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Aiming at reducing joint velocity jumps caused by an unexpected joint-locked failure during spacemanipulator on-orbit operations
without shutting downmanipulator, trajectory optimization strategy considering the unexpectedness characteristics of joint-locked
failure is proposed in the paper, which can achieve velocity jumps reduction in both operation space and joint space simultaneously.
In the strategy, velocity in operation space concerning task completion directly is treated as equality constraints, and velocity
in joint space concerning motion performance is treated as objective function. Global compensation vector which consists of
coefficient, gradient of manipulability, and orthogonal matrix of null space is constructed to minimize the objective function. For
each particular failure time, unique optimal coefficient can be obtainedwhen the objective function isminimal. As a basis, amethod
for optimal coefficient function fitting is proposed based on a priori failure information (possible failure time and the corresponding
optimal coefficient) to guarantee the unexpectedness characteristics of joint-locked failure. Simulations are implemented to validate
the efficiency of trajectory optimization strategy in reducing velocity jumps in both joint space and operation space. And the
feasibility of coefficient function is also verified in reducing velocity jump no matter when joint-locked failure occurs.

1. Introduction

Space manipulator [1, 2] is a kind of complex electrome-
chanical system, which plays an important role in space
station maintenance, rendezvous and docking, and space
exploration. During its long-time service on orbit, affected
by radiation, energetic particle, and high-low temperature
alternating of space environment, many kinds of malfunc-
tions are inevitable, such as link deformation, performance
degradation, and joint failure [3, 4]. Joint as a precision unit,
integrating with machinery, communications, and automatic
control technology, is the core component of space manipu-
lator to achieve safe and smooth operation. Joint failure may
bring about performance degradation of space manipulator
and lead to bad effect on task completion.

For general manipulator on the ground, when joint fails
during manipulator motion, the manipulator can be shut
down to maintain or replace the failure joint. However, if

shutting down space manipulator once joint failure occurs,
the inertia force acting on the manipulator will cause serious
impact force on the end-effector and joints, as well as cause
instability of the base. When joint fails especially during load
operations such as space cabin docking [5] and astronauts
assistant [6], the bigger mass and inertia will cause huger
impact, which may exceed the rated torque and cause serious
hurt on the manipulator parts and operating objects. On
the other hand, when trying to execute task continuously
after joint failure, control strategy should be adjusted in real
time. As a result, velocity jumps will be caused in joint
space and operation space, which will also generate impact
on manipulator structure. Thus, it is of great significance to
smooth motion parameters when joint failure occurs during
on-orbit operations no matter whether space manipulator
will be shut down or execute task continuously.

Joint failure can be divided into joint-locked [7] and
free swing [8] according to whether joint can be operated
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or not after failure occurs. In free swing state, failure joint
moves freely, making themanipulator out of control. In joint-
locked state, failure joint is locked at the angle of failure time.
Although the degree of freedom (DOF) of space manipulator
is reduced, the healthy joints can move normally, and the
task can be executed continuously when joint-locked failure
occurs. Thus in order to avoid the impact force caused by
shutting down space manipulator after joint-locked failure,
the paper is devoted into trajectory optimization research to
achieve task completion and motion parameters smoothness
(velocity jumps reduction especially) without shutting down
manipulator.

In order to achieve task completion after manipulator
failure, scholars concentrate on the following researches.
First, in order to obtain the failure information such as
failure time and failure joint, fault detection, fault isolation,
and fault identification [9–12] are researched. Second, abil-
ities of manipulator are analyzed in failure condition such
as fault-tolerant workspace [13, 14] and dexterity [15, 16].
Based on these researches above, pseudoinverse method [17],
self-motion manifold method [18], quadratic programming
algorithm [19], and configuration optimization [20, 21] are
applied to achieve task completion after failure occurs.
Meanwhile, constraints are analyzed during fault tolerance
to guarantee the practical application. Ralph and Pai [22]
analyzed theminimal constraints necessary in fault tolerance,
Jamisola Jr. et al. [23] took environment obstacle constraints
into account, and Xie et al. [24] introduced the singularity
constraints into the fault-tolerant method.

In the mentioned fault-tolerant researches, some of them
shut down manipulator after failures; then fault-tolerant
method is introduced to achieve task completion. However,
it is not suitable for space manipulator fault-tolerance. The
others execute task via fault-tolerant method in real time.
Unfortunately, when guaranteeing velocity and position in
operation space for task completion, velocity jumps are
brought about into joint space. Scholars try to reduce the
velocity jumps; Abdi et al. [25] concentrated on theminimum
velocity jump in operation space and proposed an optimiza-
tion strategy for joint velocity redistribution. Meanwhile, the
velocity jump in joint space is reduced with the application
of least square method andmatrix perturbationmethod [26].
Jing andCheng [27] achieved velocity jump reduction in joint
space by optimizing the initial configuration of a dual-arm
manipulator. In the authors’ former work [28], velocity jumps
in joint space were reduced by constructing compensation
vectors based on the gradient of manipulability. Further, the
coefficient form of compensation vector was discussed to
achieve better reduction performance.

However, simultaneous reduction for velocity jumps in
operation space and joint space is not achieved. What is
more, velocity jumps reduction in the operation space may
even increase the velocity jumps in joint space. Since velocity
jumps in operation space are concerned with task completion
and velocity jumps in joint space are concerned with joint
structure safety, it is of equal importance to achieve velocity
jumps reduction in the two spaces to guarantee task comple-
tion and motion safety. According to the self-motion charac-
teristics of space manipulator, a set of velocities in operation

space corresponds tomultiple sets of joint velocities. So when
the velocity in operation space is fixed, joint velocity can be
adjusted to find an optimal value minimizing the jumps. On
the basis, the trajectory optimization strategy can be formed
by treating velocity in operation space as constraints and
treating velocity in joint space as optimization objective.

