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In order to better solve discrete 0-1 knapsack problems, a novel global-best harmony search algorithm with binary coding, called
DGHS, is proposed. First, an initialization based on a greedy mechanism is employed to improve the initial solution quality in
DGHS. Next, we present a novel improvisation process based on intuitive cognition of improvising a new harmony, in which the
best harmony of harmony memory (HM) is used to guide the searching direction of evolution during the process of memory
consideration, or else a harmony is randomly chosen from HM and then a discrete genetic mutation is done with some probability
during the phase of pitch adjustment. Third, a two-phase repair operator is employed to repair an infeasible harmony vector and
to further improve a feasible solution. Last, a new selection scheme is applied to decide whether or not a new randomly generated
harmony is included into the HM. The proposed DGHS is evaluated on twenty knapsack problems with different scales and
compared with other three metaheuristics from the literature. The experimental results indicate that DGHS is efficient, effective,
and robust for solving difficult 0-1 knapsack problems.

1. Introduction

Since the last four decades, the zero-one knapsack problem,
inverse {0, 1}-knapsack problem, and their variants have
attracted much attention [1–24]. This is the reason why they
play an important role in computing theory and in a number
of real-world applications, such as project selection, resource
allocation, production planning, and others [24, 25].

In this paper, we focus on studying the classical 0-1
knapsack problem, where a set of 𝑛 items is given and each
item 𝑗 has a profit 𝑝𝑗 and a weight 𝑤𝑗. And the problem is to
choose a subset of the items such that the profit sum of the
chosen items is maximized without exceeding the capacity
𝐶. Mathematically, the classical zero-one knapsack problem
can bemodelled as the following integer linear programming
model:

max 𝑓 (�⃗�) =

𝑁

∑
𝑗=1

(𝑝𝑗𝑥𝑗)

s.t.
𝑁

∑
𝑗=1

(𝑤𝑗𝑥𝑗) ⩽ 𝐶

𝑥𝑗 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑁,

(1)

where 𝑥𝑗 takes the value one if and only if the item 𝑗 is
loaded, coefficients 𝑝𝑗 and 𝑤𝑗 represent a profit and weight
of item 𝑗, respectively, 𝐶 is a constant denoting the capacity
of the corresponding knapsack, and𝑁 is the number of items.
Without loss of generality, it is assumed that all coefficients𝑝𝑗,
𝑤𝑗, and 𝐶 are positive. Meantime, we suppose that 𝑤𝑗 ⩽ 𝐶,
∀𝑗 ∈ [1 ⋅ ⋅ ⋅ 𝑁] and that ∑𝑁𝑗=1 𝑤𝑗 > 𝐶.

As far as 0-1 knapsack problem is concerned, there are
essentially two types of algorithms: exact algorithms and
heuristic algorithms. The exact approaches for knapsack
problemsmainly include dynamic programming, branch and
bound, and its enhanced variant: branch and cut [4–7, 9].

Unfortunately, the 0-1 knapsack problem belongs to the
class of NP-hard problems [12]. That is to say, the number
of alternate optimal solutions for the problem grows expo-
nentially with the problem sizes. Hence,NP-hard problems
are very difficult to solve and there is no polynomial time
algorithm for solving them.Thus, more andmore researchers
start to investigate the 0-1 knapsack problems by means of
heuristics, metaheuristics, and hybridizing algorithms based
on exact algorithms and heuristic algorithms [11–15, 20, 22,
24]. For example, He et al. [11] proposed a greedy genetic

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 573731, 12 pages
http://dx.doi.org/10.1155/2014/573731

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192458332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Discrete Dynamics in Nature and Society

(1) for 𝑗 = 1 to𝐷 do
(2) //memory consideration
(3) if rand(0, 1) ⩽ HMCR then
(4) Choose a harmony 𝑥𝑖 from HM randomly, 𝑖 ∈ [1..HMS]
(5) 𝑥


𝑗 = 𝑥𝑖,𝑗 // a new harmony 𝑥 = (𝑥1, . . . , 𝑥


𝐷)

// pitch adjustment
(6) if rand(0, 1) ⩽ PAR then
(7) 𝑥


𝑗 = 𝑥

𝑗 ± rand (0, 1) ⋅ 𝑏𝑤 // 𝑏𝑤 is a constant to be predetermined

(8) end if
(9) else
(10) 𝑥


𝑗 = 𝐿𝑗 + rand(0, 1) ⋅ (𝑈𝑗 − 𝐿𝑗) // random selection

(11) end if
(12) end for

Algorithm 1: The procedure of improvising a new harmony.

algorithm (GGA) for 0-1 knapsack problems. In GGA, a
novel greedy operator and a repair operator are introduced
to speed up the performance of standard genetic algorithm.
Bansal and Deep [12] proposed a modified binary particle
swarm optimization (MBPSO) for solving 0-1 knapsack
problems and multidimensional knapsack problems. When
compared with basic binary particle swarm optimization
(BPSO), MBPSO has achieved better performance. Inspired
by the nature of chemical reaction, Truong et al. [13] pro-
posed a chemical reaction optimization with greedy strategy
algorithm (CROG) to solve the zero-one knapsack problems.
However, it has seven parameters to be predefined and
the parameter settings are not easy. In addition, a novel
global harmony search algorithm, named NGHS, was first
proposed by Zou et al. [24] to solve knapsack problems. In
NGHS, an adaptive step scheme for 𝑗th decision variable, a
genetic mutation operation, and a discrete technique for real
coded NGHS are introduced. Later, Layeb [14] presented a
hybrid algorithm based on harmony search (HS) algorithm
and quantum computing, which is called quantum inspired
harmony search algorithm (QIHSA) for solving the knapsack
problems.Meanwhile,Wang et al. [15] proposed an improved
adaptive binary harmony search (ABHS) algorithm for solv-
ing binary knapsack problems. Although the recent proposed
algorithms have been improved to some extent, their con-
vergence speed, convergence precision, and robustness are
waiting to be further enhanced.

