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This paper presents the foundations and the real use of a tool to automatically detect anomalies in Internet trafficproduced bymobile
applications. In particular, our MVE tool is focused on analyzing the impact that user interactions have on the traffic produced and
received by the smartphones. To make the analysis exhaustive with regard to the potential user behaviors, we follow a model-
based approach to automatically generate test cases to be executed on the smartphones. In addition, we make use of a specification
language to define traffic patterns to be comparedwith the actual traffic in the device.MVEalso includesmonitoring and verification
support to detect executions that do not fit the patterns. In these cases, the developer will obtain detailed information on the user
actions that produce the anomaly in order to improve the application. To validate the approach, the paper presents an experimental
study with the well-known Spotify app for Android, in which we detected some interesting behaviors. For instance, some HTTP
connections do not end successfully due to timeout errors from the remote Spotify service.

1. Introduction

Nowadays, there are millions of applications available in
mobile app stores, such as Google� Play Store, which are
supported by hundreds of thousands of development teams
around the globe. According to CISCO, the monthly global
mobile data traffic will surpass 24.3 exabytes by 2019 [1] as
smartphones have become one of the most popular ways to
access Internet services.Mobile app developers are constantly
confronted with a competitive environment where they have
to satisfy the demand for more and better services, which
frequently leads to a surge inmobile data traffic requirements.
The increase in the complexity of modern mobile software,
in addition to shortened release deadlines, has led to many
optimization challenges. For instance, current initiatives
towards 5G networks will produce new networking scenarios
where 4G applications should be tested and optimized for
ever-changing resources and technologies.

Mobile network traffic is heavily influenced by user
interaction with the application. User behavior may trigger

runtime errors that may not be identified during develop-
ment stages [2], as the synergic effects of user interactions and
the communication channel conditions are difficult to pre-
dict. For this reason, software verification and performance
analysis are key steps in the development stages to assure
the quality of applications. Analyzing the correctness and
performance of mobile apps taking into account all possi-
bilities of user behavior is a difficult task. In consequence,
the quantification of this effect is valuable for all actors in
the app’s development and operation chain: app developers,
mobile phone manufacturers, mobile network operators, and
end users.

In this paper, we contribute to enhancing the quality of
the mobile software analysis process by focusing on the net-
work traffic produced by the applications. In order to do so,
we employ a combination of model-driven exhaustive gene-
ration of user behavior test cases and software and hardware
probes intended to extract runtime information from the
applications, the smartphone itself, and network equipment.
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This heterogeneous information is synchronized and gath-
ered together in a single rich tracewhich can then be analyzed
on-the-fly with techniques rooted in formal methods [3, 4].

In particular, we employ two specification languages.
On the one hand we use UML state machines to model
the potential interactions of the user with the application,
including the typical concepts in the design of the application
like screens or buttons and the user’s actions. This model
of user interactions is the input to the exhaustive test case
generation. On the other hand, wemake use of a specification
language [5] to define extra-functional properties that corre-
late specific events in the applications (like push or swipe a
button)with specific patterns for network traffic in the device.
In addition, we implement monitoring and checking support
to automatically detect whether the pattern is satisfied in the
execution corresponding to a test case. In case of a mismatch
between the real traffic and the expected behavior pattern, the
developer is informed about the anomalywith enough data to
locate the source of the problem.

It is important to note that the model-driven approach
for simulating user behavior can be used to generate a large
number of experiments, and the results from these analyses
can serve as feedback to drive experiment generation, for
example, to look for errors or optimize certain parameters.
Furthermore, we intend to provide a solution where the user
does not need to be an expert in this particular field, as we
propose the use of a simple notation and a pattern catalog,
which can be used to analyze the usual key performance
indicators (KPIs).

MVE (Mobile Verification Engine) (tool and examples
available at http://www.morse.uma.es/tools/mve), the cur-
rent tool implementing this approach, is oriented to Android
OS applications and has been validated with the Spotify app
for Android as the case study. As is well-known, Spotify is one
of the most successful music streaming services worldwide.
Almost sixty million people use Spotify services and half of
them are using the mobile application. Such a large number
of concurrent users tend to show typical network traffic
patterns related to the number of open sessions per hour or
the duration of the connection. We have evaluated our tool
in the controlled testbed PeformNetworks (formerly known
as PerformLTE [6]), which includes all the components to
create a real mobile network and the required monitoring
capabilities.

Compared with our previous work reported in [4, 5],
this paper presents three main novelties: (1) we focus on
network traffic, and we introduce statistical variables in the
extra-functional properties, while in our previous work we
only focused on energymeasurements, where only real values
provided by external equipment was considered and no
statistics were required; (2) we present MVE as an integrated
toolwith all the steps that in previousworkwere only partially
implemented but not integrated, and (3) we use a new case
of study, Spotify for Android, which has a major impact on
mobile traffic today.

The rest of the paper is organized as follows. In the
following section, we provide related work to highlight our
contributions with respect to the state of the art. Section 3
describes the proposed approach to performance analysis

with model-based testing, including some background on
the main techniques used. Section 4 presents the case study
Spotify app for Android, detailing the setup and steps to run
the experiments, and a discussion of the results. In Section 5,
we present Conclusions and Future Work.

