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An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential
equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be
convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem
of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.

1. Introduction and Problem Formulation

Transferring an object from a known initial state to a desired
point in the phase space is an important problem of the
motion control theory. It is quite difficult and has not been
solved in the general case. Two classic approaches to solve
it are program trajectories and targeting trajectories. In the
former case, the object moves along the fixed trajectory
which cannot be changed (i.e., the problem of its stabilization
arises).This leads to strong restrictions on the control system
possibilities. In the latter case, the motion is controlled
constantly (with some time step) based on the current object
state in order to perform the desired transfer. This demands
constant target point tracking with some technical means,
which reduces the control system independence.

Nowadays, the progress in computers, measurement
tools, and other instruments’ engineeringmakes it possible to
start development and production of autonomous intellectual
control systems, which themselves can determine the transfer
trajectory with onboard computational and navigational
systems using only the initial (or current) state of the object.
This greatly extends the capabilities of control systems, since
there is no need in constant target point tracking, which often
cannot be practically realized.

Intellectual control systems for many technical objects
(aerospace vehicles, gyroscopic mechanisms, robotic manip-
ulators, etc.) are modeled mathematically with nonlinear
stationary controllable systems of ordinary differential equa-
tions (ODEs).Thenecessary control action is found as control
functions, which provide the notion that phase coordinates
satisfy the given boundary conditions. Such problems of
the mathematical control theory are called boundary value
problems (BVPs) for ODEs. They form an important class of
problems and are quite difficult, especially when additional
details are introduced into the model, like discrete time
consideration, control signal and measurement delays, per-
manent perturbations, or integral-differential components in
the object behavior.

For the first time, the complete solution of the boundary
value problem for linear controllable systems in a class of
square-integrable control functions was proposed by Kalman
et al. [1]. During the following decades, a lot of papers and
monographies studying BVPs for linear and nonlinear con-
trolled systems of ODEs and integral-differential equations
of a special kind have appeared [1–33]. It should be also
mentioned that the control methods based on the classic
approaches continue to appear, especially in the areas where
models become even more complex, as fuzzy control systems
(see, e.g., [34–37]).
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Today, there are three main directions of BVP study. The
first deals with finding the necessary and sufficient conditions
imposed to the right part of the controlled system which
guarantee the object transfer to the desired point in the phase
space [1–5, 7–10, 13–16, 18, 19, 21–32].

The second problem is to determine the final states set,
where the object can be transferred from the initial state [3, 5–
8, 11, 17, 20–22, 33].

The third direction concerns development of exact or
approximate methods for constructing or synthesizing pro-
gram control functions and the corresponding trajectories
which connect the given points in the phase space [1, 3–
6, 11, 18, 20–22, 24, 26].

BVPs’ solution is studied sufficiently well for linear con-
trollable systems. For quasi-linear (semilinear) and nonlinear
systems of the special forms, mainly iterative methods and
their modifications are used [4, 5]. The weaknesses of such
methods are instability to computational errors and outer
perturbations and high computational time, since each stage
includes the solution of a nonlinear system of functional
equations. Moreover, it is quite difficult to find good initial
approximations to the control functions and time functions
of phase coordinates to provide fast convergence. Initial
approximations are often chosen intuitively. Due to the men-
tioned problems, it is impossible to use successive approxi-
mations to solve BVPs in essentially nonlinear controllable
systems. Theory and methods of solving BVPs for nonlinear
systems of general form have yet to be developed.

The present paper is based on the results presented in
[2, 24]. In [2], the condition ofKalman type,which guarantees
the local controllability for a wide class of nonlinear station-
ary systems of ODEs, is considered. In [24], the problem
of local controllability of a nonlinear stationary system is
considered. The notions of auxiliary controllable systems
linearized along the trajectory 𝑥(𝑡) and control 𝑢(𝑡) and
auxiliary controllable system linearized about the original
nonlinear system equilibrium point (𝑥𝜀, 𝑢𝜀) are introduced.
It is proven that the local controllability of the original
nonlinear system follows from the full controllability of the
auxiliary systems.

In the current paper, a nonlinear stationary system local
controllability condition is found, which is analogous to
the condition presented in [2, 24]. The main difference
from the previous results is that we develop an algorithm
for constructing the synthesizing control function, which
provides the transfer from the origin of coordinates to a
given final state for a wide class of nonlinear stationary
systems of ODEs under restrictions on the control action
magnitude. The algorithm is quite easy to implement and
it has stable input and computational errors. Moreover, the
estimations of the reachable final states set are presented.
The algorithm realization is simple: the original problem is
reduced to the stabilization of a nonlinear system of the
special form under permanent perturbations, and then an
initial value problem (IVP) for an auxiliary system of ODEs
is solved.Themost complex and time-consuming part, which
is the auxiliary system construction and its stabilization,
can be made with analytical methods and realized with
computer algebra means. Additionally, the required control

law found from the auxiliary system stabilization condition
provides the stability of computational procedures to input
and computational errors. The effectiveness of the presented
algorithm is demonstrated with numerical solution of a
practical problem.

In the paper, we consider a controllable system of ordi-
nary differential equations (ODEs):𝑥̇ = 𝑓 (𝑥, 𝑢) , (1)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 is a vector containing 𝑛 phase
coordinates and control 𝑢 is a vector of the same or lesser
dimension: 𝑢 = (𝑢1, . . . , 𝑢𝑟)𝑇 and 𝑟 ≤ 𝑛. We choose the time
scale so that the considered time 𝑡 ∈ [0, 1]. The right-hand
side is 𝑓 ∈ 𝐶4𝑛 (𝑅𝑛 × 𝑅𝑟; 𝑅𝑛) , 𝑓 = (𝑓1, . . . , 𝑓𝑛)𝑇 , (2)𝑓 (0, 0) = 0. (3)

Notice that

rank 𝑆 = 𝑛, (4)

where

𝐴 = 𝜕𝑓𝜕𝑥 (0, 0) ,
𝐵 = 𝜕𝑓𝜕𝑢 (0, 0) ,𝑆 = (𝐵, 𝐴𝐵, 𝐴2𝐵, . . . , 𝐴𝑛−1𝐵) .

(5)

The possible control magnitude is bounded:‖𝑢‖ < 𝑁. (6)

Problem 1. Find a pair of functions 𝑥(𝑡) ∈ 𝐶[0, 1] and 𝑢(𝑡) ∈𝐶[0, 1] that satisfy (1) and the boundary conditions𝑥 (0) = 0,𝑥 (1) = 𝑥, 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 . (7)

We say that the pair 𝑥(𝑡) and 𝑢(𝑡) is a solution of problems (1)
and (7).

Theorem 2. If conditions (2), (3), and (4) are satisfied for the
right-hand side of (1), then ∃𝜀 > 0 such that ∀𝑥 ∈ 𝑅𝑛 : ‖𝑥‖ <𝜀 there exists a solution of problems (1) and (7), which can
be found after solving, first, a problem of stabilizing a linear
nonstationary systemwith exponential coefficients and, second,
an initial value problem for an auxiliary ODE system.

Themain idea of the proof is to use successive changes of
independent and dependent variables to reduce the process
of solving the original system to the problem of stabilizing
a nonlinear auxiliary system of ODEs of the special form
under permanent perturbations. To solve the latter, we find
a synthesizing control, which provides exponential decrease
of the linear auxiliary system fundamentalmatrix. At the final
stage, we return to the original variables.
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2. Auxiliary System Construction

We find the function 𝑥(𝑡) being a part of the solution of (1)
and (7) in the form

𝑥𝑖 (𝑡) = 𝑎𝑖 (𝑡) + 𝑥𝑖, 𝑖 = 1, . . . , 𝑛. (8)

In the new variables, system (1) and the boundary conditions
are written as

𝑎 = 𝑓 (𝑥 + 𝑎, 𝑢) , (9)𝑎 (0) = −𝑥,𝑎 (1) = 0. (10)

We call the pair of functions 𝑎(𝑡) and 𝑢(𝑡), which satisfy
system (9) and conditions (10), a solution of (9) and (10).
Now consider a problem of finding 𝑎(𝑡) ∈ 𝐶[0, 1] and 𝑢(𝑡) ∈𝐶[0, 1], which satisfy (9), such that

𝑎 (0) = −𝑥,𝑎 (𝑡) 󳨀→ 0 as 𝑡 󳨀→ 1. (11)

Remark 3. The limit with 𝑡 → 1 of the solution of (9) and (11)
is the solution of (9) and (10).