Harmony search (HS) algorithm, a novel population-
based evolutionary algorithm, was first proposed by Geem
et al. [26] in 2001. Due to its simplicity and ease of implemen-
tation, it has aroused great interest and has been successfully
applied to solve a variety of optimization problems including
many real parameter optimization problems [27–30] and
knapsack problems [15, 24, 31–35] during the last decades.

However, the binary codedharmony search algorithmhas
only begun as stated in [15]. In other words, the convergence
performance of HS and its variants is necessary to be
further enhanced. Therefore, in order to further improve
the convergence performance of HS, a novel discrete global-
best harmony search algorithm, called DGHS, is proposed
for 0-1 knapsack problems. In DGHS, an initialization based

on a greedy operation, a novel improvisation process for
generating a new harmony, and a two-phase repair operator
are integrated. Then, experimental results tested on twelve
benchmark instances with small or medium sizes and eight
randomly generated instances with high dimensions show
that DGHS is superior to bothGHS andNGHS inmost cases.

The rest of the paper is organized as follows. In Section 2,
the standard harmony search algorithm is described briefly.
An overview of the global-best harmony search (GHS)
algorithm proposed by Omran and Mahdavi [35] is given
in Section 3. Section 4 describes the proposed DGHS in
detail. In Section 5, extensive computational experiments are
presented and discussed. Finally, some conclusions are drawn
in the Section 6.

2. Harmony Search Algorithm

Harmony search (HS) algorithm was developed by Geem
et al. [26] in 2001 through mimicking the improvisation
process of music players. Like many other population based
metaheuristics, it works as an iterative process for an opti-
mization problem. And the optimization problem can be
formulated as follows:

min 𝑓 (�⃗�) , (2)

where �⃗� = (𝑥1, 𝑥2, . . . , 𝑥𝐷) ∈ R𝐷 and the feasible solution
space can be denoted by Ω = ∏

𝐷
𝑗=1[𝐿𝑗, 𝑈𝑗]. Moreover, 𝐿𝑗

and 𝑈𝑗 represent the lower bound and upper bound of the
𝑗th decision variable, respectively.

In general, its procedure consists of the following four
steps.

Step 1. Initialize the control parameters and a harmony
memory. At the step, an initial harmony memory (HM) is
filled with a population of HMS (harmony memory size)
harmonies generated randomly. In addition, the parameters
of HS, that is, harmony memory consideration rate HMCR
and pitch adjusting rate PAR, are given in advance.

Step 2. Improvise a new harmony from the current HM. And
the details of the procedure can be given in Algorithm 1.
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(1) for 𝑗 = 1 to𝐷 do
(2) // memory consideration
(3) if rand(0, 1) ⩽ HMCR then
(4) Choose a harmony 𝑥𝑖 from HM randomly, 𝑖 ∈ [1..HMS]
(5) 𝑥


𝑗 = 𝑥𝑖,𝑗

// pitch adjustment
(6) if rand(0, 1) ⩽ PAR(𝑡) then
(7) Generate a random integer number 𝑘 ∈ [1..𝐷]

// 𝑏𝑒𝑠𝑡 represents the index of the best harmony in the HM
(8) 𝑥


𝑗 = 𝑥best,𝑘

(9) end if
(10) else
(11) 𝑥


𝑗 = 𝐿𝑗 + rand(0, 1) ⋅ (𝑈𝑗 − 𝐿𝑗) // random selection

(12) end if
(13) end for

Algorithm 2: The procedure of improvising a new harmony of GHS.

Step 3. If the new generated harmony is better than the worst
one inHM, then replace theworst harmonywith the newone;
otherwise, go to the next step.

Step 4. If a stopping criterion is not satisfied, go to Step 2.

In addition, more detailed information about the original
HS can be found in [26].

3. Global-Best Harmony Search Algorithm

To further improve the convergence performance of HS and
overcome some shortcomings of HS, a new variant of HS,
called GHS, was proposed by Omran and Mahdavi [35].

First, the GHS dynamically updates parameter PAR
according to the following equation:

PAR (𝑡) = PARmin +
PARmax − PARmin

NI
𝑡, (3)

where PAR(𝑡) represents the pitch adjusting rate at generation
𝑡, PARmin and PARmax are the minimum and maximum
adjusting rate, respectively, 𝑡 is the iterative variable, and NI
is the number of improvisations.

Second, GHS modifies the pitch adjustment step of HS
in order to take advantage of the guiding information of the
best harmony in the HM. Furthermore, GHS excludes the
parameter bw at the phase.

Last, from the above mentioned explanation, it can be
concluded that GHS has the same steps as HS with the
exception that the process of improvising a new harmony is
modified as shown in Algorithm 2.

Due to the guiding information of the best harmony 𝑥best
in HM, GHS outperforms both HS and IHS [36]. What is
more, Omran and Mahdavi employed GHS to solve integer
programming problems. The GHS developed for real search
spaces can be utilized to solve integer programming problems
by rounding off the real optimal values to the nearest integers.
It should be noted that a penalty function method is also
used here tomakeGHS solve the knapsack problems. Clearly,

the solution search space for 0-1 knapsack problems should
be Ω = [0, 1]

𝑁.