2. Related Work

In this section, we summarize themain related works existing
in the literature which apply model-based techniques to
test mobile apps and/or that deal with the problem of the
analysis of extra-functional properties on these devices. A
complete survey of the techniques and tools for testingmobile
applications may be found in [7].

The generation of test cases can be addressed with
random techniques, which has the advantage of not requiring
knowledge of the application under test. This random-
behavior generation strategy is supported by tools like Mon-
key [8]. Clearly, the main drawback of these techniques is
that the test cases generated can be very unrealistic, which
can degrade the effectiveness of the testing process. To solve
this, other tools such as Monkeyrunner [9], Robotium [10],
and Troyd [11] employ scripts of predefined sequences of
user interactions, but these scripts cannot be automatically
constructed.

Other approaches such as Swift-Hand [12] make use of
learning machine techniques to automatically generate input
sequences trying to visit unexplored behaviors. Static analysis
is also used as an underlying technique to automatically
extractmodels of the app behavior.This is the case of the tools
Automatic Android App Explorer (A3E) [13] and FicFinder
[14]. In particular, A3E uses a static dataflow analysis of app
bytecode to construct a high-level control flow graph that
captures legal transitions between activities (i.e., app screens)
and that is later explored with a depth-first strategy called
targeted exploration. In contrast, FicFinder is concernedwith
the analysis of compatibility issues in Android apps. To this
end, the tool carries out a static analysis of the app source code
making use of the so-called API-Context pairs, which are
used to detect when the apps call API functions incorrectly.

Other tools such as AndroidRipper [15] or, more recently,
MobiGUITAR [16] are based on the automatic construction
of state machines from the GUI components of the app
under test. The state machine generated by AndroidRipper
is a stateless model which is insufficient to analyze state-
sensitive properties such as those related to the state-based
life cycle of Android activities. On the contrary, Mobi-
GUITAR constructs a more complex state machine from
the app. It starts at an initial state and explores, using a
breadth-first traversal, the new events that can be fired. This
procedure results in a tree which is reduced to a graph
using a notion of state equivalence. Maybe MobiGUITAR
is the closest to our approach. However, there exist some
significant differences. For instance, since the construction
of state machines in our tool is guided by the tester, we do
not need to remove unrealistic test cases. In addition, our
approach allows generating test cases for several applications
that interact using Android intents, while the complexity of
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the runtime based modeling process for MobiGUITAR and
Swift-Handmakes themmore suitable for single applications.

There are other works that consider performance and
energy consumption prediction as part of a model-driven
approach, using app models at design time for this purpose,
instead of for test case generation. For instance, the work
in [17] uses a model of the app to drive the analysis.
However, the authors can predict energy consumption with
abstract interpretation and compare the results with the
real measurements. The SPOT framework [18] implements
a full model-driven software engineering process to estimate
mobile software power consumption and performance. The
main point in SPOT is the model of the full software
architecture supporting the app and the generation of the
app code, including the emulation of themobile device. Since
this proposal, many other papers have addressed the use of
model-driven development to test Android apps (see [19] for
a survey).

Other works use mathematical models to predict energy
consumption. Instead of modeling the app or the user, in
[20], the authors build a model of how typical components
in the smartphone, like CPU or 3G/LTE radio, consume
energy. Then they collect the logs of the application running
in the device to make an estimation of energy consumption
based on the model. A similar approach is described in [21],
where the authors compute profiles of energy consumption
for typical resources used in the app. However, the authors
use a simulation tool instead of a real device to predict
power consumption. Compared to ourwork, this is a different
way of using models for analysis because the authors do
not use the model to generate potential behaviors. Actually,
our approach can be combined with the work in [20, 21],
using our tool to generate automatically the app behaviors
where their estimation methods can be applied. The idea of
modeling the expected power consumption by the app is also
developed in [22], using a model of the application instead of
the actual source code. Both models can be compared using
model checking.

Apart from the previously described model-based
approaches, many commercial and academic tools have
been developed to analyze and classify the traffic produced
by apps in mobile phones without specific models of the
app. For instance, AntMonitor [23] is a powerful tool for
monitoring all connected apps in an Android device so as
to produce statistics. The tool is able to detect how each app
contributes to the total network traffic. However, since it
collects too fine-grained mobile measures, it cannot be easily
used to relate the measured traffic with specific events or
user interactions.

Likewise, NetworkProfiler [24] is a tool oriented to
help cellular operators identify the traffic in their networks
when transported over HTTP/HTTPS. NetworkProfiler uses
device emulators and machine learning techniques to estab-
lish the fingerprint of an app by collecting information
about the hosts to which it connects and by subsequently
constructing a state machine that represents the patterns of
data (such as, e.g., some strings in theURL query that identify
the apps) sent over the HTTP connection. However, since
the manual exploration of apps under test will not cover all

behaviors, NetworkProfiler randomly generates user actions
to interact with the apps.

In contrast, ProfileDroid [25] is designed to systematically
profile apps in order to discover inconsistencies or surprising
behaviors. It is based on a multilayer analysis of the apps,
considering static analysis of bytecodes, user interactions,
calls to operating system, and network traffic. Nevertheless,
this particular tool requires a real user interacting with
the mobile, although the sequence of interactions can be
recorded to be replayed in a different scenario.