We switch from the independent variable 𝑡 in system (9)
to 𝜏 according to

𝑡 = 1 − 𝑒−𝛼𝜏, 𝜏 ∈ [0, +∞] , (12)

where 𝛼 > 0 is a certain constant value to be determined.
Then, in terms of 𝜏, (9) and (11) take the form

𝑑𝑐𝑑𝜏 = 𝛼𝑒−𝛼𝜏𝑓 (𝑥 + 𝑐, 𝑑) , 𝜏 ∈ [0, +∞] , (13)

𝑐 (0) = −𝑥,𝑐 (𝜏) 󳨀→ 0 as 𝜏 󳨀→ ∞, (14)

𝑐 (𝜏) = 𝑎 (𝑡 (𝜏)) ,𝑑 (𝜏) = 𝑢 (𝑡 (𝜏)) ,𝑐 = (𝑐1, . . . , 𝑐𝑛)𝑇 ,𝑑 = (𝑑1, . . . , 𝑑𝑟)𝑇 .
(15)

We call the pair of functions 𝑐(𝜏) and 𝑑(𝜏), which satisfy
system (13) with conditions (14), a solution of problem (13)
and (14). With the solution of (13) and (14), one can return to
the solution of (9) and (11) with (12) and (15).

Let us denote𝑐 = 𝑥 + 𝜃𝑖𝑐,𝑑 = 𝜃𝑖𝑑, 𝜃 ∈ [0, 1] , 𝑖 = 1, . . . , 𝑛,
|𝑘| = 𝑛∑
𝑖=1

𝑘𝑖,
|𝑚| = 𝑟∑

𝑖=1

𝑚𝑖,
𝑘! = 𝑘1! ⋅ . . . ⋅ 𝑘𝑛!,𝑚! = 𝑚1! ⋅ . . . ⋅ 𝑚𝑟!.

(16)

Using property (2) and Taylor series expansion of the right-
hand side of (1) about (𝑥, 0), we can rewrite system (13) as𝑑𝑐𝑖𝑑𝜏 = 𝛼𝑒−𝛼𝜏𝑓𝑖 (𝑥, 0) + 𝛼𝑒−𝛼𝜏 𝑛∑

𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝑐𝑗
+ 𝛼𝑒−𝛼𝜏 𝑟∑

𝑗=1

𝜕𝑓𝑖𝜕𝑢𝑗 (𝑥, 0) 𝑑𝑗 + 12
⋅ 𝛼𝑒−𝛼𝜏 [[

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑐𝑗𝑐𝑘
+ 2 𝑛∑
𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑐𝑗𝑑𝑘
+ 𝑟∑
𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑢𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑑𝑗𝑑𝑘]]
+ 𝛼𝑒−𝛼𝜏 ∑

|𝑘|+|𝑚|=4𝑛−2

1𝑘!𝑚! 𝜕|𝑘|+|𝑚|𝑓𝑖𝜕𝑥𝑘11 ⋅ ⋅ ⋅ 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚11 ⋅ ⋅ ⋅ 𝜕𝑢𝑚𝑟𝑟 (𝑥,0) 𝑐𝑘11 × ⋅ ⋅ ⋅ × 𝑐𝑘𝑛𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟
+ 𝛼𝑒−𝛼𝜏 ∑

|𝑘|+|𝑚|=4𝑛−1

1𝑘!𝑚! 𝜕|𝑘|+|𝑚|𝑓𝑖𝜕𝑥𝑘11 ⋅ ⋅ ⋅ 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚11 ⋅ ⋅ ⋅ 𝜕𝑢𝑚𝑟𝑟 (𝑐,𝑑) 𝑐𝑘11 × ⋅ ⋅ ⋅ × 𝑐𝑘𝑛𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟 , 𝑖 = 1, . . . , 𝑛.

(17)

Let us bound the range of 𝑐(𝜏) with‖𝑐 (𝜏)‖ < 𝐶1, 𝜏 ∈ [0,∞) . (18)

We will now shift the functions 𝑐𝑖(𝜏), 𝑖 = 1, . . . , 𝑛, a number
of times. Our aim is to get an equivalent system where all the
terms in the right-hand side, which do not contain powers of𝑐 or 𝑑 in explicit form, would be of the order 𝑂(𝑒−4𝑛𝛼𝜏‖𝑥‖) as𝜏 → ∞ and ‖𝑥‖ → 0 in domain (6) and (18).

At the first stage, we change 𝑐𝑖(𝜏) to 𝑐(1)𝑖 (𝜏) by the following
rule: 𝑐𝑖 (𝜏) = 𝑐(1)𝑖 − 𝑒−𝛼𝜏𝑓𝑖 (𝑥, 0) , 𝑖 = 1, . . . , 𝑛. (19)
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Let𝐷|𝑘|+|𝑚|𝑓𝑖 ≡ 𝜕|𝑘|+|𝑚|𝑓𝑖/𝜕𝑥𝑘11 ⋅ ⋅ ⋅ 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚11 ⋅ ⋅ ⋅ 𝜕𝑢𝑚𝑟𝑟 for all 𝑖 =1, . . . , 𝑛. After substitution of (19) into the left- and right-hand
sides of (17), we obtain the equivalent system

𝑑𝑐(1)𝑖𝑑𝜏 = −𝛼𝑒−2𝛼𝜏 𝑛∑
𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝑓𝑗 (𝑥, 0) + 12
⋅ 𝛼𝑒−3𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑓𝑗 (𝑥, 0) 𝑓𝑘 (𝑥, 0)
+ 𝛼[[𝑒−𝛼𝜏

𝑛∑
𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝑐(1)𝑗
+ 𝑒−2𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑓𝑘 (𝑥, 0) 𝑐(1)𝑗 ]]
+ 𝛼[[𝑒−𝛼𝜏

𝑟∑
𝑗=1

𝜕𝑓𝑖𝜕𝑢𝑗 (𝑥, 0) 𝑑𝑘
+ 𝑒−2𝛼𝜏 𝑛∑

𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑓𝑗 (𝑥, 0) 𝑑𝑘]] + 12
⋅ 𝛼𝑒−𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑐(1)𝑗 𝑐(1)𝑘
+ 𝛼𝑒−𝛼𝜏 𝑛∑

𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑑𝑘𝑐(1)𝑗 + 12
⋅ 𝛼𝑒−𝛼𝜏 𝑟∑

𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑢𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑑𝑗𝑑𝑘 + ⋅ ⋅ ⋅
+ 𝛼𝑒−𝛼𝜏 ∑

|𝑘|+|𝑚|=4𝑛−2

1𝑘!𝑚!𝐷|𝑘|+|𝑚|𝑓𝑖 (𝑥, 0)
⋅ (𝑐(1)1 − 𝑒−𝛼𝜏𝑓1 (𝑥, 0))𝑘1 × ⋅ ⋅ ⋅× (𝑐(1)𝑛 − 𝑒−𝛼𝜏𝑓𝑛 (𝑥, 0))𝑘𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟
+ 𝛼𝑒−𝛼𝜏 ∑

|𝑘|+|𝑚|=4𝑛−1

1𝑘!𝑚!𝐷|𝑘|+|𝑚|𝑓𝑖 (𝑐, 𝑑)
⋅ (𝑐(1)1 − 𝑒−𝛼𝜏𝑓1 (𝑥, 0))𝑘1 × ⋅ ⋅ ⋅ × (𝑐(1)𝑛− 𝑒−𝛼𝜏𝑓𝑛 (𝑥, 0))𝑘𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟 , 𝑖 = 1, . . . , 𝑛.

(20)

It follows from (14) and (19) that𝑐(1)𝑖 (0) = −𝑥𝑖 + 𝑓𝑖 (𝑥, 0) , 𝑖 = 1, . . . , 𝑛. (21)

It is easy to see that, in the right-hand side of (20), the terms,
which do not contain the powers of the components of 𝑐 or𝑑 in explicit form, are bounded with 𝑂(𝑒−2𝛼𝜏‖𝑥‖) as 𝜏 → ∞
and ‖𝑥‖ → 0 in (6) and (18).