Besides, the mentioned fault-tolerant methods depend
on failure information; only after the failure condition is
confirmed can they begin to work. However, in practi-
cal application, joint-locked failure occurs unexpectedly. It
needs time to obtain failure information with fault detection
method, so time delay is inventible between failure dis-
covery and fault-tolerant method application, which makes
fault-tolerant performance worse than the ideal condition.
Although controllers are designed based on neural networks
to achieve real-time fault tolerance [29–31], the adaptation
of controllers for rapid response and stable operation is
not enough for on-orbit application. Therefore, in order to
avoid time delay problem of fault detection method and
to guarantee the unexpectedness characteristics of joint-
locked failure, global compensation for joint velocity during
the entire path planning is proposed in the paper, based
on which the trajectory optimization is not relevant to the
failure information and can handle an unexpected joint-
locked failure.

In conclusion, the trajectory optimization strategy pro-
posed in the paper aims at dealing with three problems. First,
the task completion on-orbit is guaranteed without shutting
down spacemanipulator, and the parameters of spacemanip-
ulator particularly the velocity jumps should be smoothed
after joint-locked failure occurs. Second, the reduction for
velocity jumps in both operation space and joint space should
be achieved simultaneously. It can be achieved by considering
velocity in operation space as equality constraints and consid-
ering velocity in joint space as optimization objective in the
strategy. Third, the avoidance of time delay problem and the
unexpectedness characteristics of joint-locked failure should
be handled. For this purpose, a global compensation vector
is constructed for velocity compensation over the entire
path planning task, which makes the optimization strategy
irrelevant with the real-time failure information acquisition.
In addition, with global compensation for joint velocity, a
unique coefficient which makes objective function minimal
can be obtained related to a particular failure time. Taking it
as a priori failure information, the law of optimal coefficient
related to arbitrary failure time is concluded. A coefficient
function is obtained to deal with velocity jump reduction
caused by unexpected joint-locked failure.

The presented paper is organized as follows: in Section 2,
velocity jumps in operation space and joint space caused by
joint-locked failure are analyzed. The mathematical expres-
sion of trajectory optimization strategy is derived, during
which velocity jumps in operation space are expressed as
equality constraint and velocity jumps in joint space are
expressed as objective function. In Section 3, global compen-
sation vector for joint velocity is constructed, and the solving
method is proposed to obtain the optimal coefficient of global
compensationwhen joint-locked failure occurs at a particular
time. Then considering the unexpectedness characteristics
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of joint-locked failure, coefficient of global compensation
vector is fitted in function form based on a priori failure
information. In Section 4, simulations are implemented to
validate the effectiveness of trajectory optimization strategy
in reducing the velocity jump in both joint space and
operation space when joint-locked failure occurs at arbitrary
time. The last part is conclusion.

2. Mathematical Expression of Trajectory
Optimization Strategy

Joints are the key parts of space manipulator operations.
When joint-locked failure occurs, it will bring about velocity
jumps in operation space and joint space, which would
tremendously reduce the operability of space manipulator,
especially the ability of pose-reaching and task-completing.
In this section, trajectory optimization is proposed consid-
ering simultaneous velocity jumps reduction in two spaces.
Based on the analysis of velocity jumps, the constraints and
objective of trajectory optimization are derived.

Trajectory optimization is discussed on a typical space
manipulator path planning task, which starts at time 𝑡

0
and

ends at time 𝑡
𝑒
. The control interval is represented as Δ𝑡, and

the execution time of path planning 𝑡 can be represented as
𝑡 = 𝑡
0
+ 𝑠Δ𝑡, 1 ≤ 𝑠 ≤ (𝑡

𝑒
− 𝑡
0
)/Δ𝑡, 𝑠 ∈ 𝑁+.

2.1. Analysis on Velocity Jumps in Operation Space and Joint
Space. For a 𝑛 degree space manipulator, when joints are
healthy during path planning task, the Jacobian matrix and
joint velocity vector at time 𝑡 (𝑡

0
≤ 𝑡 ≤ 𝑡

𝑒
) can be expressed

as

J (q (𝑡)) = [j
1
(q (𝑡)) , . . . , j

𝑘−1
(q (𝑡)) , j

𝑘
(q (𝑡)) , j

𝑘+1
(q (𝑡)) ,

. . . , j
𝑛 (q (𝑡))] ∈ R𝑟×𝑛,

q̇ (𝑡) = [�̇�
1
(𝑡) , . . . , �̇�

𝑘−1
(𝑡) , �̇�
𝑘
(𝑡) , �̇�
𝑘+1
(𝑡) , . . . , �̇�

𝑛
(𝑡)]

T

∈ R𝑛×1, 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑒
.