Regarding traffic analysis, ProfileDroid is the closest
proposal to our work. We could use ProfileDroid to generate
the reference patterns that we employ to analyze the actual
behavior of the apps. However, MVE has novel contributions
compared with ProfileDroid, such as (a) the controlled
coverage of the user interactions for one or several apps
due to the model-based approach for test generation; (b) the
ability to automatically find execution traces that violate the
expected behavior of the app in terms of their effect over the
Internet traffic; (c) the inclusion of time in the models, so
we can test realistic situations where the time between user
interactions is relevant; and (d) the ability to combinemodels
of several apps running in parallel.

3. Analysis of Applications with
Model-Based Testing

Our approach to analyze of mobile applications using model-
based testing, represented in Figure 1, can be divided into
two main steps: (a) the test case generation and subsequent
execution and (b) the runtime verification tasks. In the first
stage, executable test cases will be automatically generated
from a model of the possible user interactions over the
application under test. Then, each test case generated will be
executed on a real mobile device. In the second stage, the
execution of test cases will be analyzed to check whether they
behave correctly according to user-defined properties.

The first stage can also be divided into three substeps:
user behavior modeling, test case generation, and test case
execution. In the first substep, the user provides a model of
the application (or applications) to be analyzed. The model
is constructed from the point of view of a user interacting
with the application. Modeling the user behavior is crucial
to generate test cases that correspond with realistic uses of
the application, instead of generating random inputs. In the
next substep, test cases are automatically generated from
this model using the capacity for automatic exploration of
Spin model checker [26]. Each test case produced by the
model checker is then converted into executable Java code
for Android devices. In the last substep, these test cases are
executed one by one in an actual mobile device.

In the second stage, the test case executions will be
analyzed according to properties given by the user.This stage
is divided into two substeps: trace synthesis and property
verification. A trace is an ordered sequence of states, that is,
data gathered from the test case execution at different time
instants. The trace is built from data provided by multiple
sources at runtime, such as the actions performed by the
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Figure 1: Architecture overview.

user, energy consumption measured by an external power
analyzer, or network traffic statistics. In the last substep,
each of these traces is analyzed at runtime by the Spin
model checker to check the extra-functional properties given
by the user; for example, in our case, to check whether
network traffic follows a given expected pattern. The main
components of this architecture are further detailed in the
following sections.

3.1. Modeling User Behavior. The model of expected user
behavior is used as the starting point for generating test cases.
This model describes possible interaction paths of the user in
each of the application “screens.” For instance, in the inbox
screen of an e-mail application, a user may tap one of the e-
mail entries to open it or tap the “compose” button to write a
new e-mail. Each of these paths will lead to a new screen with
new possibilities.

As an example, Figure 2 shows three screens extracted
from the Spotify Android app. Some interactions, such as
swiping through a list, happen within the same screen, while
others, such as tapping the back button, change the current
screen. In the example shown in Figure 2, the “Playlist” screen
is deeper in the hierarchy than the “Main” screen and is
accessed by tapping on an item of the horizontal swipe-list
at the top of the screen. Then, a further action of tapping the
“Shuffle play” button will lead to the “Now Playing” screen
where the song reproduction controls are displayed.

These interactions can be modeled using state machines,
where each state machine represents the possible user behav-
iors in a given screen of a mobile application. The edges
are labeled with the user actions performed on the elements
present on the screen when a transition is taken. The sup-
ported user actions include tapping, swiping, and entering a
text in a field. In the latter case, the model must also provide
the values that can be entered or a pattern to generate them

automatically. The user actions in the transitions, which are
abstract, must be matched with concrete UI controls present
in the screen of the Android app.

These state machines are both nested, to hierarchically
organize them into screens, apps, and devices, and composed,
to represent navigation between screens and application.This
loose composition is key to represent some typical patterns
found in mobile applications. For instance, the same screen
may be reached from two different places, and navigating
back should take the user to the correct previous screen.

Figure 3 shows a simplified example of a user behavior
model for an e-mail application, using a UML-like notation.
The figure shows three state machines: Inbox, E-mail,
and Compose. The transitions between states are labeled
with the user action that would be performed when taking
that transition; for example, /tapCompose corresponds to
tapping the “compose” buttonwhile the current statemachine
is Inbox. Observe that transition /tapCompose jumps to
state machine Compose. This state machine can also be
reached by tapping “reply.”

The state machines can be executed by starting at the
initial state and following the available transitions at each
state. Some states have more than one outgoing transition
meaning that there will be more than one possible execution
sequence that passes that state. State machines are connected
through the so-called connection states. When entering a
connection state, the execution will continue on another state
machine. When this second state machine reaches a final
state, the execution will proceed with the state following the
connection state in the first state machine.

The user behavior model is written in XML, following
an XML Schema. A UML model of this schema is shown in
Figure 4. A user behavior model contains the definition of
a number of applications. Each application is composed of
several views, which correspond to its screens, and each view
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may define more than one state machine. Simple transitions
are defined between states of the same state machine, while
complex transitions define connection states, where the
execution flow continues in another state machine. Such
transitions can continue on a concrete statemachine or in any
of the state machines contained in a view. The time attribute
in a transition indicates the time required to execute it, which
must be simulated when executing the test case in a real
device.