At the second stage, we make a change of variables

𝑐(1)𝑖 (𝜏) = 𝑐(2)𝑖 (𝜏) + 𝑒−2𝛼𝜏𝜙(2)𝑖 (𝑥) ,
𝜙(2)𝑖 (𝑥) = 12 𝑛∑

𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝑓𝑗 (𝑥, 0) ,𝜙(2)𝑖 (0) = 0, 𝑖 = 1, . . . , 𝑛.
(22)

With respect to these new variables, the original system (20)
and the initial conditions (21) are written as

𝑑𝑐(2)𝑖𝑑𝜏 = 𝛼[[12
⋅ 𝑒−3𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑓𝑗 (𝑥, 0) 𝑓𝑘 (𝑥, 0)
+ 𝑒−3𝛼𝜏 𝑛∑

𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝜙(2)𝑗
− 𝑒−4𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑓𝑘 (𝑥, 0) 𝜙(2)𝑗 + 12
⋅ 𝑒−5𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝜙(2)𝑗 𝜙(2)𝑘 ]]
+ 𝛼[[𝑒−𝛼𝜏

𝑛∑
𝑗=1

𝜕𝑓𝑖𝜕𝑥𝑗 (𝑥, 0) 𝑐(2)𝑗
− 𝑒−2𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑓𝑘 (𝑥, 0) 𝑐(2)𝑗
+ 𝑒−3𝛼𝜏 𝑛∑

𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝜙(2)𝑘 𝑐(2)𝑗 ]]
+ 𝛼[[𝑒−𝛼𝜏

𝑟∑
𝑘=1

𝜕𝑓𝑖𝜕𝑢𝑗𝑘 (𝑥, 0) 𝑑𝑘
− 𝑒−2𝛼𝜏 𝑛∑

𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑓𝑗 (𝑥, 0) 𝑑𝑘
+ 𝑒−3𝛼𝜏 𝑛∑

𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝜙(2)𝑗 𝑑𝑘]] + 12
⋅ 𝛼𝑒−𝛼𝜏 [[

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑥𝑘 (𝑥, 0) 𝑐(2)𝑗 𝑐(2)𝑘
+ 𝑛∑
𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑥𝑗𝜕𝑢𝑘 (𝑥, 0) 𝑑𝑘𝑐(2)𝑗
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+ 𝑟∑
𝑗=1

𝑟∑
𝑘=1

𝜕2𝑓𝑖𝜕𝑢𝑗𝜕𝑢 (𝑥, 0) 𝑑𝑗𝑑𝑘]]+ 𝛼𝑒−𝛼𝜏 ∑
|𝑘|+|𝑚|=4𝑛−2

1𝑘!𝑚!𝐷|𝑘|+|𝑚|𝑓𝑖 (𝑥, 0)
⋅ (𝑐(2)1 + 𝑒−2𝛼𝜏𝜙(2)1 − 𝑒−𝛼𝜏𝑓1 (𝑥, 0))𝑘1 × ⋅ ⋅ ⋅ × (𝑐(2)𝑛+ 𝑒−2𝛼𝜏𝜙(2)𝑛 − 𝑒−𝛼𝜏𝑓𝑛 (𝑥, 0))𝑘𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟+ 𝛼𝑒−𝛼𝜏 ∑

|𝑘|+|𝑚|=4𝑛−1

1𝑘!𝑚!𝐷|𝑘|+|𝑚|𝑓𝑖 (𝑐, 𝑑)
⋅ (𝑐(2)1 + 𝑒−2𝛼𝜏𝜙(2)1 − 𝑒−𝛼𝜏𝑓1 (𝑥, 0))𝑘1 × ⋅ ⋅ ⋅ × (𝑐(2)𝑛+ 𝑒−2𝛼𝜏𝜙(2)𝑛 − 𝑒−𝛼𝜏𝑓𝑛 (𝑥, 0))𝑘𝑛 𝑑𝑚11 × ⋅ ⋅ ⋅ × 𝑑𝑚𝑟𝑟 ,𝑖 = 1, . . . , 𝑛.

(23)𝑐(2)1 (0) = −𝑥𝑖 + 𝑓𝑖 (𝑥, 0) − 𝜙(2)𝑖 (𝑥) , 𝑖 = 1, . . . , 𝑛. (24)

Compared to the previous variables shift, the right-hand
side terms of (23), which do not contain the powers of the
components of 𝑐 or 𝑑 in explicit form, are now of the order𝑂(𝑒−3𝛼𝜏‖𝑥‖) as 𝜏 → ∞ and ‖𝑥‖ → 0 in domain (6) and (18).

By induction, at the 𝑘th stage with (19)–(24), we have the
necessary shift of the form

𝑐(𝑘−1)𝑖 (𝜏) = 𝑐(𝑘)𝑖 + 𝑒−𝑘𝛼𝜏𝜙(𝑘)𝑖 (𝑥) ,𝜙(𝑘)𝑖 (0) = 0, 𝑖 = 1, . . . , 𝑛. (25)

We apply (25) 4𝑛 − 1 times and collect the terms, which are
linear with respect to the components of 𝑐(4𝑛−1) and include
the coefficients 𝑒−𝑖𝛼𝜏, 𝑖 = 1, . . . , 𝑛, and also the terms, which
are linear with respect to the components of 𝑑 and include
the coefficients 𝑒−𝑖𝛼𝜏, 𝑖 = 1, . . . , 2𝑛. Now, we have the system,
which according to (20)–(25) can be written in vector form
as follows:

𝑑𝑐(4𝑛−1)𝑑𝜏 = 𝑃𝑐(4𝑛−1) + 𝑄𝑑 + 𝑅1 (𝑐(4𝑛−1), 𝑑, 𝑥, 𝜏) + 𝑅2 (𝑐(4𝑛−1), 𝑑, 𝑥, 𝜏) + 𝑅3 (𝑐(4𝑛−1), 𝑑, 𝜏) + 𝑅4 (𝑥, 𝑐(4𝑛−1), 𝑑, 𝜏) ,𝑅1 = (𝑅11, . . . , 𝑅𝑛1)𝑇 , 𝑅2 = (𝑅12, . . . , 𝑅𝑛2)𝑇 , 𝑅3 = (𝑅13, . . . , 𝑅𝑛3)𝑇 , 𝑅4 = (𝑅14, . . . , 𝑅𝑛4)𝑇 . (26)

The functions 𝑅𝑖1 includes all the terms which are linear
with respect to the components of 𝑐(4𝑛−1) with coefficients𝑒−𝑖𝛼𝜏, 𝑖 ≥ 𝑛 + 1, and also the terms of the last sum of the
right-hand side for which |𝑚| = 0 and |𝑘| = 1. The function𝑅𝑖2 includes all the terms which are linear with respect to the
components of 𝑑 with coefficients 𝑒−𝑖𝛼𝜏, 𝑖 ≥ 2𝑛 + 1, and also
the terms of the last sum of the right-hand side for which|𝑚| = 1 and |𝑘| = 0. In 𝑅𝑖3, all the terms, which are nonlinear
with respect to the components of 𝑐(4𝑛−1) or 𝑑, are contained.
Finally, the function 𝑅𝑖4 includes all the terms, which do not
have powers of 𝑐(4𝑛−1) and𝑑 components.The functions𝑃 and𝑄 have the form𝑃 (𝑥) = 𝛼𝑒−𝛼𝜏 (𝑃1 (𝑥) + 𝑒−𝛼𝜏𝑃2 (𝑥) + ⋅ ⋅ ⋅+ 𝑒−(𝑛−1)𝛼𝜏𝑃𝑛−1 (𝑥)) ,𝑃1 (𝑥) = 𝜕𝑓𝜕𝑥 (𝑥, 0) , 𝑃1 (0) = 𝐴,𝑄 (𝑥) = 𝛼𝑒−𝛼𝜏 (𝑄1 (𝑥) + 𝑒−𝛼𝜏𝑄2 (𝑥) + ⋅ ⋅ ⋅+ 𝑒−(2𝑛−1)𝛼𝜏𝑄2𝑛−1 (𝑥)) ,𝑄1 (𝑥) = 𝜕𝑓𝜕𝑢 (𝑥, 0) , 𝑄1 (0) = 𝐵.

(27)

𝑐(4𝑛−1) (0) = −𝑥 + 𝑓 (𝑥) − 𝜙(2) (𝑥) − ⋅ ⋅ ⋅ −𝜙(𝑛−1) (𝑥) ,𝜙(𝑖) = (𝜙(𝑖)1 , . . . , 𝜙(𝑖)𝑛 )𝑇 , 𝑖 = 1, . . . , 4𝑛 − 1, 𝜙(𝑖) (0) = 0. (28)

3. Right-Hand Side Terms Evaluation

It follows from the construction of (26) that, in domain (6)
and (18), the following estimations are true:󵄩󵄩󵄩󵄩𝑃𝑖 (𝑥)󵄩󵄩󵄩󵄩 󳨀→ 0,󵄩󵄩󵄩󵄩󵄩𝑄𝑗 (𝑥)󵄩󵄩󵄩󵄩󵄩 󳨀→ 0

as ‖𝑥‖ 󳨀→ 0, 𝑖 = 2, . . . , 𝑛 − 1, 𝑗 = 2, . . . , 2𝑛 − 1; (29)

󵄩󵄩󵄩󵄩󵄩𝑅1 (𝑐(4𝑛−1), 𝑑, 𝑥, 𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑒−(𝑛+1)𝛼𝜏𝐿1 (𝑥) 󵄩󵄩󵄩󵄩󵄩𝑐(4𝑛−1)󵄩󵄩󵄩󵄩󵄩 ,󵄩󵄩󵄩󵄩󵄩𝑅2 (𝑐(4𝑛−1), 𝑑, 𝑥, 𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑒−(2𝑛+1)𝛼𝜏𝐿2 (𝑥) ‖𝑑‖ ,𝐿1 > 0, 𝐿2 > 0;
(30)