(1)

The Jacobian matrix J is the function of joint angle vector
q(𝑡) at current time 𝑡. And 𝑟 represents the dimension of
operation space. j

𝑖
(𝑖 ∈ [1, 𝑛]) represents the 𝑖th column of

Jacobian matrix.
When joint-locked failure occurs in joint 𝑘 at time 𝑡

𝑓
, the

dimension of joint space degenerates to 𝑛 − 1. Correspond-
ingly, the Jacobian matrix degenerates to 𝑘J, which is named
as reduced Jacobianmatrix [32].The reduced Jacobianmatrix
and joint velocity vector at time 𝑡 (𝑡

𝑓
< 𝑡 ≤ 𝑡

𝑒
) can be

expressed as

𝑘J (𝑘q (𝑡)) = [𝑘j
1
(
𝑘q (𝑡)) , . . . , 𝑘j

𝑘−1
(
𝑘q (𝑡)) ,

𝑘j
𝑘+1
(
𝑘q (𝑡)) , . . . , 𝑘j

𝑛
(
𝑘q (𝑡))] ∈ R𝑟×(𝑛−1),

𝑘q̇ (𝑡) = [𝑘�̇�
1
(𝑡) , . . . ,

𝑘
�̇�
𝑘−1
(𝑡) ,
𝑘
�̇�
𝑘+1
(𝑡) , . . . ,

𝑘
�̇�
𝑛
(𝑡)]

T

∈ R(𝑛−1)×1, 𝑡
𝑓
< 𝑡 ≤ 𝑡

𝑒
.

(2)

Correspondingly, 𝑘j
𝑖
(𝑖 ∈ [1, 𝑛] ∩ 𝑖 ̸= 𝑘) represents the

𝑖th column of reduced Jacobian matrix. And 𝑘q(𝑡) represents
the reduced joint angle vector. After joint 𝑘 fails at time 𝑡

𝑓
,

the velocity of failure joints turns to 0, and velocity of healthy
joints keeps constant. Thus, at time 𝑡 (𝑡

𝑓
< 𝑡 ≤ 𝑡

𝑒
), it has

�̇�
𝑖
(𝑡) =
𝑘
�̇�
𝑖
(𝑡) ,

j
𝑖 (q (𝑡)) ̸=

𝑘j
𝑖
(
𝑘q (𝑡)) ,

𝑡
𝑓
< 𝑡 ≤ 𝑡

𝑒
, 𝑖 ∈ [1, 𝑛] ∩ 𝑖 ̸= 𝑘.

(3)

Then the velocity jump vector in joint space at time
𝑡 (𝑡
𝑓
< 𝑡 ≤ 𝑡

𝑒
) can be expressed as

Δq̇ (𝑡) = [0 ⋅ ⋅ ⋅ �̇�
𝑘
(𝑡) ⋅ ⋅ ⋅ 0]

T
. (4)

�̇�
𝑘
(𝑡) represents the nominal velocity of 𝑘th jointwhen the

joint is healthy. On the basis, the velocity jump in operation
space Δẋ(𝑡) caused by joint-locked failure is expressed as

Δẋ (𝑡) = Jq̇ (𝑡) − 𝑘J 𝑘q̇ (𝑡) . (5)

According to (5), it will lead to accumulative pose
(position and orientation) deviation ΔP in operation space:

ΔP (𝑡) = ∫
𝑡

𝑡𝑓

Δẋ (𝑡) 𝑑𝑡 = ∫
𝑡

𝑡𝑓

(Jq̇ (𝑡) − 𝑘J 𝑘q̇ (𝑡)) 𝑑𝑡. (6)

When joint failure occurs unexpectedly during path
planning task, an average velocity deviation in the operation
space can be obtained:

Δẋ (𝑡) = ΔP (𝑡)
(𝑡
𝑒
− 𝑡
𝑓
)

=
1

𝑡
𝑒
− 𝑡
𝑓

∫

𝑡𝑒

𝑡𝑓

(Jq̇ (𝑡) − 𝑘J 𝑘q̇ (𝑡)) 𝑑𝑡. (7)

Equation (7) can be used to evaluate the influence of
velocity deviation caused by an unexpected joint-locked
failure, while, for a general path planning task, the pose
accuracy should fulfill accuracy threshold at each time to
guarantee task completion. Set the threshold value as l; when
|ΔP(𝑡)| > |l|, the task cannot be completed. Therefore,
the velocity jump in operation space should be eliminated
preferentially to guarantee task completion.

Generally, velocity jump in operation space can be
reduced by compensation for healthy joint. When compen-
sation vector Δ 𝑘q̇(𝑡) (𝑡 ∈ (𝑡

𝑓
, 𝑡
𝑒
]) is introduced, (5) is turned

into

Δẋ (𝑡) = Jq̇ (𝑡) − 𝑘J (𝑘q̇ (𝑡) + Δ 𝑘q̇ (𝑡)) . (8)

When the velocity deviation in operation space is com-
pletely eliminated, namely, Δẋ(𝑡) = 0, the compensation
vector for joint velocity can be expressed as

Δ
𝑘q̇ (𝑡) = (𝑘J)

†

Jq̇ (𝑡) − 𝑘q̇ (𝑡) . (9)
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(
𝑘J)† represents the pseudoinverse of the reduced Jaco-

bian matrix. By given the compensation Δ
𝑘q̇(𝑡) as (9),

the velocity jump in operation space can be completely
eliminated. The contribution of failure joint is redistributed
to healthy joints. However, additional velocity jumps are
introduced into healthy joints. The velocity compensation
Δ
𝑘q̇(𝑡)may be too large for safety threshold of joint velocity

and the impact caused by compensation may damage the
joint structure, leading to terribly concatenate failure of
joints. Thus, it is of equal importance to decrease the velocity
jumps in operation space and joint space.