4. A Novel Discrete Global-Best Harmony
Search Algorithm

The original HS is good at identifying the high performance
regions of the solution space in a reasonable time but poor at
performing local search for numerical optimization problems
[37]. Namely, there is imbalance between the exploration
and the exploitation of HS. Furthermore, HS designed for
continuous space cannot be directly used to solve discrete
combinatorial optimization problems.

In order to overcome the drawbacks of HS, a novel
discrete global-best harmony search (DGHS for short) algo-
rithm is particularly designed for binary optimization prob-
lems in this paper.

Owing to better performance of GHS, some modifica-
tions to GHS are introduced to further enhance the con-
vergence performance of GHS. Then a novel binary coded
GHS, a two-phase repair operator, and a new greedy selection
mechanism are integrated into the DGHS. And they are
described in detail as follows.

4.1. Initialization in DGHS. The initial population in DGHS
is generated randomly using a Bernoulli process. Specifically,
for each decision variable of an initial harmony vector, a
number within [0, 1] is generated randomly. If the value of
the number is less than 0.5, the corresponding variable in
DGHS takes 0; otherwise it takes 1. In this way, a set of HMS
harmonies will be generated randomly.

In addition, another harmony vector �⃗�𝑜 is generated
based on a greedy operation. The greedy operation is based
on the idea that the item with higher profit density ratio
should be packed first. And the profit density ratio 𝜇𝑗 can be
calculated by the following equation:

𝜇𝑗 =
𝑝𝑗

𝑤𝑗
. (4)
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(1) Record the best harmony in the HM, and its index is represented by 𝑏𝑒𝑠𝑡
(2) for 𝑗 = 1 to𝐷 do
(3) // memory consideration
(4) if rand(0, 1) ⩽ HMCR(𝑡) then
(5) 𝑥


𝑗 = 𝑥best,𝑗

(6) else
(7) Generate a random integer number 𝑎 ∈ [1..HMS] ∧ 𝑎 ̸= 𝑏𝑒𝑠𝑡

(8) 𝑥

𝑗 = 𝑥𝑎,𝑗

// pitch adjustment for the pitch chosen randomly
(9) if rand (0, 1) ⩽ PAR then
(10) 𝑥


𝑗 =


𝑥

𝑗 − 1


// discrete genetic mutation

(11) end if
(12) end if
(13) end for

Algorithm 3: The procedure of improvising a new harmony of DGHS.

The first way is to sort the items by 𝑢𝑗. Then we add the
items with higher value of 𝑢𝑗 until the total weight exceeds
the capacity of the knapsack. Thus, we can get a harmony
vector �⃗�𝑜. And if �⃗�𝑜 is better than the worst one of previously
initialized HM, then substitute the worst one with �⃗�𝑜.

4.2. Dynamically Updating of the Parameters. First, to our
knowledge, the control parameters HMCR and PAR play
an important role in standard HS. More specifically, the
parameters HMCR and PAR set to constants may have some
adverse effects on the performance of HS, which is the idea
behind designing the varying parameters. For HS with the
guidance of the best harmony, the parameter HMCR with
a larger value can be helpful to accelerate the convergence
speed of HS variants with the guidance of the best harmony
(individual) at the beginning of search, while the parameter
HMCR with a smaller value can help the corresponding HS
variant to get out of local minima at the end of search.
Like the parameter HMCR, a varying parameter PAR is also
considered in this paper in order to further balance the
exploration and exploitation of HS variants.

Second, two dynamically updating schemes of the param-
eters HMCR and PAR are designed in order to improve the
performance of GHS. And the two schemes can be described
as follows:

HMCR (𝑡) = HMCRmax −
HMCRmax −HMCRmin

NI
𝑡, (5a)

PAR (𝑡) = PARmax −
PARmax − PARmin

NI
𝑡, (5b)

where HMCRmax and HMCRmin represent the lower and
upper bounds of HMCR, respectively. And the other param-
eters are the same as those in (3).

Last but not least, we found that the parameter PAR with
a constant value can work better in DGHS through a lot of
experiments. It should be noticed that the parameter PAR is
set to a constant, that is, 0.75, in the later study.

4.3. A Novel Scheme of Improvising a New Harmony. At first,
musicians most likely choose a perfect state of a harmony

from their memory or harmony memory during the process
of improvising a new harmony. Next, they may select a pitch
from the current harmony memory randomly and then they
would perform a fine tune operation, that is, pitch adjust-
ment, for the chosen pitch to improve the effectiveness of
music. In addition, as far as knapsack problem is concerned,
the states of a pitch just include zero and 1; that is, any state of a
pitch is ranging in {0, 1}. So discrete genetic mutation used in
[24] is suitable for pitch adjustment. Based on the intuitional
idea and the aforementioned explanation, a novel scheme of
improvising a new harmony can be given in Algorithm 3.

4.4. Two-Phase Repair Operator. A major drawback of
penalty function is that it needs to preset a very large
constant, which is yet problem-dependent. In order to reduce
the penalty coefficient, a repair operator is introduced. For
DGHS, new generated harmony vector needs to be repaired
under two cases. One is that the harmony vector violates the
constraints. The other is that the knapsack corresponding
to the new generated harmony vector can still pack other
items without exceeding the capacity of knapsack [11, 13].
Hence, the repair operator consists of two phases. The first
phase, called DROP, is responsible for repairing a harmony
vector violating the constraint.The second phase, namedADD,
mainly takes charge of optimizing a new generated harmony
vector whose total weight is less than the capacity of knap-
sack. It is worth mentioning that the “DROP” phase should
be performed first, and then the “ADD” phase is carried out.
This is because a harmony vector changed after previously
performing “DROP” phase becomes feasible, but its total
weight may be less than the capacity 𝐶. Thus, The “ADD”
phase has to be performed on the harmony vector again to
improve the solution quality.The detailed pseudocode for the
repair operator is shown in Algorithm 4.