󵄩󵄩󵄩󵄩󵄩𝑅3 (𝑐(4𝑛−1), 𝑑, 𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑒−𝛼𝜏𝐿3 (󵄩󵄩󵄩󵄩󵄩𝑐(4𝑛−1)󵄩󵄩󵄩󵄩󵄩2 + ‖𝑑‖2) ,𝐿3 > 0. (31)

Moreover, conditions (2) and (3) lead to󵄩󵄩󵄩󵄩󵄩𝑅4 (𝑐(4𝑛−1), 𝑑, 𝑥, 𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿4 ‖𝑥‖ 𝑒−4𝑛𝛼𝜏, 𝐿4 > 0. (32)

Estimation (32) follows from the representation

𝑓 (𝑥, 0) = 𝜕𝑓𝜕𝑥 (𝜃𝑥, 0) 𝑥, 𝜃 = (𝜃1, . . . , 𝜃𝑛)𝑇 ,𝜃𝑖 ∈ [0, 1] , 𝑖 = 1, . . . , 𝑛. (33)
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Remark 4. Let us denote the 𝑖th column of 𝑄1 as 𝑞𝑖1. Con-
struct the matrix𝑆1 = {𝑞11, 𝑃1𝑞11, . . . , 𝑃𝑘1−11 𝑞11, 𝑞21, 𝑃1𝑞21, . . . , 𝑃𝑘2−11 𝑞21, . . . , 𝑞𝑟1,. . . , 𝑃𝑘𝑟−11 𝑞𝑟1} . (34)

Here, for each 𝑗 = 1, . . . , 𝑟 𝑘𝑗 is the maximal number of
columns of the form 𝑞𝑗1, . . . , 𝑃𝑘𝑗−11 𝑞𝑗1 such that all the vectors𝑞11, 𝑃1𝑞11, . . . , 𝑃𝑘1−11 𝑞11, 𝑞21, 𝑃1𝑞21, . . . , 𝑃𝑘2−11 𝑞21, 𝑞𝑟1, . . . , 𝑃𝑘𝑟−11 𝑞𝑟1
are linearly independent.

It follows from (4) and (27) that there exists 𝜀1 > 0 so that
rank 𝑆1 = 𝑛 for any 𝑥 ∈ 𝑅𝑛 satisfying ‖𝑥‖ < 𝜀1.

We now consider the system

𝑑𝑐(4𝑛−1)𝑑𝜏 = 𝑃𝑐(4𝑛−1) + 𝑄𝑑. (35)

4. Auxiliary Lemma

Lemma 5. Let conditions (2) and (4) be satisfied for system (1).
Then, ∃𝜀 > 0, 𝜀 < 𝜀1 such that ∀𝑥 ∈ 𝑅𝑛 : ‖𝑥‖ < 𝜀 there exists
the control 𝑑(𝜏) of the form

𝑑 (𝜏) = 𝑀 (𝜏) 𝑐(4𝑛−1) (36)

that provides an exponential decrease of the fundamental
matrix in (35).

Proof. We use Krasovskii’s linear nonstationary systems sta-
bilization method [3] in the proof. Let 𝐿𝑗1, 𝑗 = 1, . . . , 𝑟, be the𝑗th column of 𝑄. Construct the matrix

𝑆2 = {𝐿11, 𝐿12, . . . , 𝐿1𝑘1 , 𝐿21, . . . , 𝐿2𝑘2 , . . . , 𝐿𝑟1, . . . , 𝐿𝑟𝑘𝑟} ,
𝐿𝑗𝑖 = 𝑃𝐿𝑗𝑖−1 − 𝑑𝐿𝑗𝑖−1𝑑𝜏 , 𝑗 = 1, . . . , 𝑟, 𝑖 = 2, . . . , 𝑘𝑗. (37)

Here, for each 𝑗 𝑘𝑗 is the maximal number of columns𝐿𝑗1, . . . , 𝐿𝑗𝑘𝑗 such that the vectors 𝐿11, 𝐿12, . . . , 𝐿1𝑘1 , 𝐿21, . . . , 𝐿2𝑘2 ,𝐿𝑟1, . . . , 𝐿𝑟𝑘𝑟 are linearly independent. We show that

rank 𝑆2 = 𝑛. (38)

Let 𝐿𝑗1, 𝑗 = 1, . . . , 𝑟, be the 𝑗th column of the matrix𝛼𝑒−𝛼𝜏𝑄1. Consider the matrix

𝑆3 = {𝐿11, 𝐿12, . . . , 𝐿1𝑘1 , 𝐿21, . . . , 𝐿2𝑘2 , . . . , 𝐿𝑟1, . . . , 𝐿𝑟𝑘𝑟} ,
𝐿𝑗𝑖 = 𝛼𝑒−𝛼𝜏𝑃1𝐿𝑗𝑖−1 − 𝑑𝐿𝑗𝑖−1𝑑𝜏 , 𝑗 = 1, . . . , 𝑟, 𝑖 = 2, . . . , 𝑘𝑗,

(39)

where 𝑘𝑗 are determined the same way as for 𝑆2. Conditions
(2), (27), and (29) provide the notion that 𝑆2 → 𝑆3 as ‖𝑥‖ → 0.

This leads to the existence of 𝜀2 > 0: 𝜀2 < 𝜀1 such that∀𝑥 ∈ 𝑅𝑛:‖𝑥‖ < 𝜀2
rank 𝑆2 = rank 𝑆3. (40)

Now, taking into account Remark 4 and equality (40), we can
prove by contradiction that ∀𝑥 ∈ 𝑅𝑛 : ‖𝑥‖ < 𝜀2

rank 𝑆3 = 𝑛. (41)

From (40) and (41), it follows that condition (38) is
satisfied in the domain ‖𝑥‖ < 𝜀2. Moreover, due to the
structure of 𝑆3, the estimation󵄩󵄩󵄩󵄩󵄩𝑆−12 󵄩󵄩󵄩󵄩󵄩 = 𝑂 (𝑒𝑛𝛼𝜏) , 𝜏 󳨀→ ∞, (42)

is true in that domain.
With the use of (38), we change the variable 𝑐(4𝑛−1)

according to the expression𝑐(4𝑛−1) = 𝑆2 (𝜏) 𝑦. (43)

As a result, we get the system of ODEs:𝑑𝑦𝑑𝜏 = 𝑆−12 (𝑃𝑆2 − 𝑑𝑆2𝑑𝜏 )𝑦 + 𝑆−12 𝑄𝑑. (44)

According to [38] for the first term of the right-hand side
of (44) we have

𝑆−12 (𝑃𝑆2 − 𝑑𝑆2𝑑𝜏 ) = {𝑒2, . . . , 𝑒𝑘1 , 𝜑𝑘1 (𝜏) , . . . , 𝑒𝑘1+⋅⋅⋅+𝑘𝑟−1+2,. . . , 𝑒𝑘1+⋅⋅⋅+𝑘𝑟 , 𝜑𝑘𝑟 (𝜏)} , (45)

where 𝑒𝑖 is a zero vector of length 𝑛 with the only unit at the𝑖th place,𝜑𝑘𝑗
= (−𝜑1𝑘1 , . . . , −𝜑𝑘1𝑘1 , . . . , −𝜑1𝑘𝑗 , . . . , −𝜑𝑘𝑗𝑘𝑗 , 0, . . . , 0)𝑇𝑛×1 , (46)

and 𝜑𝑖𝑘𝑗 is the coefficient of 𝐿𝑗
𝑘𝑗+1

expansion into the sum of
the vectors 𝐿11, 𝐿12, . . ., 𝐿1𝑘1 , 𝐿21, . . . , 𝐿2𝑘2 , 𝐿𝑟1, . . . , 𝐿𝑟𝑘r (notice
that ∑𝑟𝑗=1 𝑘𝑗 = 𝑛); that is,

𝐿𝑗
𝑘𝑗+1
= − 𝑘1∑
𝑖=1

𝜑𝑖𝑘1 (𝜏) 𝐿1𝑖 − ⋅ ⋅ ⋅ − 𝑘𝑗∑
𝑖=1

𝜑𝑖𝑘𝑗 (𝜏) 𝐿𝑗𝑖 . (47)

The second term is

𝑆−12 𝑄 = {𝑒1, . . . , 𝑒𝑘𝑖+1, . . . , 𝑒𝛾+1} , 𝛾 = 𝑟−1∑
𝑖=1

𝑘𝑖. (48)