2.2. Constraints and Objective of Trajectory Optimization.
In order to achieve simultaneous velocity jumps reduction
in both operation space and joint space, the velocity in
operation space is considered as equality constraint, which
is preferentially guaranteed for task completion. And joint
velocity is used to construct the objective function, which
is adjusted to achieve joint velocity jumps minimal. The
constraints and objective function of trajectory optimization
can be expressed as follows.

2.2.1. Constraints. Assume only position accuracy in oper-
ation space is considered during path planning task. The
actual value of linear velocity in operation space should be
in accordance with the nominal value; namely,

h
1
(𝑡) = k𝑎

𝑒
(𝑡) − k𝑑

𝑒
(𝑡) . (10)

k𝑎
𝑒
, k𝑑
𝑒
∈ R3×1 represent the actual and nominal value of

the linear velocity in the operation space. Correspondingly,
the position in operation space should be tracked as the
nominal value:

h
2
(𝑡) = P𝑎

𝑒
(𝑡) − P𝑑

𝑒
(𝑡) = ∫

𝑡

𝑡0

k𝑎
𝑒
(𝑡) 𝑑𝑡 − ∫

𝑡

𝑡0

k𝑑
𝑒
(𝑡) 𝑑𝑡. (11)

P𝑎
𝑒
,P𝑑
𝑒
∈ R3×1 represent the actual and nominal position

in operation space, respectively. Equations (10) and (11)
are named as task constraints. When task constraints are
guaranteed, it has h

𝑖
(𝑡) = 03×1 (𝑖 = 1, 2; 03×1 ∈ R3×1).

Besides, the parameters of space manipulator should
fulfill the thresholds in path planning. Constraints of joint
velocity and joint angular acceleration are taken into account:

g
1,𝑗 (𝑡) =


�̇�
𝑗
(𝑡)

− �̇�

max
𝑗
,

g
2,𝑗 (𝑡) =


�̈�
𝑗
(𝑡)

− �̈�

max
𝑗

=



(�̇�
𝑗
(𝑡 + Δ𝑡) − �̇�

𝑗
(𝑡))

Δ𝑡



− �̈�
max
𝑗
,

(12)

wherein 𝑗 = 1, . . . , 𝑛 represents the number of joints and �̇�max
𝑗

and �̈�max
𝑗

represent the threshold value of joint velocity and
angular acceleration of the 𝑗th joint, respectively. When (12)
is fulfilled, it has g

𝑖,𝑗
(𝑡) ≤ 0 (𝑖 = 1, 2).

2.2.2. Objective Function. The objective function is con-
structed as the joint velocity deviation at failure time 𝑡

𝑓
. Since

the dimension of joint velocity is reduced after joint failure,
in order to guarantee the dimension,

𝑘
̃̇q is defined based on

𝑘q̇:

𝑘
̃̇q = [𝑘�̇�

1
, . . . ,
𝑘
�̇�
𝑘−1
, 0,
𝑘
�̇�
𝑘+1
, . . . ,
𝑘
�̇�
𝑛
]
T
∈ R𝑛×1. (13)

Then the objective function can be expressed as

f =

Δ
𝑘
̃̇q (𝑡
𝑓
) − Δq̇ (𝑡

𝑓
− Δ𝑡)


. (14)

Based on the analysis above, the mathematical expression
of trajectory optimization strategy is derived as

min f

s.t. g
𝑖,𝑗
(𝑡) ≤ 0 (𝑖 = 1, 2; 𝑗 = 1, . . . , 7)

h
𝑘
(𝑡) = 03×1 (𝑘 = 1, 2; 03×1 ∈ R3×1) .

(15)

3. Solution for Trajectory Optimization
considering Unexpectedness Characteristics
of Joint-Locked Failure

In this section, trajectory optimization when joint fails at a
particular time is solved firstly. A global compensation vector
for joint velocity is constructed based on the orthogonal basis
of Jacobian matrix null space. Then the optimal coefficient of
compensation vector is obtained when the objective function
is minimal. Since global compensation vector compensates
joint velocity in each control interval ignoring the failure
time, time delay problem can be efficiently avoided. Taking
the failure time and corresponding optimal coefficient as
a priori failure information, the law of optimal coefficient
related to arbitrary failure time is concluded, and a method
for coefficient function fitting is proposed based on a priori
failure information to guarantee the unexpectedness charac-
teristics of joint-locked failure.

3.1. Global Compensation Vector for Joint Velocity. In order
to construct the global compensation vector, the orthogonal
basis of Jacobian matrix null space I − J†J is used to rep-
resent the self-motion characteristics of space manipulator.
Manipulability [33] 𝑤 = √det(JJT) is introduced into the
vector, whose gradient can be used to represent the velocity
compensationweight of each joint.When joint-locked failure

occurs, it is reduced as 𝑘𝑤 = √det(𝑘J 𝑘JT). Besides, a constant
coefficient 𝑐

𝑘
is used to adjust the velocity compensation rate

for each joint. Then for each time, it has

u (𝑡) = 𝑐𝑘 (I − J†J) ∇𝑤 (q (𝑡)) 𝑡
0
≤ 𝑡 < 𝑡

𝑓
, (16a)

𝑘u (𝑡) = 𝑐𝑘 (I − (
𝑘J)
†

(
𝑘J)) ∇ 𝑘𝑤(𝑘q (𝑡))

𝑡
𝑓
≤ 𝑡 ≤ 𝑡

𝑒
.