4.5. A New Selection Mechanism. In order to avoid being
clustered in the best harmony, we employ a new selection
mechanism, in which a new generated harmony vector �⃗�
is compared with �⃗�best first, and if �⃗� is better than �⃗�best,
replace �⃗�best with �⃗�

; otherwise, �⃗� is comparedwith the worst
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(1) Let V represent a new generated harmony vector
// Calculate the total weight of knapsack according to V

(2) 𝑡𝑜𝑡𝑊 = V ∗ 𝑤𝑇 // 𝑡𝑜𝑡𝑊 denotes the total weight
(3) if 𝑡𝑜𝑡𝑊 > 𝐶 then
(4) // The “DROP” phase
(5) for 𝑗 = 1 to𝑁 do
(6) 𝜆𝑗 =

𝑝𝑗

𝑤𝑗
V𝑗 // Compute the profit density value of items loaded

(7) end for
(8) Sort items in increasing order of 𝜆𝑗, and let �̃�𝑗 represent the result sorted,

and ind𝑗 denotes the original index of each �̃�𝑗
(9) for 𝑗 = 1 to𝑁 do
(10) if �̃�𝑗 == 0 then
(11) Continue
(12) end if
(13) Vind𝑗 = 0 // Unload the ind𝑗th item from the knapsack
(14) 𝑡𝑜𝑡𝑊 = V ∗ 𝑤𝑇

(15) if 𝑡𝑜𝑡𝑊 ⩽ 𝐶 then
(16) Break // Terminate the “DROP” phase of repair process
(17) end if
(18) end for
(19) end if
(20) 𝑡𝑜𝑡𝑊 = V ∗ 𝑤𝑇

(21) if 𝑡𝑜𝑡𝑊 < 𝐶 then
(22) // The “ADD” phase
(23) Calculate the profit density ratio 𝜇𝑗 according to (4)
(24) Sort all the items in decreasing order of 𝜇𝑗, and let 𝜇𝑗 represent the result sorted,

and ind𝑗 denotes the original index of each 𝜇𝑗
(25) for 𝑗 = 1 to𝑁 do
(26) if Vind𝑗 == 0 then
(27) Let V1 represent a temporary harmony vector, and set V1 = V
(28) Set V1ind𝑗 = 1 //Try to load the ind𝑗th item
(29) if V1 ∗ 𝑤𝑇 ≤𝐶 then
(30) Vind𝑗 = 1 // Load the ind𝑗th item into knapsack
(31) end if
(32) end if
(33) end for
(34) end if

Algorithm 4: The two-phase repair operator.

harmony �⃗�worst in HM again, and a greedy selection is applied
between {�⃗�


, �⃗�worst}. In this way, the number of harmony

around the best harmony �⃗�best would be small at the early
stage of evolution so that the diversity of harmony memory
would be kept better. As a consequence, DGHS not only
speeds up the convergence speed but also avoids being
trapped in a local optimum.

4.6. The Proposed Algorithm. According to the analysis and
modifications mentioned above, an initialization of HM
based on greedy operation, a novel scheme of improvising
a new harmony with the direction information of the best
harmony, and a repair operator with greedy strategy make up
the proposed DGHS designed for binary knapsack problems.
The pseudocode of DGHS is given in Algorithm 5.

5. Experimental Results and Analysis

5.1. Benchmark Instances and Parameter Settings. In order
to evaluate the performance of DGHS, twelve benchmark
instances chosen from [11, 13–15, 24] are employed here to
validate its performance. The detailed information of the
twelve test problems is listed in Tables 1 and 2. In addition,
eight randomly generated test instances with large scales are
also employed here to further verify the validity of DGHS
according to a rule used in [24]. Concretely, for each 𝑁 (the
dimensions or the number of items), the weight 𝑤𝑗 (𝑗 =

1, 2, . . . , 𝑁) is randomly generated in the range of [5, 20], and
the profit 𝑝𝑗(𝑗 = 1, 2, . . . , 𝑁) is randomly produced between
[50, 100], and the detailed settings of capacity of knapsack
𝐶 are given in Table 3. In short, twenty test instances are
employed to testify the performance of DGHS thoroughly.
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(1) Set the harmony memory size HMS, the number of maximum improvisations
maxFEs, and other control parameters

(2) Initialize the harmony memory HM, and perform Algorithm 4 to repair
the harmony vector of HM, then evaluate their objective function values

(3) Set FEs = 1 // FEs represents the iterative variable
(4) while FEs ⩽ maxFEs do
(5) Record the position of the best harmony in the HM, and its index

is represented by 𝑏𝑒𝑠𝑡, likewise, 𝑤𝑜𝑟𝑠𝑡 denotes the index of the worst
harmony in the current HM

(6) Calculate the parameter HMCR(FEs) according to (5a)
(7) Perform Algorithm 3 to produce a new harmony vector �⃗�
(8) Perform Algorithm 4 to repair the new harmony vector �⃗�

// Perform a new greedy selection scheme
(9) if �⃗� is better than or equal to �⃗�𝑏𝑒𝑠𝑡 then
(10) Replace �⃗�𝑏𝑒𝑠𝑡 with �⃗�



(11) else if �⃗� is better than or equal to �⃗�𝑤𝑜𝑟𝑠𝑡 then
(12) Substitute �⃗�𝑤𝑜𝑟𝑠𝑡 with �⃗�



(13) end if
(14) Memorize the best harmony achieved so far
(15) Set FEs = FEs + 1
(16) end while

Algorithm 5: The DGHS algorithm.