Consider the stabilization of the system𝑑𝑦𝑘𝑖𝑑𝜏 = {𝑒𝑘𝑖2 , . . . , 𝑒𝑘𝑖𝑘𝑖 , 𝜑𝑘𝑖} 𝑦𝑘𝑖 + 𝑒𝑘𝑖1 𝑑𝑖,𝑦𝑘𝑖 = (𝑦1𝑘𝑖 , . . . , 𝑦𝑘𝑖𝑘𝑖 )𝑇𝑘𝑖×1 , 𝑖 = 1, . . . , 𝑟,
(49)
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where 𝑒𝑘𝑖𝑖 is a zero vector of length 𝑘𝑖 with the only unit at the𝑖th place and 𝜑𝑘𝑖 = (−𝜑1𝑘𝑖 , . . . , −𝜑𝑘𝑖𝑘𝑖 )𝑇𝑘𝑖×1.
Let 𝑦𝑘𝑖
𝑘𝑖
= 𝜓. The phase variables of (49) are connected to𝜓(𝜏) and its derivatives with the equalities𝑦𝑘𝑖

𝑘𝑖
= 𝜓,

𝑦𝑘𝑖−1
𝑘𝑖
= 𝜓(1) + 𝜑𝑘𝑖

𝑘𝑖
𝜓,

𝑦𝑘𝑖−2
𝑘𝑖
= 𝜓(2) + 𝜑𝑘𝑖

𝑘𝑖
𝜓(1) + (𝑑𝜑𝑘𝑖𝑘𝑖𝑑𝜏 + 𝜑𝑘𝑖−1𝑘𝑖 )𝜓,...𝑦1𝑘𝑖 = 𝜓(𝑘𝑖−1) + 𝑟𝑘𝑖−2 (𝜏) 𝜓(𝑘𝑖−2) + ⋅ ⋅ ⋅ + 𝑟1 (𝜏) 𝜓(1)+ 𝑟0 (𝜏) 𝜓.

(50)

The differentiation of the last equality in (50) together with
(49) leads to𝜓(𝑘𝑖) + 𝜀𝑘𝑖−1 (𝜏) 𝜓(𝑘𝑖−1) + ⋅ ⋅ ⋅ + 𝜀0 (𝜏) 𝜓 = 𝑑𝑖,𝑖 = 1, . . . , 𝑟. (51)

The functions 𝑟𝑘𝑖−2(𝜏), . . . , 𝑟0(𝜏), 𝜀𝑘𝑖−1(𝜏), . . . , 𝜀0(𝜏) in (50)
and (51) are linear combinations of the functions 𝜑𝑖𝑘𝑗(𝜏), 𝑖 =1, . . . , 𝑘𝑗, 𝑗 = 1, . . . , 𝑟, and their derivatives.

Remark 6. From the structure of the matrices 𝑃 and 𝑄, it
follows (see (27) and representation (47)) that the functions𝜑𝑘𝑖
𝑘𝑖
(𝜏), . . . , 𝜑1𝑘𝑖(𝜏) and their derivatives, as well as 𝑟𝑘𝑖−2(𝜏), . . . ,𝑟0(𝜏), 𝜀𝑘𝑖−1(𝜏), . . . , 𝜀0(𝜏), are bounded. Other elements of the

columns 𝜑𝑘𝑗 , 𝑗 = 1, . . . , 𝑟, obey the estimation 𝑂(𝑒(𝑛−1)𝛼𝜏),𝜏 → ∞.

Let

𝑑𝑖 = 𝑘𝑖∑
𝑗=1

(𝜀𝑘𝑖−𝑗 (𝜏) − 𝛾𝑘𝑖−𝑗) 𝜓(𝑘𝑖−𝑗), 𝑖 = 1, . . . , 𝑟, (52)

where 𝛾𝑘𝑖−𝑗, 𝑗 = 1, . . . , 𝑘𝑖, are chosen to make the roots 𝜆1𝑘𝑖 ,. . . , 𝜆𝑘𝑖
𝑘𝑖
of the equation

𝜆𝑘𝑖 + 𝛾𝑘𝑖−1𝜆𝑘𝑖−1 + ⋅ ⋅ ⋅ + 𝛾0 = 0, 𝑖 = 1, . . . , 𝑟, (53)

satisfy the conditions𝜆𝑖𝑘𝑖 ̸= 𝜆𝑗𝑘𝑖
if 𝑖 ̸= 𝑗, 𝜆𝑖𝑘𝑖 < − (2𝑛 + 1) 𝛼 − 1 for 𝑗 = 1, . . . 𝑘𝑖, 𝑖 = 1, . . . 𝑟. (54)
Due to (50) and (54) and Remark 6, the control 𝑑𝑖 =𝛿𝑘𝑖𝑇−1𝑘𝑖 𝑦𝑘𝑖 , 𝑖 = 1, . . . , 𝑟, provides the exponential decrease of

system (44) solutions. Switching back to the original variables
in (52) and using (43), we have𝑑𝑖 = 𝛿𝑘𝑖𝑇−1𝑘𝑖 𝑆2−1𝑘𝑖 𝑐(4𝑛−1), 𝑖 = 1, . . . , 𝑟, (55)

where 𝛿𝑘𝑖 = (𝜀𝑘𝑖−1(𝜏) − 𝛾𝑘𝑖−1, . . . , 𝜀0(𝜏) − 𝛾0); 𝑇𝑘𝑖 is the
inequality (50) matrix, which means that 𝑦𝑘𝑖 = 𝑇𝑘𝑖𝜓, 𝜓 =(𝜓(𝑘𝑖−1), . . . , 𝜓)𝑇; 𝑆2−1𝑘𝑖 is the matrix which consists of the
corresponding 𝑘𝑖 rows of 𝑆−12 . The desired control can be
written in the form of (36), where𝑀(𝜏) = 𝛿𝑘𝑇−1𝑘 𝑆2−1𝑘≡ (𝛿𝑘1𝑇−1𝑘1 𝑆2−1𝑘1 , . . . , 𝛿𝑘𝑟𝑇−1𝑘𝑟 𝑆2−1𝑘𝑟 )𝑇 . (56)

Denote the fundamentalmatrix of system (51) closedwith
control (52) via Ψ(𝜏) (Ψ(0) = 𝐼, an identity matrix). It is
obvious that the elements of Ψ(𝜏) are exponential functions
of negative argument or their derivatives.

Consider system (35) with control (55):

𝑑𝑐(4𝑛−1)𝑑𝜏 = 𝐷 (𝜏) 𝑐(4𝑛−1),
𝐷 (𝜏) = 𝑃 (𝜏) + 𝑄 (𝜏)𝑀 (𝜏) . (57)

Introduce a block-diagonal matrix 𝑇(𝜏). Its diagonal blocks
are matrices 𝑇𝑘𝑖 , 𝑖 = 1, . . . , 𝑟. Then, corresponding to (43)
and (50), the fundamental matrix Φ(𝜏), Φ−1(0) = 𝐼, of
system (57) has the form

Φ (𝜏) = 𝑆2 (𝜏) 𝑇 (𝜏)Ψ (𝜏) 𝑇−1 (0) 𝑆−12 (0) . (58)

The estimation‖Φ (𝜏)‖ ≤ 𝐾𝑒−𝛼𝜏𝑒−𝜆𝜏, 𝜆 > 0, 𝐾 > 0, (59)

follows from (58), the structure of matrices 𝑆2(𝜏) and Ψ(𝜏),
and Remark 6.

Let 𝜀 = 𝜀2. Then, the correctness of the lemma becomes
clear from (59).

Besides, on base of (42), (55), and (58) and Remark 6, we
have󵄩󵄩󵄩󵄩󵄩Φ (𝜏)Φ−1 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐾1𝑒−𝜆(𝜏−𝑡)𝑒(𝑛−1)𝛼𝑡,𝑡 ≤ 𝜏, 𝜏 ∈ [0,∞) , 𝐾 > 0;‖𝑀 (𝜏)‖ = 𝑂 (𝑒𝑛𝛼𝜏) , 𝜏 󳨀→ ∞. (60)

5. Main Theorem Proof

System (26) with control (55) has the form

𝑑𝑐(4𝑛−1)𝑑𝜏 = 𝐷 (𝜏) 𝑐(4𝑛−1)
+ 𝑅1 (𝑐(4𝑛−1),𝑀 (𝜏) 𝑐(4𝑛−1), 𝑥, 𝜏)+ 𝑅2 (𝑐(4𝑛−1),𝑀 (𝜏) 𝑐(4𝑛−1), 𝑥, 𝜏)+ 𝑅3 (𝑐(4𝑛−1),𝑀 (𝜏) 𝑐(4𝑛−1), 𝜏)+ 𝑅4 (𝑥, 𝑐(4𝑛−1),𝑀 (𝜏) 𝑐(4𝑛−1), 𝜏) .