3.2. Test Case Generation and Execution. As mentioned
above, to generate the test cases we use the Spin model
checker [26]. Model checking is a formal technique tradi-
tionally used to check the correctness of nondeterministic
concurrent systems with regard to some given temporal

property, such as absence of deadlocks. Given a model of
the system to be analyzed and a desirable property to be
checked on the system, model checkers work, in general,
by automatically and exhaustively exploring all the possible
executions of the system searching for traces that violate
the property (which are called counterexamples). In the case
of Spin, the language for modeling the systems is Promela
and properties are written in the temporal logic LTL. The
strength of model checking technique may be its capability
of providing counterexamples when the tool finds a model
behavior that does not match the property. Counterexamples
greatly facilitate debugging systems. In contrast, theweakness
of model checking is the well-known state explosion problem
that occurs when the system to be analyzed is too big to
be stored in memory. There exist a very large number of
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approaches in the literature to palliate the effect of the state
explosion problem, but they are beyond the scope of this
paper.

Our approach uses the exhaustive exploration algorithms
integrated into Spin to generate all the possible test cases
defined by a user behavior model or a controlled portion of
the test cases if there are not enough computational resources.
Controlling the selection is now done limiting the length of
the test cases. A test case is defined as a sequence of user
actions encountered in the transitions taken while exploring
the model starting at the initial state. To this end, the user
behaviormodel is first translated into a Promela specification,
which is then explored exhaustively by Spin. This translation
process is outlined with an example in Section 4.1. When
a final state is found, or the maximum sequence length is
reached, Spin writes the generated sequence of user actions
(the test case) to an XML file.

Each of the generated test cases is then translated into a
Java program which uses the UiAutomator API (Application
Programming Interface), an Android extension of the JUnit
library. Our approach uses these Java programs to automate
the user actions defined in a test case and perform them on
real Android devices. The test is compiled to an Android
application format in the formof a .dex file that is uploaded to
the corresponding device. The test is then executed running
the UiAutomator command line tool on the Android device,
with the uploaded file as a parameter. Test case generation and
execution summarized here is described inmore detail in [4].

3.3. Trace Synthesis. The target device (or devices) and the
additional measurement equipment are monitored with the
aim of extracting relevant information (with respect to the
property to be analyzed) about the execution of test cases in
real-time.The devices can be instrumented to take data from
different sources. One of these is the Android system-wide
log, known as logcat, where applications and the operating
system dump logging information. Another source is the JDI
(Java Debugger Interface) API [27], the same API used by
Java debuggers, which provides information at the source

code level. We have used tcpdump [28], a well-known
command line packet analyzer, to extract traffic information
from the devices. The filtered packets captured by tcpdump
can be processed in order to get relevant variables, such
as the number of TCP packets received and sent through
HTTP connections. We have also used an external power
analyzer connected to the smartphones to quantify the energy
consumed during the execution of the tests [5].

In consequence, the execution of each test case gives rise
to a new timed trace where all these relevant data are gathered
during execution. This trace is composed of a sequence of
states, each of which contains the values of the observed
variables at relevant time instants, for example, when a certain
user action was performed. In consequence, the values of
continuous variables, such as power consumption, may be
observed over the time intervals determined by the time
instants when some events of interest have occurred.

3.4. Extra-Functional Properties. The last step is to verify
the set of properties given by the user. These properties are
questions that the developer asks about the execution of the
test cases, with the aim of finding bugs or anomalies in the
app, and which can be answered by analyzing the traces. For
this task, we propose architecture based on observers [29],
which analyze the synthesized traces checking different types
of properties. For instance, an observer may check log events
to validate that a test case has been executed properly on
the device, while others may check more complex properties
involving data extracted from the hardware probes.

The properties to be checked on traces can be classified
as functional or extra-functional. Functional properties are
concerned with the correct functionality of the app (i.e., the
app does not block, or its life cycle is correct). In contrast,
extra-functional properties are usually related to physical
magnitudes such as speed or resource consumption, which
do not only depend on the application code but also on the
specific hardware characteristic of the platform on which the
app is executing. For instance, a typical property involving a
particular physical (also called continuous) variable could be
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that it remains below some threshold during some time inter-
val. To make extra-functional properties easier to describe,
we have defined a language to express them in a user-friendly
manner, using interval formulas.

An interval formula defines a behavior pattern regarding
the values of some continuous variable that will be checked
in certain intervals of the trace. An interval formula is of
the form 𝑄[[𝑝𝑎𝑡𝑡𝑒𝑟𝑛]][𝑝,𝑞], where 𝑄 may be the univer-
sal/existential quantifier ∀/∃ or empty. Interval condition
[𝑝, 𝑞] defines subtraces of the trace being tested whose initial
and ending states satisfy conditions 𝑝 and 𝑞, respectively.
In this case, we say that the subtrace satisfies condition
interval [𝑝, 𝑞]. Conditions𝑝 and 𝑞 are simple expressions over
the variables of the trace referring, for instance, to the last
user action executed. Finally, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is an expression to be
checked on subtraces. Usually, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is a formula over the
continuous variables whose value is evaluated at the first and
last state of subtraces that satisfy the interval condition.

As explained before, the formulas will be evaluated over
the traces generated by the execution of the test cases. If
a formula evaluates to false, the trace will be provided as
a counterexample, that is, a sequence of states that lead to
a property violation. The evaluation of the formula over a
trace depends on the quantifier used: “no quantifier”/∀/∃
means, respectively, that the 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 has to be held on the
“first”/“all”/“some” subtrace satisfying [𝑝, 𝑞].