Table 1: The dimensions and parameters of the twelve test problems.

No. Dim. maxFEs Parameter
Kp1 10 1000 𝑤 = (95, 4, 60, 32, 23, 72, 80, 62, 65, 46); 𝐶 = 269; 𝑝 = (55, 10, 47, 5, 4, 50, 8, 61, 85, 87)

Kp2 20 1000 𝑤 = (92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 58); 𝐶 = 878; 𝑝 = (44, 46, 90, 72, 91, 40,
75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75, 63)

Kp3 4 1000 𝑤 = (6, 5, 9, 7); 𝐶 = 20; 𝑝 = (9, 11, 13, 15)
Kp4 4 1000 𝑤 = (2, 4, 6, 7); 𝐶 = 11; 𝑝 = (6, 10, 12, 13)

Kp5 15 1000
𝑤 = (56.358531, 80.874050, 47.987304, 89.596240, 74.660482, 85.894345, 51.353496, 1.498459, 36.445204,
16.589862, 44.569231, 0.466933, 37.788018, 57.118442, 60.716575); 𝐶 = 375; 𝑝 = (0.125126, 19.330424, 58.500931,
35.029145, 82.284005, 17.410810, 71.050142, 30.399487, 9.140294, 14.731285, 98.852504, 11.908322, 0.891140,
53.166295, 60.176397)

Kp6 10 1000 𝑤 = (30, 25, 20, 18, 17, 11, 5, 2, 1, 1); 𝐶 = 60; 𝑝 = (20, 18, 17, 15, 15, 10, 5, 3, 1, 1)
Kp7 7 1000 𝑤 = (31, 10, 20, 19, 4, 3, 6); 𝐶 = 50; 𝑝 = (70, 20, 39, 37, 7, 5, 10)

Kp8 23 1000
𝑤 = (983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485, 485, 969, 966, 483, 964, 963, 961, 958,
959); 𝐶 = 10000; 𝑝 = (981, 980, 979, 978, 977, 976, 487, 974, 970, 485, 485, 970, 970, 484, 484, 976, 974, 482,
962, 961, 959, 958, 857)

Kp9 5 1000 𝑤 = (15, 20, 17, 8, 31); 𝐶 = 80; 𝑝 = (33, 24, 36, 37, 12)

Kp10 20 1000
𝑤 = (84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 70, 96, 32, 68, 92); 𝐶 = 879; 𝑝 = (91, 72, 90, 46, 55, 8,
35, 75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 44)

Kp11 50 1000

𝑤 = (80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48, 50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 25,
30, 45, 30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2, 1); 𝐶 = 1000; 𝑝 = (220, 208, 198, 192, 180,
180, 165, 162, 160, 158, 155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73,
72, 70, 69, 66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 8, 5, 3, 1)

Kp12 100 1000

𝑤 = (54, 183, 106, 82, 30, 58, 71, 166, 117, 190, 90, 191, 205, 128, 110, 89, 63, 6, 140, 86, 30, 91, 156, 31, 70, 199, 142,
98, 178, 16, 140, 31, 24, 197, 101, 73, 169, 73, 92, 159, 71, 102, 144, 151, 27, 131, 209, 164, 177, 177, 129, 146, 17, 53, 164,
146, 43, 170, 180, 171, 130, 183, 5, 113, 207, 57, 13, 163, 20, 63, 12, 24, 9, 42, 6, 109, 170, 108, 46, 69, 43, 175, 81, 5, 34
146, 148, 114, 160, 174, 156, 82, 47, 126, 102, 83, 58, 34, 21, 14); 𝐶 = 6718; 𝑝 = (597, 596, 593, 586, 581, 568, 567,
560, 549, 548, 547, 529, 529, 527, 520, 491, 482, 478, 475, 475, 466, 462, 459, 458, 454, 451, 449, 443, 442, 421,
410, 409, 395, 394, 390, 377, 375, 366, 361, 347, 334, 322, 315, 313, 311, 309, 296, 295, 294, 289, 285, 279, 277, 276,
272, 248, 246, 245, 238, 237, 232, 231, 230, 225, 192, 184, 183, 176, 174, 171, 169, 165, 165, 154, 153, 150, 149, 147,
143, 140, 138, 134, 132, 127, 124, 123, 114, 111, 104, 89, 74, 63, 62, 58, 55, 48, 27, 22, 12, 6)
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Table 2: The detailed information of the optimal solutions obtained so far on the twelve test problems.

No. Optimal solution Optimal Value Value of constraint
𝑔(𝑋
∗
)

Kp1 (0, 1, 1, 1, 0, 0, 0, 1, 1, 1) 295 0
Kp2 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1) 1024 −7
Kp3 (1, 1, 0, 1) 35 −2
Kp4 (0, 1, 0, 1) 23 0
Kp5 (0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1) 481.0694 −20.0392
Kp6 (0, 0, 1, 0, 1, 1, 1, 1, 0, 0) 50 0
Kp7 (1, 0, 0, 1, 0, 0, 0) 107 0
Kp8 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0) 9767 −232
Kp9 (1, 1, 1, 1, 0) 130 −20
Kp10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1) 1025 −8

Kp11
(1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0) 3119 0

Kp12
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

26559 −1

Table 3: The parameters of the high-dimensional 0-1 knapsack
problems.

