination technique) will improve consis-
tency, in our proposal.

(v) Both proposals use different techniques and ideas to
define and deal with consistency as the above points
reflect. However, Zhou and Xu make no effort for
group decision making; the main advantage of our
proposal is that it is a complete model, not only
dealing with group decision making but also provid-
ing solution to consensus problem among decision
maker, which is a key issue in group decision making.

The HFPR is a special case of HPFPR to provide exper-
imental comparison with existing models of group decision
making models with HFPRs [33, 38]; we solved their case
studies by our proposed model, in a way that preference
degrees are the same and their occurrence probabilities are
considered to be equal.The comparison is provided inTable 5;
clearly our proposedmodel is quite efficient as it provides the
correct results.

8. Conclusion

In this paper, we have developed a complete group decision
support model based on HPFPRs; it consists of three parts: a
consistency improving process, a consensus reaching process,
and the selection process. The consistency measure of a
HPFPR has been defined in the consistency improving
process. For HPFPRs that have unacceptable consistency, an
optimization method is proposed to improve the consistency
until the HPFPRs have an acceptable consistency. In the
consensus reaching process, a consensus index is defined
to measure the consensus level. For HPFPRs that have an
unacceptable consensus, an optimizationmethod is designed
to assist them in achieving a predefined consensus level. The
proposed model can be used to address GDM problems with
HPFPRs. Optimization methods are also developed to help
the individual HPFPRs to achieve a predefined consistency
level and consensus level with fewer interactions of the
DMs. As a consequence, our model is time saving, efficient,
and convenient for practical applications. The consistency
improving process is performed to ensure that the DMs are
neither random nor illogical in their pairwise comparisons.
Procedure to reach a consensus level ensures that the adjusted
HPFPRs not only achieve the predefined level of consensus
but also maintain acceptable consistency. Proposed model
also ensures that the consistent HPFPRs do not change at
each iteration. This property can retain the DMs’ original
decision making information to the greatest extent possible.
Here we did not discuss the effects of the application of
different controlling parameters and distance functions in the
developedmodel.This model is not useful for the incomplete
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Table 5: Experimental comparison.

Reference Existing models solution Proposed model solution
[38, Case study 5.1] 𝑥3 > 𝑥2 > 𝑥1 > 𝑥4 𝑥3 > 𝑥2 > 𝑥1 > 𝑥4
[33, Example 5.1] 𝑥3 > 𝑥2 > 𝑥1 > 𝑥4 𝑥3 > 𝑥2 > 𝑥1 > 𝑥4
preference relation. In the future, we will pay attention to
addressing these problems. Future research can also focus
on the extension of the proposed model to other types of
preference relations.
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