For instance, a typical trace might include the 𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝
variable with the last executed user action in the test case
and variable 𝑍 that stores the value of some continuous
magnitude (as the Internet streaming traffic). Then, we can
express that the streaming traffic measured while a song is
being downloaded is less than a threshold 𝑇 as

∀ [[𝑍 < 𝑇]][𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑎𝑐𝑡𝑖𝑜𝑛𝐴,𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑎𝑐𝑡𝑖𝑜𝑛𝐵] , (1)

where ∀ quantifier means that the pattern will be checked
for all subtraces satisfying the interval condition [𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝 =
𝑎𝑐𝑡𝑖𝑜𝑛𝐴, 𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝 = 𝑎𝑐𝑡𝑖𝑜𝑛𝐵] found in a trace.

The observer that evaluates these interval formulas has
been implemented with Spin. Interval formulas are translated
into a special Promela observer called never-claim automata.
Spin then analyzes a Promela specification which recon-
structs on-the-fly the trace observed during the execution of
a test case. This Promela specification is checked against the
never-claim automata, and any violations are reported back
to the user.

4. Case Study: Analysis of Spotify
Network Traffic

This section describes a case study performed on the Spotify
Android app, a well-known music streaming service. This
case study will look into the traffic patterns generated by
the application when playing a series of songs in different
scenarios. Some screen shots ofMVE graphical user interface
(GUI) are also introduced to help reproduce the experiment.
More details on how to do it can be found on the MVE web
page at http://www.morse.uma.es/tools/mve.

4.1. Modeling. The first step is to provide a user behavior
model of the application. Figure 5 shows a simplified model
for the Spotify app for Android that follows the state machine
based structure described in Section 3.1. The model is
composed of views, each one corresponding to an app screen.

The model shows four main views (screens) and their
decomposition in state machines. Observe that user actions
in transitions may be enriched with time stamps to indicate
the duration of the transition. HomeView may call Princi-
palView which, in turn, may order the cache to be cleared
through the ConfigurationView. PrincipalView may also call
SearchView to search for a song (which can be popular or
unpopular). Within the SearchView, the SearchPopularState-
Machine first enters the name of a well-known popular song
to be searched.The names for the songs that can be entered in
the corresponding search field are provided by the user as part
of themodel, from the Spotify trending list in Spain.Then, the
song may be played for 300 seconds or paused for 10 seconds
half-way through. The SearchNonPopularStateMachine is
similar, but with a set of unpopular song names to be used in
the search instead.The whole search/play/pause/play process
can be repeated.

Figure 6 shows the GUI of MVE for creating and
configuring experiments. In Figure 6(a), the user first uploads
the user behavior model, written as an XML file. Then, each
state machine defined in the model must be configured to
match user actions in the model with actual controls present
in the screen (see Figure 6(b)).This is done by using theUiAu-
tomatorViewer tool from the Android SDK, which obtains an
XML definition of the controls present in a screen. The user
must upload the definition of each of the screens used in the
model and then select which control corresponds to each user
action. If the action involves entering a text, then the values
to be used must also be introduced. When the configuration
is completed, the test cases may be automatically generated.

The XML user behavior model is automatically translated
into Promela to generate the test cases with Spin, as explained
in Section 3.2. Listing 1 shows part of the Promela code for
the model in Figure 5. Each device defined in the model is
translated into a proctype (see line (6)), that is, a Promela
process that can be executed concurrently with others. All
the state machines contained in a device are “flattened” and
translated into a single Promela do loop. Each branch of the
loop corresponds to a transition in one of the state machines
of the device. The guard of each branch checks the current
state of the device (line (9)), stored as a global variable (line
(4)). If the transition is taken, the body records it in a global
variable (line (11)) and then updates the current state with
the next state of that transition (line (12)). If the transition
implies moving to a different state machine, additional data
must be stored (line (18)) to ensure that navigating back from
the new state machine returns to the proper state (line (23)).

Promela do loops are nondeterministic, thismeaning that
when several branches are enabled (ready to be executed),
Spin may select any of them to continue the execution in
the simulation mode. In contrast, using the verification mode,
Spin will explore all the possibilities using a first-depth search
algorithm. For the case of the example, this means that Spin,

http://www.morse.uma.es/tools/mve
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Spotify
HomeView

HomeMachine

/clicPrincipleMenu

/clicPrincipleMenu

/SWIPE

/SWIPE

/SWIPE

· · ·

· · ·

PrincipalView

S0

S0

S0

S1

S1

S2

S2

/clicSearch

/clicConfiguration

PrincipalStateMachine

ConfigurationView

CleanCache-
StateMachine

SearchView

SearchNonPopular-

StateMachine

SearchPopularStateMachine
/setTitlePopular

/clicSong{ＮＣＧ？ = 300}

/clicSong{ＮＣＧ？ = 200}

/clicSong{ＮＣＧ？ = 100}

/clicPause{ＮＣＧ？ = 10}

Figure 5: User behavior model for the Spotify app.

in verification mode, is able to generate all possible test cases
defined by the model.