No. Dim. Capacity maxFEs
Kp13 200 1500 15 000
Kp14 300 1700 20 000
Kp15 500 2000 20 000
Kp16 800 5000 30 000
Kp17 1000 10000 30 000
Kp18 1200 14000 40 000
Kp19 1500 16000 40 000
Kp20 2000 22000 50 000

Subsequently, DGHS is compared with GHS [35] and
NGHS [24]. To make a fair comparison, the number of
maximum improvisations, namely, the maximum number
of function evaluations (maxFEs), is set to 1000 for all
the approaches on the twelve benchmark instances listed
in Table 1. For the other eight test instances with high
dimensions, the settings of maxFEs are given in Table 3.
In addition, the other specific parameters of algorithms are
given as follows.

(i) For GHS, HMS is set to 5. The other control parame-
ters are set as follows: HMCR = 0.9, PARmin = 0.01,
and PARmax = 0.99.The settings are the same as those
used in [35]. In order to handle the constraints, the
penalty coefficient 𝛿 is set as the value used in [24],
that is, 1020.

(ii) For NGHS, HMS = 5, the mutation probability 𝑝𝑚 =
2/𝑁, and the penalty coefficient 𝛿 is set to 1020, which
are the same as those utilized in [24].

(iii) For DGHS, the harmony memory size HMS is also
set to 5. And the other parameters are set as follows:
HMCRmax = 0.95, HMCRmin = 0.3, and PAR = 0.75.

For all experiments, we use the aforementioned parame-
ter settings unless a change ismentioned. Furthermore, in our
experiments, each test problem is run over 50 independent
times.

5.2. Comparison among GHS, NGHS, and DGHS. In this
subsection, a variety of 0-1 knapsack problems with different
scales are considered to investigate the performance of
DGHS. And it is compared with GHS and DGHS.

First, experiments tested on twelve knapsack problems
with small and median sizes are conducted. And the corre-
sponding results are presented in Table 4 in terms of the best,
worst, median, mean, standard deviation (Std.), and success
rate (SR) of the solutions achieved in the 50 independent runs
by each algorithm.

From Table 4, it can be seen that the DGHS can find
global optimal values on the ten benchmark instances (Kp1–
Kp10) with SR = 100%. NGHS can find global optima on the
five test instances, that is, Kp1, Kp3, Kp4, Kp7, and Kp9. GHS
can find global optima on the only three knapsack problems,
that is, Kp3, Kp4, and Kp9. On the medium-scale knapsack
problems Kp11 and Kp12, the success rate (SR) obtained by
DGHS is 82% (41/50) for the test instance Kp11; SR obtained
by DGHS is 32% (16/50) on the benchmark instance Kp12.
Both GHS and NGHS fail to find global optima on the
two instances. However, NGHS performs better than GHS
on the two instances in terms of the best, worst, median,
mean, and standard deviation of solutions. For the sake of
convenience, later comparisons between NGHS and DGHS
are conducted with larger values of maxFEs. On the knapsack
problem Kp11, DGHS can find global optima with SR =
100% when maxFEs = 5𝑒3. But NGHS still fails to find
global optimal value. On the test problem Kp12, the success
rate (SR) obtained by DGHS accordingly increases with the
increase of maxFEs. Especially, DGHS can find the best
known value 26559 with SR = 100% when the number of
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Table 4: Comparison among three algorithms on solving 0-1 knapsack problems with small or median sizes.

No. Dim. maxFEs Approach Best Worst Median Mean Std. SR

Kp1 10 1𝑒3

GHS 295 293 295 294.9 0.3136 48/50
NGHS 295 295 295 295 0 50/50
DGHS 295 295 295 295 0 50/50

Kp2 20 1𝑒3

GHS 1024 1018 1024 1023.7 1.1876 48/50
NGHS 1024 995 1024 1018.6 8.0585 28/50
DGHS 1024 1024 1024 1024 0 50/50

Kp3 4 1𝑒3

GHS 35 35 35 35 0 50/50
NGHS 35 35 35 35 0 50/50
DGHS 35 35 35 35 0 50/50

Kp4 4 1𝑒3

GHS 23 23 23 23 0 50/50
NGHS 23 23 23 23 0 50/50
DGHS 23 23 23 23 0 50/50

Kp5 15 1𝑒3

GHS 481.0694 466.3380 481.0694 479.8091 3.3263 42/50
NGHS 481.0694 437.9345 481.0694 479.1293 6.5594 41/50
DGHS 481.0694 481.0694 481.0694 481.0694 0 50/50