(16b)
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In (16a) and (16b), u(𝑡) ∈ R𝑛×1 and 𝑘u(𝑡) ∈ R(𝑛−1)×1 are
used to compensate joint velocity at each time in path plan-
ning. Before failure occurs, precompensation is implemented
with the vector of (16a). After failure occurs, joint velocity
is compensated according to (16b). Namely, joint velocity at
each time 𝑡 corresponds to a vector u(𝑡) or 𝑘u(𝑡). Then the
global compensation vector for joint velocity over the entire
task is constructed:

U = {u (𝑡
0
) , u (𝑡

0
+ Δ𝑡) , . . . , u (𝑡

𝑓
− Δ𝑡) ,

𝑘u (𝑡
𝑓
) , . . . ,

𝑘u (𝑡
𝑒
)} .

(17)

With the compensation of U, joint velocity can be
expressed as q̇ = J†ẋ + U, which is detailed in

q̇ (𝑡 + Δ𝑡) = J†ẋ (𝑡) + 𝑐
𝑘
(I − J†J) ∇𝑤 (q (𝑡))

𝑡
0
≤ 𝑡 < 𝑡

𝑓
,

𝑘q̇ (𝑡 + Δ𝑡) = (𝑘J)
†

ẋ (𝑡)

+ 𝑐
𝑘
(I − (𝑘J)

†

(
𝑘J)) ∇ 𝑘𝑤(𝑘q (𝑡))

𝑡
𝑓
≤ 𝑡 ≤ 𝑡

𝑒
.

(18)

Joint angle at time 𝑡 + Δ𝑡 can be obtained as

q (𝑡 + Δ𝑡) = q (𝑡) + q̇ (𝑡 + Δ𝑡) Δ𝑡,

𝑘q (𝑡 + Δ𝑡) = 𝑘q (𝑡) + 𝑘q̇ (𝑡 + Δ𝑡) Δ𝑡.
(19)

By substituting q(𝑡 + Δ𝑡) and 𝑘q(𝑡 + Δ𝑡) into (16a) and
(16b), u(𝑡+Δ𝑡) and 𝑘u(𝑡+Δ𝑡) can be obtained.The recurrence
relation between u, q̇, and q is generated, which is shown in
Figure 1.

Since the dimension of velocity is reduced after joint
failure, similar to (13), 𝑘ũ(𝑡) is defined as the same dimension

as u(𝑡), whose 𝑘th element equals 0. Then, according to (18),
the objective function can be turned into

f (U) =


𝑘J†ẋ (𝑡
𝑓
) − Jẋ (𝑡

𝑓
− Δ𝑡) +

𝑘ũ (𝑡
𝑓
)

− u (𝑡
𝑓
− Δ𝑡)


.

(20)

For a particular path planning task, when failure time is
certain, the global compensation vector U will change with
coefficient 𝑐

𝑘
. Thus the objective function can be optimized

to achieve joint velocity jumpminimal by finding the optimal
𝑐
𝑘
.

3.2. Calculation for the Optimal Coefficient 𝑐
𝑘
. In order to

find the optimal 𝑐
𝑘
, the gradient of reduced manipulability in

global compensation vector should be calculated firstly. It has

∇
𝑘
𝑤(
𝑘q) =

𝜕
𝑘
𝑤

𝜕
𝑘q

= (
𝜕
𝑘
𝑤

𝜕𝑞
1

, . . . ,
𝜕
𝑘
𝑤

𝜕𝑞
𝑖

, . . . ,
𝜕
𝑘
𝑤

𝜕𝑞
𝑛

)

T

𝑖 = 1, . . . , 𝑛, 𝑖 ̸= 𝑘,

(21)

wherein the partial derivative of the reduced manipulability
to the 𝑖th joint angle can be expressed as

𝜕
𝑘
𝑤

𝜕𝑞
𝑖

=

𝜕√det (𝑘J 𝑘JT)

𝜕𝑞
𝑖

=

𝜕 (det (𝑘J 𝑘JT)) /𝜕𝑞
𝑖

2 ⋅
𝑘
𝑤

.
(22)

Make 𝑘Jp = 𝑘J 𝑘JT, and 𝑘Jp
𝑖
expresses the 𝑖th row of 𝑘Jp.

Then

𝜕 (det (𝑘Jp))
𝜕𝑞
𝑖

=

𝑛

∑

𝑗=1

det(𝑘Jp
1
, . . . ,

𝜕
𝑘Jp
𝑗

𝜕𝑞
𝑖

, . . . ,
𝑘Jp
𝑛
) , (23)

wherein 𝜕 𝑘Jp
𝑗
/𝜕𝑞
𝑖
= (𝜕
𝑘Jp/𝜕𝑞

𝑖
)
𝑗
represents the 𝑗th row of

𝜕
𝑘Jp/𝜕𝑞

𝑖
∈ R𝑟×𝑟 and 𝑟 is the dimension of operation space.

Then

𝜕
𝑘Jp
𝜕𝑞
𝑖

=

𝜕 (
𝑘J 𝑘JT)
𝜕𝑞
𝑖

=
𝜕
𝑘J
𝜕𝑞
𝑖

𝑘

JT + 𝑘J(
𝜕
𝑘J
𝜕𝑞
𝑖

)

T

.
(24)

In (24), 𝜕 𝑘J/𝜕𝑞
𝑖
∈ R(𝑛−1)×𝑟. Substitute (24) into (23); the

partial derivative of reduced manipulability to joint angle 𝑞
𝑖

can be obtained:

𝜕
𝑘
𝑤

𝜕𝑞
𝑖

=

∑
𝑛

𝑗=1
det(𝑘Jp

1
, . . . , ((𝜕

𝑘J/𝜕𝑞
𝑖
)
𝑘JT + 𝑘J (𝜕 𝑘J/𝜕𝑞

𝑖
)
T
)
𝑗

, . . . ,
𝑘Jp
𝑛
)

2 ⋅
𝑘
𝑤

.
(25)

Substitute (25) into (21); the gradient of the reducedmanip-
ulability can be obtained. The gradient of manipulability can

be obtained in a similar way. Then, by given 𝑐
𝑘
, the value of

global compensation vector U can be calculated.
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Figure 1: The recurrence relation between u, q̇, and q.