(61)
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Change of the variables

𝑐(4𝑛−1) = 𝑧𝑒−3𝑛𝛼𝜏,
𝑐(4𝑛−1) (0) = 𝑧 (0) (62)

leads to the following representation:

𝑑𝑧𝑑𝜏 = 𝐶 (𝜏) 𝑧+ 𝑒3𝑛𝛼𝜏𝑅1 (𝑒−3𝑛𝛼𝜏𝑧,𝑀 (𝜏) 𝑒−3𝑛𝛼𝜏𝑧, 𝑥, 𝜏)+ 𝑒3𝑛𝛼𝜏𝑅2 (𝑒−3𝑛𝛼𝜏𝑧,𝑀 (𝜏) 𝑒−3𝑛𝛼𝜏𝑧, 𝑥, 𝜏)+ 𝑒3𝑛𝛼𝜏𝑅3 (𝑒−3𝑛𝛼𝜏𝑧,𝑀 (𝜏) 𝑒−3𝑛𝛼𝜏𝑧, 𝜏)+ 𝑒3𝑛𝛼𝜏𝑅4 (𝑥, 𝑒−3𝑛𝛼𝜏𝑧,𝑀 (𝜏) 𝑒−3𝑛𝛼𝜏𝑧, 𝜏) ,𝐶 (𝜏) = 𝐷 (𝜏) + 3𝑛𝛼𝐸.

(63)

Let us show that all solutions of (63) with initial values
(62) that start in a sufficiently small neighborhood of zero
decrease exponentially. Let Φ1(𝜏), Φ−11 (0) = 𝐼, be the
fundamental matrix of the system 𝑑𝑧/𝑑𝜏 = 𝐶(𝜏)𝑧. Then, on
the basis of (59), (60), and (62), we have

󵄩󵄩󵄩󵄩Φ1 (𝜏)󵄩󵄩󵄩󵄩 ≤ 𝐾𝑒−𝛽𝜏,󵄩󵄩󵄩󵄩󵄩Φ1 (𝜏)Φ−11 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐾1𝑒−𝛽(𝜏−𝑡)𝑒(𝑛−1)𝛼𝑡,𝛽 = 𝜆 − 3𝑛𝛼.
(64)

Let us choose 𝛼 to provide
𝛽 > 0. (65)

The solution of (63) with initial values (28) can be
presented as

𝑧 (𝜏) = Φ1 (𝜏)Φ−11 (𝜏1) 𝑧 (𝜏1)
+ ∫𝜏
𝜏1

Φ1 (𝜏)Φ−11 (𝑡) 𝑒3𝑛𝛼𝑡
× [𝑅1 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑥, 𝑡)+ 𝑅2 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑥, 𝑡)+ 𝑅3 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑡)+ 𝑅4 (𝑥, 𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑡)] 𝑑𝑡,

for 𝜏 ∈ [𝜏1,∞) ,

(66)

𝑧 (𝜏) = Φ1 (𝜏) 𝑐(4𝑛−1) (0) + ∫𝜏
0
Φ1 (𝜏)Φ−11 (𝑡) 𝑒3𝑛𝛼𝑡

× [𝑅1 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑥, 𝑡)+ 𝑅2 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑥, 𝑡)+ 𝑅3 (𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑡)+ 𝑅4 (𝑥, 𝑒−3𝑛𝛼𝑡𝑧,𝑀 (𝑡) 𝑒−3𝑛𝛼𝑡𝑧, 𝑡)] 𝑑𝑡,
for 𝜏 ∈ [0, 𝜏1) .

(67)

Now, from (66) and (67), using (30), (31), (32), (36), (62),
and (64) after changing 𝑐 to 𝑧, the following estimations in
domain (6) and (18) are true:

‖𝑧 (𝜏)‖
≤ 𝐾𝑒−𝛽𝜏 󵄩󵄩󵄩󵄩󵄩Φ−11 (𝜏1) 𝑧 (𝜏1)󵄩󵄩󵄩󵄩󵄩
+ ∫𝜏
𝜏1

𝑒−𝛽(𝜏−𝑡)𝐾1 (𝐿𝑒−𝛼𝑡 ‖𝑧 (𝑡)‖ + 𝐿4 ‖𝑥‖ 𝑒−𝛼𝑡) 𝑑𝑡,
for 𝜏 ∈ [𝜏1,∞) ;‖𝑧 (𝜏)‖

≤ 𝐾𝑒−𝛽𝜏 󵄩󵄩󵄩󵄩󵄩𝑐(4𝑛−1) (0)󵄩󵄩󵄩󵄩󵄩
+ ∫𝜏
0
𝑒−𝛽(𝜏−𝑡)𝐾1 (𝐿𝑒−𝛼𝑡 ‖𝑧 (𝑡)‖ + 𝐿4 ‖𝑥‖ 𝑒−𝛼𝑡) 𝑑𝑡,

for 𝜏 ∈ [0, 𝜏1) , 𝐿 > 0.

(68)

The constant 𝐿 depends on (6) and (18).
We apply the well-known result from [39] to inequalities

(68) and obtain

‖𝑧 (𝜏)‖ ≤ 𝐾𝑒−𝜇𝜏 󵄩󵄩󵄩󵄩󵄩Φ−1 (𝜏1) 𝑧 (𝜏1)󵄩󵄩󵄩󵄩󵄩
+ 𝐾1 ∫𝜏

𝜏1

𝑒−𝜇(𝜏−𝑡)𝐿4 ‖𝑥‖ 𝑒−𝛼𝑡𝑑𝑡,
for 𝜏 ∈ [𝜏1,∞) , 𝜇 = 𝛽 − 𝐾1𝐿𝑒−𝛼𝜏1 ;

‖𝑧 (𝜏)‖ ≤ 𝐾𝑒−𝜇1𝜏 󵄩󵄩󵄩󵄩󵄩𝑐(4𝑛−1) (0)󵄩󵄩󵄩󵄩󵄩
+ 𝐾1 ∫𝜏

0
𝑒−𝜇1(𝜏−𝑡)𝐿4 ‖𝑥‖ 𝑒−𝛼𝑡𝑑𝑡,

for 𝜏 ∈ [0, 𝜏1] , 𝜇1 = 𝛽 − 𝐾1𝐿.

(69)

Using (65), we fix 𝜏1 > 0 so that the inequality 𝜇 > 0 is
satisfied.
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Now, let us bound the choice of 𝛼 > 0 with the condition𝛼 < 𝜇. Then, after the integration in the right-hand sides of
(69), we have‖𝑧 (𝜏)‖ ≤ 𝐾𝑒−𝜇𝜏 󵄩󵄩󵄩󵄩󵄩Φ−11 (𝜏1)󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑧 (𝜏1)󵄩󵄩󵄩󵄩 + 𝐾2𝑒−𝛼𝜏𝐿4 ‖𝑥‖ ,

for 𝜏 ∈ [𝜏1,∞) ,‖𝑧 (𝜏)‖ ≤ 𝐾3 󵄩󵄩󵄩󵄩󵄩𝑐(4𝑛−1) (0)󵄩󵄩󵄩󵄩󵄩 + 𝐾4𝐿4 ‖𝑥‖ ,
for 𝜏 ∈ [0, 𝜏1] .

(70)

Note that all𝐾𝑖 > 0.
On the basis of (28) and (32), two last estimations can be

written as a single inequality in the domain ‖𝑥‖ < 𝜀:‖𝑧 (𝜏)‖ ≤ 𝐾5𝑒−𝛼𝜏 ‖𝑥‖ , 𝜏 ∈ [0,∞) , 𝐾5 > 0. (71)

The constant𝐾5 depends on domain (6) and (18).
With the use of (36), (60), (62), and (71), we estimate‖𝑑(𝜏)‖:‖𝑑 (𝜏)‖ ≤ ‖𝑀 (𝜏)‖ 𝑒−3𝑛𝛼𝜏𝐾5𝑒−𝛼𝜏 ‖𝑥‖≤ 𝐾6𝑒−(2𝑛−1)𝛼𝜏 ‖𝑥‖ , 𝐾6 > 0, for 𝜏 ∈ [0,∞) .

(72)

Now,we can set the value 𝜀 from the theorem formulation,
to be min{𝜀, 𝐶1/𝐾5, 𝑁/𝐾6}. This shows that the solution of
system (63) with initial values (62) and (28) does not leave
the area ‖𝑧‖ < 𝐶1 for ‖𝑥‖ < 𝜀 and decreases exponentially.
Besides, by (72), the corresponding function 𝑑(𝜏) obeys
restriction (6). Moreover, if we substitute the solution to (62)
and (36) and return to the variables 𝑐(𝜏) according to (19) and
(22)–(25), we get the solution of (13) and (14).

Then, we write everything in the original variables with
(15) and (12) and finally (8). Now, according to Remark 3,
passing to the limit as 𝑡 → 1 gives the solution of the original
problem (1) and (7). This proves the theorem.