Kp6 10 1𝑒3

GHS 52 52 52 52 0 50/50
NGHS 52 51 52 51.9400 0.2399 47/50
DGHS 52 52 52 52 0 50/50

Kp7 7 1𝑒3

GHS 107 105 107 106.8 0.6060 45/50
NGHS 107 107 107 107 0 50/50
DGHS 107 107 107 107 0 50/50

Kp8 23 1𝑒3

GHS 9766 9744 9756.5 9756.2 5.3816 0/50
NGHS 9767 9760 9765 9764.3 2.2950 15/50
DGHS 9767 9767 9767 9767 0 50/50

Kp9 5 1𝑒3

GHS 130 130 130 130 0 50/50
NGHS 130 130 130 130 0 50/50
DGHS 130 130 130 130 0 50/50

Kp10 20 1𝑒3

GHS 1025 1019 1025 1024.1 2.1030 43/50
NGHS 1025 979 1025 1020.8 8.2048 31/50
DGHS 1025 1025 1025 1025 0 50/50

Kp11 50

1𝑒3

GHS 2985 2837 2935 2932.5 35.9802 0/50
NGHS 3087 2943 3002 3006.5 29.2779 0/50
DGHS 3119 3114 3119 3118.7 0.9355 41/50

5𝑒3

GHS 3073 2955 3022 3018.9 28.1109 0/50
NGHS 3104 3039 3077 3076.7 16.0329 0/50
DGHS 3119 3119 3119 3119 0 50/50

Kp12 100

1𝑒3

GHS 24551 22867 23630.5 23648.6 382.0742 0/50
NGHS 25817 24209 24974 25028 361.3838 0/50
DGHS 26559 26534 26541 26544 10.6246 16/50

5𝑒3

GHS 25448 24343 24891 24881 262.5590 0/50
NGHS 26418 25686 26102 26102 165.5934 0/50
DGHS 26559 26536 26559 26553 8.6175 33/50

1𝑒4

GHS 26079 24806 25296 25304 219.1038 0/50
NGHS 26428 25896 26282 26264 105.0596 0/50
DGHS 26559 26547 26559 26556 5.0214 39/50

2𝑒4

GHS 26091 25151 25685 25683 223.8487 0/50
NGHS 26489 26242 26366 26367 59.8389 0/50
DGHS 26559 26547 26559 26558 3.2886 46/50

3𝑒4

GHS 26172 25379 25816 25833 166.5229 0/50
NGHS 26559 26265 26424 26420 63.9882 1/50
DGHS 26559 26547 26559 26558.5 2.3754 48/50

4𝑒4

GHS 26326 25643 25947 25954 142.3878 0/50
NGHS 26547 26354 26441 26445 46.2120 0/50
DGHS 26559 26559 26559 26559 0 50/50
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Table 5: Comparison among GHS, NGHS, and DGHS on the high-dimensional 0-1 knapsack problems.

No. Dim. maxFEs Index GHS NGHS DGHS

Kp13 200 1.5𝑒4

Best 10306 10887 11025
Worst 9950 10756 11019
Median 10148.5 10840 11021.5
Mean 10139.2 10834.3 11021.6
Std. 91.9592 34.6055 2.1055
t-test 1 1 /

Kp14 300 2𝑒4

Best 12608 13878 14086
Worst 12126 13614 14080
Median 12396 13746.5 14085
Mean 12396.4 13752.9 14084.8
Std. 112.1964 63.0862 1.3756
t-test 1 1 /

Kp15 500 2𝑒4

Best 15270 18271 18925
Worst 14558 17735 18916
Median 14886.5 18007 18924
Mean 14904.7 18014.4 18923.3
Std. 157.0984 132.3975 2.1801
t-test 1 1 /

Kp16 800 3𝑒4

Best 34245 38703 39691
Worst 33351 38284 39691
Median 33871.5 38489.5 39691
Mean 33835.1 38487.5 39691
Std. 191.8773 97.0605 0
t-test 1 1 /

Kp17 1000 3𝑒4

Best 60906 65078 66109
Worst 60349 64332 66106
Median 60661.5 64723.5 66109
Mean 60668.2 64715.4 66108.6
Std. 129.2363 150.1521 0.6966
t-test 1 1 /

Kp18 1200 4𝑒4

Best 78067 86099 86771
Worst 76093 85657 86771
Median 77241.5 85899 86771
Mean 77185.3 85901.1 86771
Std. 491.5674 88.4639 0
t-test 1 1 /

Kp19 1500 4𝑒4

Best 98072 104199 105797
Worst 94516 103428 105794
Median 95967 103802.5 105797
Mean 95974.3 103798.9 105796.6
Std. 807.3958 172.6269 0.7530
t-test 1 1 /

Kp20 2000 5𝑒4

Best 124049 138509 140710
Worst 118599 137754 140704
Median 121535.5 138170 140709
Mean 121417.8 138165.2 140709
Std. 102.6351 170.3528 1.3559
t-test 1 1 /
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Table 6: Comparison among DGHS and IGHS together with IGHS-II on ten knapsack benchmarks.

No. maxFEs Index IGHS IGHS-II DGHS
Mean Std. SR Mean Std. SR Mean Std. SR

Kp1 1000 𝐷 = 10 238.18 38.5289 2/50 294.16 0.3703 8/50 295 0 50/50
Rank 3 2 1

Kp2 1000 𝐷 = 20 936.36 52.4446 1/50 1018.48 1.6442 4/50 1024 0 50/50
Rank 3 2 1

Kp3 1000 𝐷 = 4 32.80 2.8500 25/50 35 0 50/50 35 0 50/50
Rank 3 1 1

Kp4 1000 𝐷 = 4 21.08 2.1931 20/50 21.02 2.1043 18/50 23 0 50/50
Rank 2 3 1

Kp5 1000 𝐷 = 15 386.88 63.4233 8/50 481.0694 0 50/50 481.0694 0 50/50
Rank 3 1 1

Kp6 1000 𝐷 = 10 48.96 2.9413 16/50 52 0 50/50 52 0 50/50
Rank 3 1 1

Kp7 1000 𝐷 = 7 95.10 9.1032 2/50 104.54 2.1591 17/50 107 0 50/50
Rank 3 2 1

Kp8 1000 𝐷 = 23 9695.42 55.4923 1/50 9760.72 6.9400 26/50 9767 0 50/50
Rank 3 2 1