Before searching for the optimal 𝑐
𝑘
, its feasible region

should be preferentially determined. According to con-
straints (10) and (11), the feasible region for 𝑐

𝑘
can be defined

as

𝑐
𝑘
∈ {𝑐
𝑘
| (P𝑎
𝑒
(U (𝑘
𝑐
)) − P𝑑

𝑒
)
𝑥
≤ 𝑙
𝑥

∩ (P𝑎
𝑒
(U (𝑘
𝑐
)) − P𝑑

𝑒
)
𝑦
≤ 𝑙
𝑦
∩ (P𝑎
𝑒
(U (𝑘
𝑐
)) − P𝑑

𝑒
)
𝑧

≤ 𝑙
𝑧
} ,

(26)

wherein the subscripts 𝑥, 𝑦, 𝑧 represent the 𝑥, 𝑦, 𝑧 component
of vector (P𝑎

𝑒
(U(𝑐
𝑘
)) − P𝑑

𝑒
).

Equation (23) means the 𝑥, 𝑦, 𝑧 component of deviation
between actual position and desired position should fulfill the
threshold value of position accuracy l simultaneously, where
l is expressed as l = [𝑙

𝑥
, 𝑙
𝑦
, 𝑙
𝑧
]
T. In the feasible region, the

optimal 𝑐
𝑘
can be obtained as follows:

(a) According to the constraints, obtain the feasible
region of 𝑐

𝑘
∈ [𝑐

min
𝑘
, 𝑐

max
𝑘
].

(b) Set the initial value of 𝑐
𝑘
= 𝑐

min
𝑘

and interval value
Δ𝑐
𝑘
> 0, and calculate the global compensation vector

U(𝑐
𝑘
).

(c) Calculate the joint velocity and acceleration compen-
sated with U(𝑐

𝑘
).

(d) Confirmwhether joint velocity and acceleration guar-
antee the constraints (12). If the constraints are not
guaranteed, the corresponding 𝑐

𝑘
is abandoned. Else

the value of objective function is obtained f(𝑐
𝑘
).

(𝑐
𝑘
, f(𝑐
𝑘
)) is stored in set K.

(e) 𝑐
𝑘
= 𝑐
𝑘
+ Δ𝑐
𝑘
. If 𝑐
𝑘
≤ 𝑐

max
𝑘

, turn to step (c). Else
select the minimal value of f(𝑐

𝑘
) in set K, and the

corresponding 𝑐
𝑘
is the optimal value.

The steps are also detailed as shown in Figure 2.

3.3.TheMethod of Fitting Optimal Coefficient Function. With
the analysis above, the optimal 𝑐

𝑘
can be obtained tominimize

the objective function.However, during practical application,
the accurate failure time is not easy to be obtained. In this sec-
tion, the trajectory optimization is developed considering the
unexpectedness characteristics of joint-locked failure when
failure information is unknown. And a method is proposed
to derive the law of optimal coefficient for unexpected joint
failure.

Since failure time is unexpected in practical application,
the objective function is changed as themaximal value of joint
velocity deviation between adjacent control cycles:

f = max
𝑡

‖Δq̇ (𝑡)‖ ,

𝑡 = {𝑡
0
+ Δ𝑡, 𝑡

0
+ 2Δ𝑡, . . . , 𝑡

𝑒
− Δ𝑡, 𝑡

𝑒
} ,

(27)

wherein Δq̇(𝑡) represents the joint velocity deviation, which
is expressed as

Δq̇ (𝑡) =
{{{{

{{{{

{

q̇ (𝑡) − q̇ (𝑡 − Δ𝑡) , 𝑡 < 𝑡
𝑓

𝑘
̃̇q (𝑡) − q̇ (𝑡 − Δ𝑡) , 𝑡 = 𝑡

𝑓

𝑘
̃̇q (𝑡) − 𝑘 ̃̇q (𝑡 − Δ𝑡) , 𝑡 > 𝑡

𝑓
.

(28)

According to the analysis in Sections 3.1 and 3.2, a unique
𝑐
𝑘
can be obtained to minimize the objective function when

joint-locked failure occurs at particular time 𝑡
𝑓
. Thus, when
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Figure 2: Process of finding the optimal 𝑐
𝑘
when joint fails at a particular time.

the failure time is unknown, a function of operation time c
𝑘
(𝑡)

can be constructed to guarantee the arbitrary failure time.
Then (18) can be turned into

q̇ (𝑡 + Δ𝑡) = J†ẋ (𝑡) + c
𝑘
(𝑡) (I − J†J) ∇𝑤 (q (𝑡))

𝑡
0
≤ 𝑡 < 𝑡

𝑓
,

𝑘q̇ (𝑡 + Δ𝑡) = (𝑘J)
†

ẋ (𝑡)

+ c
𝑘 (𝑡) (I − (

𝑘J)
†

(
𝑘J)) ∇ 𝑘𝑤(𝑘q (𝑡))

𝑡
𝑓
≤ 𝑡 ≤ 𝑡

𝑒
.