Each of the test cases generated by Spin is then translated
into a Java program. Listing 2 shows part of the generated
Java code for one test case from the Spotify model. Each user
action in the test case is translated into a Javamethod that uses
the UiAutomator API to perform the action in the mobile
(see lines (6) and (16)). Additionally, each method writes
metadata to the Android logcat, including which user action

was executed, tomake it available for the execution trace (line
(7)).

4.2. Network Traffic Analysis. Once the test cases have been
generated, we proceed with the network traffic analysis we
want to perform on the Spotify app. We first studied the
network traffic generated by the app. We found out that
it uses HTTP connections to download songs from the
Spotify servers, and identifies itself as “Spotify-Unknown” in
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(a) User behavior model, test case generation, and verification property (b) Screen and user actions

Figure 6: Configuring the analysis of the Spotify app with the GUI.

(1) typedefBackstack {mtype states [MAXB]; Transition trans [MAXB]; short index};
(2)
(3) #definecurBackstack devices [device]. backstack

(4) #definecurStatecurBackstack. states [curBackstack. index]

(5)
(6) proctype device 4107a7166c03af9b (int device) {
(7) do

(8) // Spotify - PlayView - PlayStateMachine

(9) :: starting || curState == Spotify PlayView PlayStateMachine init ->
(10) pushToBackstack (device, Spotify PlayView PlayStateMachine init);

(11) transition (device, VIEW PlayView, 1); // Swipe

(12) curState = Spotify PlayView PlayStateMachine S0

(13) :: !starting && curState == Spotify PlayView PlayStateMachine S0 ->
(14) transition (device, VIEW PlayView, 2); // clicPrincipalMenu

(15) curState = Spotify PrincipalView PrincipalStateMachine init

(16) // Spotify - PrincipalView - PrincipalStateMachine

(17) :: !starting && curState ==

Spotify PrincipalView PrincipalStateMachine init ->
(18) pushToBackstack (device,

Spotify PrincipalView PrincipalStateMachine init);

(19) transition (device, VIEW PrincipalView, 1); // Swipe

(20) curState = Spotify PrincipalView PrincipalStateMachine S0

(21) :: !starting && curState ==

Spotify PrincipalView PrincipalStateMachine end ->
(22) popFromBackstack (device);

(23) continueTransition 4107a7166c03af9b (device)

(24) od;

(25) }

Listing 1: Extract of Promela specification for test case generation.

the User-Agent field. While Spotify uses HTTP for various
purposes, song requests could be identified by GET requests
with URLs following the format: “/audio/<id>.” Each song is
downloaded over a series of HTTP GET requests sent right
after the user presses play, each fetching a fragment of the
song. The following discussion considers only network data
packets from these audio streams.

We introduce an extra-functional property to analyze
the streaming traffic generated by a media-streaming app by
checking the following interval property on the test cases:

𝑍 =

󵄨󵄨󵄨󵄨𝑟 − 𝜇
󵄨󵄨󵄨󵄨

𝜎

∀ [[𝑍 < 2]][𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑐𝑙𝑖𝑐𝑘𝑆𝑜𝑛𝑔,𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑐𝑙𝑖𝑐𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑀𝑒𝑛𝑢] .

(2)
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(1) // Transition 16: previous next S0 on view PrincipalView

(2) public void TestSpotifyclicSearch16 () throws UiObjectNotFoundException {
(3) UiObject control = new UiObject (new UiSelector ().

(4) className (" android. widget.TextView ")

(5) .index (0).textContains (" Search "));

(6) control. click ();

(7) Log.v(" DRACODROID ", " CONTROL - clicSearch: " + reportDate);

(8) //...

(9) }
(10)
(11) // Transition 17: previous next S0 on view SearchView

(12) public void TestSpotifysetTitlePopular17 () throws UiObjectNotFoundException{
(13) UiObject control = new UiObject (new UiSelector ().

(14) className (" android. widget.EditText ")

(15) .index (0).textContains (" Search "));

(16) control.setText (" Can't Hold Us ");

(17) Log.v(" DRACODROID ", " CONTROL - setTitlePopular: Can't Hold Us "

(18) + reportDate);

(19) //...

(20) }
(21)
(22) // Transition 18: previous S0 next S0 on view SearchView

(23) public void TestSpotifyclicsong18 () //...

(24)
(25) // Transition 19: previous S1 next S0 on view PrincipalView

(26) public void TestSpotifyclicPrincipalMenu19 () //...

(27)
(28) // Transition 20: previous S1 next S0 on view PrincipalView

(29) public void TestSpotifyclicSearch20 () //...

(30)
(31) // Transition 21: previous S1 next S0 on view SearchView

(32) public void TestSpotifysetTitlePopular21 () //...

Listing 2: Extract of test cases translated into a Java program.

Here, 𝑍 is the unsigned standard score of a direct
measurement of a given network traffic variable 𝑟 that follows
the normal distribution, 𝜇 is the known mean value of the
distribution of 𝑟-measurements for all songs that exhibit
a typical behavior, and 𝜎 is the standard deviation of the
same distribution.The interval is defined between 𝑐𝑙𝑖𝑐𝑘𝑆𝑜𝑛𝑔,
which is the user action performed in the test case that starts
playing a song, and 𝑐𝑙𝑖𝑐𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑀𝑒𝑛𝑢, which represents a
user starting a new song title search marking the end of the
test scenario. The interval formula in (2) verifies whether
the continuous variable rate of the given network traffic
variable lies between a band around the mean in a normal
distribution and a width of two standard deviations, that is,
a significant confidence interval of 95.45% of the songs that
exhibit a typical behavior. These events and variables can be
identified and provided by the runtime monitor; specifically,
these measurements may be taken at regular intervals using
the tcpdump application remotely on an Androidmobile and
therefore be included in the enriched execution trace.