Kp9 1000 𝐷 = 5 120.46 9.0649 21/50 130 0 50/50 130 0 50/50
Rank 3 1 1

Kp10 1000 𝐷 = 20 955.92 49.5991 1/50 1019.36 1.4393 3/50 1025 0 50/50
Rank 3 2 1

Average rank 2.9 1.7 1
Overall rank 3 2 1

maximum improvisations maxFEs is set to 4e4. Yet NGHS
cannot be able to find the best known solution. Although
NGHS find the best known value 26559 one time out of fifty
times when maxFEs = 3𝑒4, the success rate (SR) obtained
by NGHS is still zero whenmaxFEs = 4𝑒4.This indicates that
the performance ofNGHS is unstable. In aword, DGHS is the
best among the three algorithms according to the robustness
and convergence performance of algorithms.

Second, eight high-dimensional knapsack problems are
generated randomly to further testify the comprehensive
performance of DGHS. The statistical results obtained in 50
independent runs by three algorithms are given in Table 5.
Moreover, the t-test results of all the test instances with
high dimensions are also given in Table 5, in which “1”
indicates that the proposed DGHS is significantly better than
its competitor (GHS or NGHS) at the level of significance
𝛼 = 0.05.

As can be seen from Table 5, GHS is obviously inferior to
NGHS on all the test instances with high dimensions. And
from the t-test results in Table 5, it is observed that DGHS
outperforms significantly both GHS and NGHS on all the
test problems. It is worth mentioning that the worst value
of profit sum obtained by DGHS is even better than the best
value of profit sum found by GHS and NGHS on all the test
instances. In addition, the standard deviation of profit sum
obtained by DGHS is also very small on each test problem,
which indicates that the DGHS is robust. All these indicate
that DGHS has an overwhelming advantage against the other

two algorithms on solving the knapsack problems with large
scales.

5.3. Further Comparison. Recently, El-Abd had proposed
an improved global-best harmony search algorithm, named
IGHS, which achieves a better performance for solving real
parameter optimization problems [30]. In order to further
testify the performance ofDGHS,DGHS is further compared
with two variants of IGHS for solving 0-1 knapsack problems.
For convenience, the first version of IGHS with penalty
function is called IGHS. Another version of IGHS with
a greedy initialization together with the two-phase repair
operator is called IGHS-II. That is, IGHS can be used to
handle the knapsack problems by using a penalty function
scheme as recommended in [24]. IGHS-II can also be used to
solve the knapsack problems through integrating two-phase
repair operator and a greedy initialization scheme, which are
the same as those employed in DGHS.

For a fair comparison, the maximum number of function
evaluations (maxFEs) is set to 1000 for all experiments. In
addition, the other parameters of the above two variants
(IGHS and IGHS-II) are the same as those of the original
IGHS except maxFEs. For IGHS and IGHS-II, HMS =

5, HMCR = 0.99, PARmin = 0.01, PARmax = 0.99,
bwmin = 0.0001, and bwmax = (𝑈𝑗 − 𝐿𝑗)/20. Meanwhile,
the other specific parameters of DGHS are the same as
the aforementioned. And ten knapsack problems, that is,
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Kp1–Kp10, are employed here to perform the experiment.
Subsequently, each case of all compared algorithms is run 50
times independently and all experimental results are listed in
Table 6.

From Table 6, it can be seen that IGHS is capable of
finding the global optimum for each knapsack problem
(Kp1–Kp10) in terms of SR (success rate). Especially, the SR
obtained by IGHS on Kp3, Kp4, and Kp9 is over 40%, respec-
tively. Yet IGHS-II outperforms IGHS on nine benchmarks,
that is, Kp1, Kp2, Kp3, Kp5, Kp6, Kp7, Kp8, Kp9, and Kp10.
What is more, the SR obtained by IGHS-II on Kp4 is also
very close to that found by IGHS. All these indicate that IGHS
works well on knapsack problems and the two-phase repair
operator is active. It is worth noting that DGHS achieves
the corresponding global optimum for each of ten knapsack
problems with 100% success rate, which shows that DGHS
is obviously superior to IGHS and DGHS is better than or
at least similar to IGHS-II on all benchmarks. And the two-
phase repair operator and greedy initialization scheme are
all used in IGHS-II and DGHS, respectively. In view of this,
DGHS itself is also active.That is, DGHS canwork better than
IGHS for solving 0-1 knapsack problems. According to the
overall rank in Table 6, it is observed that DGHS takes the
first place when compared against IGHS and IGHS-II.

6. Conclusion

In this work, a novel discrete global-best harmony search
algorithm, called DGHS, is proposed through introducing
some modifications, such as an initialization based on a
greedy scheme used to improve the solution quality of initial
harmony memory, a novel binary coded global harmony
search algorithm based on intuitive cognition of improvi-
sation process for easily performing discrete operation and
effectively taking advantage of the guiding information of
the best harmony, and two-phase repair operator used to
repair an infeasible harmony vector and to further improve a
feasible solution.The experiments tested on twenty knapsack
problems are conducted. The experimental results reveal
that DGHS outperforms both GHS and NGHS in most
cases. Thus, the proposed DGHS can be considered as an
elitist alternative for solving the 0-1 knapsack problems with
different scales.

In the future, it is desired to be further applied to solve
some real life problems, like warehouse location, production
planning, portfolio optimization, and so on.
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