(29)
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As a basis, the trajectory optimization strategy consider-
ing the unexpectedness characteristics of joint-locked failure
can be expressed as

find function c
𝑘
(𝑡)

min f = max
𝑡

‖Δq̇ (𝑡)‖

𝑡 = {𝑡
0
+ Δ𝑡, 𝑡

0
+ 2Δ𝑡, . . . , 𝑡

0
+ 𝑠Δ𝑡, . . . , 𝑡

𝑒
}

s.t. g
𝑖,𝑗
(𝑡) ≤ 0 (𝑖 = 1, 2; 𝑗 = 1, . . . , 7)

h
𝑘
(𝑡) = 03×1 (𝑘 = 1, 2; 03×1 ∈ R3×1) .

(30)

In order to solve the optimization strategy and obtain the
coefficient function c

𝑘
(𝑡), a method of fitting the coefficient

function based on polynomial fitting using a priori failure
information is proposed. Define the polynomial function as
follows:

c
𝑘
(𝑡) =

𝑠

∑

𝑖=0

𝑎
𝑖
⋅ 𝑡
𝑖
. (31)

[𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑠
]
T
∈ R(𝑠+1)×1 represents the coefficient of

polynomial, 𝑠 represents the order of polynomial, and 𝑡

represents the task execution time. Generally, joint velocity at
the initial time 𝑡

0
and the end time 𝑡

𝑒
should be zero during

path planning; namely, q̇(𝑡
0
) = 0 and q̇(𝑡

𝑒
) = 0. According to

q̇ = J†ẋ + U, function c
𝑘
(𝑡) should guarantee the boundary

condition:
c
𝑘
(𝑡
0
) = 0,

c
𝑘
(𝑡
𝑒
) = 0.

(32)

In order to obtain the polynomial coefficient
[𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑠
]
T
∈ R(𝑠+1)×1, a priori failure information is used

to fit function (31). The a priori failure information includes
failure time, failure joint angle, and the corresponding
optimal coefficient 𝑐

𝑘
. When failure time is certain, the

failure joint angle can be theoretically calculated via
manipulator path planning algorithm, and the optimal 𝑐

𝑘
can

be obtained based on the analysis in Section 3.2. In this way,
a priori failure information can be obtained by supposing
possible failure time in path planning. Then numbers of
failure time tsam = (𝑡

𝑓1
, 𝑡
𝑓2
, . . . , 𝑡

𝑓𝑚
) and the corresponding

optimal coefficient c
𝑘

sam
= (𝑐
𝑘1
, 𝑐
𝑘2
, . . . , 𝑐

𝑘𝑚
) can be obtained

as samples for function fitting.
The samples consist of failure time tsam =

(𝑡
𝑓1
, 𝑡
𝑓2
, . . . , 𝑡

𝑓𝑚
) and the corresponding optimal coefficient

c
𝑘

sam
= (𝑐
𝑘1
, 𝑐
𝑘2
, . . . , 𝑐

𝑘𝑚
). The 𝑖th sample can be represented

as (𝑡
𝑓𝑖
, 𝑐
𝑘𝑖
). 𝑡
𝑓𝑖

and 𝑐
𝑘𝑖

are the 𝑖th element of tsam and
c
𝑘

sam, which can also be represented as (tsam)
𝑖
and (c

𝑘

sam
)
𝑖
,

respectively. Thus, the 𝑖th sample can be represented as
((tsam)

𝑖
, (c
𝑘

sam
)
𝑖
).

Define the evaluation criterion of function fitting 𝑒 as
the sum of square for deviations between samples and fitting
function value, which has the expression of

𝑒 =

𝑚

∑

𝑖=1


(c
𝑘

sam
)
𝑖
− c
𝑘
((tsam)

𝑖
)


2
. (33)
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Figure 3: Calculation process of function c
𝑘
(𝑡).

The threshold of evaluation criterion is defined as 𝑒
𝑐
.

When 𝑒 ≤ 𝑒
𝑐
, function c

𝑘
(𝑡) has a high fitting quality, and the

fitting result is acceptable, while 𝑒 > 𝑒
𝑐
means more samples

should be selected or polynomial order should be increased
for better fitting. In conclusion, the process of fitting function
c
𝑘
(𝑡) is shown in Figure 3.
By considering the unexpectedness characteristics of

joint-locked failure, a method is proposed based on a priori
failure information for optimal coefficient function fitting. So
when accurate joint failure information cannot be acquired in
practical application, global compensation vector based on
c
𝑘
(𝑡) can be introduced to achieve trajectory optimization,

with which velocity jumps can be efficiently reduced no
matter when joint-locked failure occurs.

4. Simulation Experiments

4.1. Research Object. An SSRMS [2] type space manipulator
who has 7 DOF is used to carry out simulation experiments.
The coordinate systems are shown in Figure 4, and the DH
parameters are listed inTable 1. Path planning taskmentioned
in the paper concerns the position accuracy in the operation
space of space manipulator only.

4.2. Velocity Jump Reduction When Joint-Locked Failure
Occurs at a Particular Time. In a particular path planning
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Figure 4: Coordinate systems of 7 DOF space manipulator.

Table 1: DH parameters of space manipulator.