The following network traffic features were monitored
during the playback: the number of packets sent and received
(𝑃𝑘𝑔𝑆 and 𝑃𝑘𝑔𝑅, resp.), the number of bytes sent and

Table 1: Mean and standard deviation of network traffic variables.

Variable Mean Std. deviation
𝑟1 0.252 0.048
𝑟2 0.010 0.002
𝑟3 16.866 0.675

received (𝐵𝑆 and 𝐵𝑅, resp.), and the duration of the connec-
tion in milliseconds (𝐷). Using these features, we established
three network traffic assessment variables: 𝑟1 as the quotient
between 𝑃𝑘𝑔𝑆 versus 𝑃𝑘𝑔𝑅 (𝑟1 = 𝑃𝑘𝑔𝑆/𝑃𝑘𝑔𝑅), 𝑟2 as the
quotient between 𝐵𝑆 and 𝐵𝑅 (𝑟2 = 𝐵𝑆/𝐵𝑅), and 𝑟3 as 𝐷
(𝑟3 = 𝐷). The mean and standard deviation of 𝑟1, 𝑟2, and 𝑟3
(see Table 1) were empirically determined for song playbacks
that exhibited a suitable network behavior and used as the
reference for the verification of extra-functional properties.

We considered that a song playback interval demon-
strated an abnormal behavior when the app started to
download a song but the connection prematurely closed
and was thus forced to reopen a new healthy connection in
order to download the whole song. Subsequently, an observer
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Table 2: Numerical results for test case generation.

Configuration Results

Max. trans. Number of
test cases Time Number of

states Memory

50 199 0.02 s 7,072 129.8MB
60 815 0.08 s 28,763 133.2MB
100 226,029 25.3 s 795,9210 1,724.0MB

detected abnormal behaviors by analyzing 𝑟1, 𝑟2, and 𝑟3
network traffic variables using the following extra-functional
property:

∀ [[(𝑍1 < 2) ∨ (𝑍2 < 2)

∨ (𝑍3 < 2)]][𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑐𝑙𝑖𝑐𝑘𝑆𝑜𝑛𝑔,𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝=𝑐𝑙𝑖𝑐𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑀𝑒𝑛𝑢]
(3)

which is a special case of the extra-functional property
presented in (2) and where 𝑍1, 𝑍2, and 𝑍3 represent the
unsigned standard scores of 𝑟1, 𝑟2, and 𝑟3, respectively.
This extra-functional property, along with the appropriate
tcpdump filter to get only Spotify audio packets, is configured
in the GUI screen shown in Figure 6(a).

4.3. Results. We ran test case generation and verification of
properties in (2) and (3) using MVE running on a 64-bit-
operating system PC, featuring an Intel(R) Core(TM) i5-
3337U CPU processor at 1.8 GHz and 6GB of Ram. The
test cases for Spotify Android were executed on a Samsung
Galaxy Tab 10.1 running Android OS v. 4.1.2 (Firmware ver-
sion 3.0.31-805288) connected to Internet via WiFi (through-
put at 31.6Mb/s). The total execution time of the experiment
was 8.3 hours.

Table 2 shows numerical results related to test case
generation from the XML model with three different val-
ues to limit the maximum depth allowed for the model
exploration (transitions). For each one, we present numbers
for transitions, test cases, processing time, and states and
memory usage by Spin.The results show that a higher number
of transitions significantly increased the execution time,
number of test cases, states, and memory usage. Therefore,
this is a key value to evaluate the generated test cases to
diminish the redundancy between behaviors by finding and
removing unnecessary nested state machines in the source
user behavior model.

Figure 7 shows a graphical representation of a trace
fragment from one of the test case executions. The trace
is composed of discrete states, whose boundaries are deter-
mined by events, such as user actions in this case study.
Each state contains the current value of its variables, such
as the number of packets sent and received, as described in
the previous section. This trace fragment corresponds to one
execution of the SearchPopularStateMachine. The network
traffic variables are filled with zeros (due to traffic filtering
with tcpdump), until 𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝 is equals to 𝑐𝑙𝑖𝑐𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑀𝑒𝑛𝑢.
In this state the song has already been downloaded and
played, and the variables contain the data for this song.

The overall results for network traffic verification with the
extra-functional properties presented in (2) and (3) are listed

Table 3: Results of the verification process applied over the Spotify
for Android app.