The algorithm of solving problem (1) and (7) consists of
the following steps:

(1) Construction of the auxiliary system (26); performed
with analytical methods.

(2) Stabilization of system (35); the synthesizing control
(55) is found; performed with analytical methods.

(3) Solution of the IVP (26) and (28) with control (55);
its solution is substituted into (55) and thus the
functions 𝑐(4𝑛−1)(𝜏) and 𝑑(𝜏) are found; performed
with numerical integration methods.

(4) Return to the original variables according to
(22)–(25), (19), (15), (12), and (8); performed with
analytical methods.

Remark 7. Consider the system𝑥̇ = 𝑓 (𝑥, 𝑢) + 𝐹, (73)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇, 𝑥 ∈ 𝑅𝑛; 𝑢 = (𝑢1, . . . , 𝑢𝑟)𝑇, 𝑢 ∈ 𝑅𝑟;𝑡 ∈ [0, 1], 𝑟 ≤ 𝑛, 𝐹 = (𝐹1, . . . , 𝐹𝑛)𝑇, 𝐹 ∈ 𝑅𝑛. 𝐹 is a constant
perturbation. From the theorem follows Corollary 8.

Corollary 8. If conditions (2)–(4) are satisfied for system (73),
then there exists 𝜀 > 0 such that, for any 𝑥 ∈ 𝑅𝑛 and 𝐹 ∈ 𝑅𝑛
if ‖𝑥‖ < 𝜀 and ‖𝐹‖ < 𝜀, a solution of (73) and (7) exists an can
be found after stabilizing a linear nonstationary system with
exponential coefficients and solving the initial value problem
for an auxiliary system of ODEs.

6. Example of the Algorithm Application

To demonstrate the effectiveness of the proposed method,
we consider a problem of transferring a material point (a
satellite) moving in a central gravitational field to a desired
circular orbit with jet power.

According to [3], the systems in deviations from the
prescribed circular motion and condition (7) take the form𝑥̇1 = 𝑥2,

𝑥̇2 = − ](𝑟0 + 𝑥1)2 + (𝜒0 + 𝑥3)
2(𝑟0 + 𝑥1)3 + 𝑎𝑟𝑢,𝑥̇3 = (𝑥1 + 𝑟0) 𝑎𝜓𝑢,

(74)

𝑥𝑖 (0) = 0,𝑥𝑖 (1) = 𝑥𝑖, 𝑖 = 1, 2, 3,|𝑢| < 𝑁.
(75)

Phase coordinates 𝑥1 = 𝑟 − 𝑟0, 𝑥2 = ̇𝑟, and 𝑥3 = 𝜒 − 𝜒0
show the deviation from the original circular orbit with radius𝑟0; ̇𝑟 is the radial velocity; 𝜒 is the generalized momentum
and 𝜒0 = (]𝑟0)1/2; 𝑎𝑟 and 𝑎𝜓 are the relative velocity
vector projections onto the radial and tangential directions,
respectively (they are constant);𝑚 is the mass, 𝑚̇ is its change
rate and the control 𝑢 = 𝑚̇/𝑚; ] = ]0𝑀, where ]0 is the
universal gravitational constant;𝑀 is the mass of Earth. The
vector of phase coordinates 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇. The control 𝑢 is
scalar.

System (13) and conditions (14) for the problem have the
form 𝑑𝑐1𝑑𝜏 = 𝑒−𝛼𝜏𝑐2,𝑑𝑐2𝑑𝜏 = 𝑒−𝛼𝜏𝑔 (𝑐1, 𝑐3) + 𝑒−𝛼𝜏𝑎𝑟𝑑,𝑑𝑐3𝑑𝜏 = 𝑒−𝛼𝜏 (𝑐1 + 𝑥1 + 𝑟0) 𝑎𝜓𝑑,

(76)

with

𝑔 (𝑐1, 𝑐3) = − ](𝑟0 + 𝑐1 + 𝑥1)2 + (𝜒0 + 𝑐3 + 𝑥3)
2(𝑟0 + 𝑐1 + 𝑥1)3 , (77)

𝑐𝑖 (0) = −𝑥𝑖,𝑐𝑖 (𝜏) 󳨀→ 0
as 𝜏 󳨀→ ∞, 𝑖 = 1, 2, 3. (78)
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In the following, we assume 𝑥 = (𝑥1, 0, 0)𝑇. It is necessary to
make seven transforms of type (25) to solve problem (76) and
(78):

𝑐2 = 𝑧2 − 𝑒−𝛼𝜏𝑔 (𝑥1) ,
𝑐1 = 𝑧1 + 12𝑒−2𝛼𝜏𝑔 (𝑥1) ,
𝑧2 = 𝑤2 − 16𝑒−3𝛼𝜏 𝜕𝑔𝜕𝑐1 (𝑥1) 𝑔 (𝑥1) ,
𝑧1 = 𝑤1 + 124𝑒−4𝛼𝜏 𝜕𝑔𝜕𝑐1 (𝑥1) 𝑔 (𝑥1) ,𝑤2 = 𝜐2 − 𝑒−5𝛼𝜏𝑔,𝑤1 = 𝜐1 + 𝑒−6𝛼𝜏𝑔,𝜐2 = 𝑢2 − 𝑒−7𝛼𝜏𝑔,
𝑔 = 1120 ( 𝜕𝑔𝜕𝑐1 (𝑥1))2 𝑔 (𝑥1) − 140 𝜕2𝑔𝜕𝑐21 (𝑥1) 𝑔2 (𝑥1) ,
𝑔 = 1720 ( 𝜕𝑔𝜕𝑐1 (𝑥1))2 𝑔 (𝑥1) + 1240 𝜕2𝑔𝜕𝑐21 (𝑥1) 𝑔2 (𝑥1) ,
𝑔 = 17 { 1720 ( 𝜕𝑔𝜕𝑐1 (𝑥1))3 𝑔 (𝑥1)
+ 148 𝜕3𝑔𝜕𝑐31 (𝑥1) 𝑔3 (𝑥1)
+ 140 𝜕𝑔𝜕𝑐1 (𝑥1) 𝜕2𝑔𝜕𝑐21 (𝑥) 𝑔2 (𝑥1)} .

(79)

Let 𝑎𝑟 = 1. The matrices 𝑃 and 𝑄 and the system analogous
to (35) look like

𝑑𝑐𝑑𝜏 = 𝑃𝑐 + 𝑄𝑑, 𝑐 = (𝜐1, 𝑢2, 𝑐3)𝑇 ,
𝑃 = 𝛼𝑒−𝛼𝜏 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

0 1 0𝑎21 0 𝑎230 0 0
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ,

𝑄 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

0𝛼𝑒−𝛼𝜏𝛼𝑒−𝛼𝜏𝑏 + 𝛼2 𝑒−3𝛼𝜏𝑎𝜓
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ,𝑏 = (𝑟0 + 𝑥1) 𝑎𝜓,

𝑎21 = 𝜕𝑔𝜕𝑐1 (𝑥1) ,
𝑎23 = 𝜕𝑔𝜕𝑐3 (𝑥1) .

(80)

To stabilize system (80), we construct the matrix 𝑆 ={𝐿1, 𝐿2, 𝐿3}, with 𝐿1 = 𝑄, 𝐿2 = 𝑃𝐿1 − (𝑑/𝑑𝜏)𝐿1, 𝐿3 =𝑃𝐿2 − (𝑑/𝑑𝜏)𝐿2; that is,
𝐿1 = ( 0𝛼𝑒−𝛼𝜏𝛼𝑒−𝛼𝜏 (𝑏 + 𝑒−2𝛼𝜏ℎ))

𝐿2 = ( 𝛼2𝑒−2𝛼𝜏𝛼2𝑒−𝛼𝜏 (𝑒−𝛼𝜏𝑎23𝑏 + 𝑒−3𝛼𝜏𝑎23ℎ + 1)𝛼2𝑒−𝛼𝜏 (𝑏 + 3𝑒−2𝛼𝜏ℎ) )
𝐿3
= ( 𝛼3𝑒−2𝛼𝜏 (𝑒−𝛼𝜏𝑎23𝑏 + 𝑒−3𝛼𝜏𝑎23ℎ + 3)𝛼3𝑒−𝛼𝜏 (𝑒−2𝛼𝜏𝑎21 + 3𝑒−𝛼𝜏𝑎23𝑏 + 7𝑒−3𝛼𝜏ℎ + 1)𝛼3𝑒−𝛼𝜏 (𝑏 + 9𝑒−2𝛼𝜏ℎ) )

(81)

with ℎ = 𝑎𝜓/2. After introducing 𝑐 = 𝑆𝑦, 𝑦 = (𝑦1, 𝑦2, 𝑦3)𝑇,
we get 𝑑𝑦1𝑑𝜏 = 𝜑1 (𝜏) 𝑦3 + 𝑑,𝑑𝑦2𝑑𝜏 = 𝑦1 + 𝜑2 (𝜏) 𝑦3,𝑑𝑦3𝑑𝜏 = 𝑦2 + 𝜑3 (𝜏) 𝑦3.