Statistic 𝑍1 𝑍2 𝑍3 𝑍1 ∨ 𝑍2 ∨ 𝑍3

Positives 53 52 54 56
Negatives 13 13 13 13
False negatives 3 4 2 0
Sensitivity 95% 93% 96% 100%
Specificity 100% 100% 100% 100%
Accuracy 96% 95% 97% 100%

in Table 3. Within this context, our tool monitored the traces
to obtain values for the three variables 𝑍1, 𝑍2, and 𝑍3. The
normality of the measurements of these variables was eval-
uated using the Shapiro-Wilk test, confirming the normality
of distribution in all cases, as the null hypothesis could not
be rejected for 𝛼 = 0.05. Therefore, it was possible to assess
the network traffic variables by establishing their respective
unsigned standard scores using the extra-functional proper-
ties indicated in (2) and (3). We compare the performances
of the assessment of the extra-functional property described
in (2) for each monitored variable separately (denoted as
𝑍1, 𝑍2, and 𝑍3 to simplify the presentation of (2)) and the
performance of the special extra-functional property case
presented in (3), which joins the three monitored variables
into a single statement (simplified as 𝑍1 ∨ 𝑍2 ∨ 𝑍3). The
two first rows of Table 3 contains the number of trace
intervals determined by [𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝 = 𝑐𝑙𝑖𝑐𝑘𝑆𝑜𝑛𝑔, 𝑡𝑒𝑠𝑡𝑆𝑡𝑒𝑝 =
𝑐𝑙𝑖𝑐𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑀e𝑛𝑢] that behaves correctly/incorrectly with
respect to the corresponding formula. The results in Table 3
show that taking into account all monitored variables at
the same time provided the best performance (sensitivity
= specificity = accuracy = 100%), while considering each
monitored variable separately provided a lower but still
highly accurate outcome.

A graphical timeline representation of the variables 𝑍1,
𝑍2, and𝑍3measured during the execution of the experiment
is shown in Figure 8, where it is possible to see that abnormal
network traffic behavior correlated to large peaks of unsigned
standard scores for all variables.These are the traces reported
by MVE as violations of the property in (3) (negatives in
the table). When we analyzed these traces we noticed that
some HTTP connections in the traces obtained did not end
successfully for various reasons. In most cases the problem
was caused by timeout errors from the remote Spotify service.
The third row of Table 3 shows the number of interval
property violations in which this timeout was not detected
which could be interpreted as a false error.

The results can be presented to the developer with several
levels of detail. For example, Figure 9 shows three levels of
information for the first anomaly (8th song) in Figure 8.
First, the song Demons was selected as part of a test case,
as shown in the extract from the logging at the top of the
figure.The clicSong action produces a first failed GET request
(pink background in the Wireshark screenshot), followed by
a number of successful GET requests (cyan background). If
we check the internal TCP traffic due to the first (failed) GET,
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Figure 7: Fragment of execution trace.
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Figure 8: Timeline representation of the unsigned standard score of the quotient between the number of TCP packets sent versus received
(𝑟1), the quotient of bytes sent versus received (𝑟2), and the duration of the connection in seconds (𝑟3) obtained during the verification
process of the Spotify for Android app.

Figure 9: Different levels of information provided to developers to track errors.

thenwe can see that the client side closed the connectionwith
the RESET option. As far as the RESET procedure is initiated
by the Spotify program, the developer can discover the real
problem detected in the connection.

5. Conclusions and Future Work

In this paper, we have presented a novel tool designed to
identify abnormal network traffic behaviors in a multimedia

application and how different user interactions may lead
to unexpected traffic patterns. It allows generating a large
amount of test cases that can be executed and measured with
proper automation. These test cases represent realistic user
behaviors, instead of random interactions, which may reveal
unforeseen consequences to users. Furthermore, the auto-
mated execution and analysis provides detailed information
when deviations from the expected results are detected, so
that a postmortem analysis can be performed.
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The applicability of the approach has been demonstrated
with a case study based on a multimedia application. How-
ever, other types of applications can also benefit from a
model-based testing solution like the one presented in this
paper. On the one hand, the automatic generation of test cases
from models is well suited for applications with complex but
decomposable behaviors, such as social network applications.
The composition of state machines enables building models
from smaller pieces that can produce realistic behaviors that
were not considered by the developers. This is can also be
applied to games with discrete behaviors, with distinguish-
able screens or stages, such as online gambling games. Each
stage can be implemented in a different statemachinewith the
legal actions that can be performed. A stage change would be
modeled as a transition to a different state machine.

On the other hand, the analysis of network traffic can
benefit any application where developers can describe the
expected patterns in response to certain user interactions.
For instance, a social network application may be analyzed
to check that an adequate amount of data is downloaded
when entering a news stream or photo album. Our approach
works best when the expected patterns can be set in intervals
defined by user interactions or by events that can be observed
by our MVE tool. Thanks to the automatic generation of
test cases, these patterns can be checked over a large set of
user behaviors, to verify whether interactions that were not
considered by the developers can lead to unexpected traffic
patterns.

While all these examples are of applications that commu-
nicate with a server, applicationswith network traffic between
devices, such as VoIP clients, can also be analyzed. Our
modeling language can be used to describe applications that
have interactions across different devices. The test cases will
be executed in the devices in parallel, with synchronization
actions to ensure that they are executed in the expected
sequence.

However, there are some points that can be further
improved in future research. First, we consider that it is
important to improve the synchronization of the mea-
surements and additional information obtained at runtime.
Enhancements in this context will provide the means to
specify richer properties in the model. Additionally, we will
consider implementing some automatic processes intended
to assist the developers in building the user behavior model.
Applications with more complex graphical interfaces, such
as 3D games, are not currently supported and would require
a different approach for interface automation. However, the
samemodeling language could be used, using a different type
of binding to UI elements.
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