(82)

The change 𝑦3 = 𝜓(𝜏) reduces (82) to a linear equation of
the third order:

𝜓(3) − 𝜑3 (𝜏) 𝜓(2) − (2𝑑𝜑3𝑑𝜏 + 𝜑2 (𝜏))𝜓(1)
− (𝑑2𝜑3𝑑𝜏2 + 𝑑𝜑3𝑑𝜏 + 𝜑1 (𝜏))𝜓 = 𝑑.

(83)

The variables 𝑦1, 𝑦2, and 𝑦3 are connected to 𝜓(2), 𝜓(1), and 𝜓
with 𝑦 = 𝑇Ψ, Ψ = (𝜓(2), 𝜓(1), 𝜓)𝑇 ,

𝑇 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1 −𝜑3 −(𝑑𝜑3𝑑𝜏 + 𝜑3)0 1 −𝜑30 0 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .
(84)

Let 𝑑 = 𝜓(3) − (6 + 𝜑3 (𝜏)) 𝜓(2)
− (11 + 2𝑑𝜑3𝑑𝜏 + 𝜑2 (𝜏))𝜓(1)
− (6 + 𝑑2𝜑3𝑑𝜏2 + 𝑑𝜑3𝑑𝜏 + 𝜑1 (𝜏))𝜓.

(85)
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After substitution of 𝑑(𝜏) into (83), we get the equation with−1, −2, and −3 as roots of the characteristic polynomial. The
return to the original variables gives

𝑑 = Γ (𝜏) 𝑇−1 (𝜏) 𝑆−1 (𝜏) 𝑐,
Γ = (− (6 + 𝜑3) , − (11 + 2𝑑𝜑3𝑑𝜏 + 𝜑2) ,
− (6 + 𝑑2𝜑3𝑑𝜏2 + 𝑑𝜑2𝑑𝜏 + 𝜑1)) .

(86)

It is obvious that (86) provides an exponential decrease
of solutions of (80). At the final stage, we solve the IVP
for the system obtained from (76) after changing the phase
coordinates according to (79) with control (86). Then, we
return to the original variables. The initial values for the
Cauchy problem are

𝜐1 (0) = −𝑥1 − 12𝑔 (𝑥1) − 124 𝜕𝑔𝜕𝑐1 (𝑥1) 𝑔 (𝑥1) − 𝑔,
𝑢2 (0) = 𝑔 (𝑥1) + 16 𝜕𝑔𝜕𝑐1 (𝑥1) 𝑔 (𝑥1) + 𝑔 + 𝑔,𝑐3 (0) = 0.

(87)

7. Numerical Simulation

For numerical simulation, we choose another problem—con-
trol of a single-link manipulator. According to [40], the sys-
tem of equations describing the motion of a manipulator
under perturbations has the form

𝑥̇1 = −𝑥2,𝑥̇2 = −𝑎1𝑥2 − 𝑎2 sin 𝑥1 + 𝑢 + 𝜇𝑡, (88)

where 𝑥1 is the manipulator deviation angle in the vertical
axis, 𝑥2 is the deflection angle change rate, 𝑎1 = 𝛼𝐿−2𝑚−11 ,𝑚1 = 𝑚0 + 𝑀/3, 𝑎2 = 𝑔𝐿−1(𝑚0 + 𝑀/2)𝑚−11 , 𝑔 is the gravity
factor,𝛼 is the viscous friction coefficient,𝑚0 is the loadmass,𝐿 is the manipulator length, and𝑀 is its mass. The vector of
phase coordinates 𝑥 = (𝑥1, 𝑥2)𝑇. The control 𝑢 is scalar. We
consider the boundary conditions

𝑥 (0) = 𝑥,𝑥 (1) = 0. (89)

System (13) and conditions (14) for problem (88) and (89)
have the form𝑑𝑐1𝑑𝜏 = 𝛼𝑒−𝛼𝜏𝑐2,𝑑𝑐2𝑑𝜏 = −𝛼𝑒−𝛼𝜏𝑎2 sin 𝑐1 − 𝛼𝑒−𝛼𝜏𝑎1𝑐2 + 𝛼𝑒−𝛼𝜏𝑑+ 𝜇𝛼𝑒−𝛼𝜏 (1 − 𝑒−𝛼𝜏) ,

(90)

𝑐1 (0) = 𝑥1,𝑐2 (0) = 0,𝑐1 (𝜏) 󳨀→ 0,𝑐2 (𝜏) 󳨀→ 0
as 𝜏 󳨀→ ∞.

(91)

To solve (90) and (91), we perform one transformation of
function 𝑐2(𝜏): 𝑐2 (𝜏) = 𝑐(1)2 (𝜏) − 𝜇𝑒−𝛼𝜏, (92)

which leads to new functions 𝑐(1)2 (𝜏). The system takes the
form 𝑑𝑐1𝑑𝜏 = 𝛼𝑒−𝛼𝜏𝑐(1)2 + 𝛼𝜇𝑒−2𝛼𝜏,𝑑𝑐(1)2𝑑𝜏 = −𝛼𝑒−𝛼𝜏𝑎2 sin 𝑐1 − 𝛼𝑒−𝛼𝜏𝑎1𝑐(1)2 − 𝛼𝑒−2𝛼𝜏𝑎1𝜇+ 𝛼𝑒−𝛼𝜏𝑑 − 𝛼𝜇𝑒−2𝛼𝜏.

(93)

The linear part of (93) is𝑑𝑐𝑑𝜏 = 𝛼𝑒−𝛼𝜏𝑃𝑐 + 𝛼𝑒−𝛼𝜏𝑄𝑑, 𝑐 = (𝑐1, 𝑐(1)2 )𝑇 ,
𝑃 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 0 1−𝑎2 −𝑎1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ,
𝑄 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩01

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .
(94)

After solving the stabilization problem (91), we obtain the
control law𝑑 (𝜏) = 𝑀 (𝜏) 𝑐, 𝑐 = (𝑐1, 𝑐(1)2 )𝑇 ,
𝑀 (𝜏) = (−6𝛼𝑒2𝛼𝜏 + 4𝛼2𝑒2𝛼𝜏 + 2𝑒2𝛼𝜏 − 𝑎2𝛼2𝛼2(−3 − 3𝛼 + 𝛼𝑒−𝛼𝜏𝑎1) 𝑒𝛼𝜏𝛼 )

𝑇

. (95)

Next, we solve the Cauchy problem for (93) under (95)
with initial data 𝑐1(0) = 𝑥1, 𝑐(1)2 (0) = 𝜇. Finally, we return to
original variables 𝑥1, 𝑥2, 𝑢, and 𝑡. For numerical simulations,
we choose 𝑥1 = 1 rad, 𝛼 = 0.1, 𝛼 = 0.25, 𝐿 = 10 meters,𝑀 = 20 kg, 𝑚0 = 1 kg, and 𝜇 = 0.1. Figures 1 and 2 show
the control 𝑢(𝑡) and the corresponding transient plots of the
phase coordinates 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡) with respect to the
original independent variable 𝑡.
8. Numerical Simulation Discussion

Numerical simulation consists of the following stages:

(1) The auxiliary system (93) construction, performed
with analytical methods and realized with computer
algebra
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Figure 1: Time change of the phase variables.
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Figure 2: Time change of the control 𝑢(𝑡).
(2) System (93) stabilization and control law (95) deter-

mination, performed with analytical methods and
realized with computer algebra

(3) Change of variables from 𝑐 to 𝑐, performed with
computer algebra

(4) Solution of the IVP (90) and (91) with control (95) in𝑐 variables, performed with some numerical integra-
tion method

(5) Return to the original variables according to (8), (12),
and (15) along with the IVP solution.

It follows from the simulation results that
(a) control at the initial stage demands the greatest energy

input which is determined by the initial stage (𝑥1, 𝑥2);
(b) multiple initial data simulations show that, for the

given transfer time of 1 second, the reachable area of
initial states is given by |𝑥1| ≤ 𝜋/2 and |𝑥2| ≤ 1;

(c) the numerical simulation can be performed with an
average personal computer.

9. Conclusions

The analysis of the theorem proof shows that the most
difficult and time-consuming part of the algorithm imple-
mentation can be proceeded with analytical methods of
computer algebra packages. The results of the numerical
simulation of interorbital flight prove that the method can
be used for construction and simulation of various technical
objects control systems.
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