𝑖 𝜃
𝑖
(∘) 𝑑

𝑖
(m) 𝑎

𝑖−1
(m) 𝛼

𝑖−1
(∘)

1 0 0.6 0 90
2 90 0.5 0 −90

3 0 0.5 5 0
4 0 0.5 5 0
5 0 0.5 0 90
6 −90 0.5 0 −90

7 0 0.6 0 0

task, the initial configuration of space manipulator is set
as [−50, −170, 150, −60, 130, 170, 0]( ∘) and the target pose is
set as [9.6, 0, 3, −1, −0.5, −2]. The other parameters of path
planning task are listed in Table 2.

According to Sections 3.1 and 3.2, under the position
threshold of l, the feasible region of 𝑐

𝑘
is calculated as 𝑐

𝑘
∈

[0, 0.36]. Then set the initial value of 𝑐
𝑘
as 0, and carry out

search algorithm with interval Δ𝑐
𝑘
= 0.01 in the feasible

region. The value of objective function f changing with 𝑐
𝑘
is

shown in Figure 5. When 𝑐
𝑘
= 0.25, the objective function is

minimal; fmin = 0.0035 rad/s.
When 𝑐

𝑘
= 0.25, the joint velocities are shown in Figure 6.

Figure 6(a) represents the velocity curve of joint 2 (failure
joint), and Figure 6(b) represents the velocity curve of joint
3 (healthy joint). It is obvious that the joint velocity jump is
significantly reduced after global compensation. In detail, the
value of velocity jumps, acceleration, and jump reduction rate
of each joint is listed in Table 3.

In Table 3, velocity jump of each joint is reduced signif-
icantly except joint 5. Since objective function reflects the
accumulation of velocity jumpof all the joints, when objective
function is minimal, it does not mean the velocity jump of
each joint is minimal. The velocity jumps of some joints
may increase, such as joint 5 in Table 3. In a former paper
of the author [28], the coefficient is changed into diagonal
matrix form to achieve velocity jump minimal for each joint.
However, it brings about higher computation cost and more
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Figure 5: Value of objective function changes with 𝑐
𝑘
.

complex solution process. With constant coefficient of 𝑐
𝑘
, the

norm of velocity jumps is reduced 84.55%, which shows great
efficiency of the global compensation vector constructed
with constant coefficient in reducing joint velocity jumps.
Although jumps of some joints (joint 5) increase, the velocity
jump is very small and can be accepted in practical applica-
tion.

Besides, the position deviation in operation space when
𝑐
𝑘
= 0.25 is obtained in Figure 7. With the compensation in

joint velocity at each control interval, the position deviation
in operation space is accumulated.Themaximumdeviation is
less than 4×10−3m, which is much smaller than the length of
manipulator (101 order of magnitude). During the 20 s’ path
planning task, the velocity jump in operation space is about
10
−4m/s order of magnitude, which can be basically ignored.

In conclusion, the velocity jumps in operation space can be
mostly eliminated, while the velocity jump in joint space can
be reduced to minimal when joint-locked failure occurs at a
particular time.
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Table 2: Parameters for path planning task.

Task cycle Control interval Failure joint Failure time Position threshold
20 s 0.05 s 2nd joint 10 s l = (0.01m, 0.01m, 0.01m)

Table 3: Analysis of velocity jump and acceleration with compensation for each joint.

Joint 𝑖

Velocity jump
before

compensation
(rad/s)

Acceleration
before

compensation
(rad/s2)

Velocity jump
after

compensation
(rad/s)

Acceleration
after

compensation
(rad/s2)

Reduction rate
of velocity jump

1 7.891 × 10
−3

1.578 × 10
−1

1.476 × 10
−3

2.952 × 10
−2

81.29%
2 1.940 × 10

−2
3.880 × 10

−1
2.584 × 10

−3
5.168 × 10

−2
86.68%

3 3.682 × 10
−3

7.364 × 10
−2

1.185 × 10
−3

2.370 × 10
−2

67.82%
4 5.114 × 10

−4
1.023 × 10

−2
3.323 × 10

−4
6.646 × 10

−3
35.02%

5 2.774 × 10
−4

5.548 × 10
−3

6.454 × 10
−4

1.291 × 10
−2

−57.62%
6 6.048 × 10

−4
1.210 × 10

−2
1.259 × 10

−4
2.518 × 10

−3
79.18%

7 0 0 0 0 0
Objective
function 2.128 × 10

−2
4.256 × 10

−1
3.287 × 10

−3
5.673 × 10

−2
84.55%
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Figure 6: Joint velocity compensated when 𝑐
𝑘
= 0.25.

4.3. Coefficient Function Fitting for Unexpected Joint-Locked
Failure. Define the initial configuration of spacemanipulator
path planning task as [−61.5146 −176.3220 145.8516 −

60.7288 129.9836 169.1376 0](
∘
), and set the target

pose as [9.6m, 0m, 3m, −1 rad, −0.5 rad, −2 rad]. The
velocity in operation space is planned by trapezoidal planning
with parabola transition. Task cycle is 12 s, acceleration time

is 2 s, and control interval is 50ms. Joint-locked failure is
assumed to occur in joint 2.

Since joint-locked failure time is unexpected, a priori
failure information is used to fit the coefficient function.
A priori failure information includes possible failure time,
failure joint angle, and the corresponding optimal 𝑐

𝑘
. During

the mentioned path planning task, 40 moments are selected
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Figure 7: Position deviations in operation space after velocity reduction.

uniformly as possible failure time. According to (18) and (19),
the joint angle at failure time can be obtained. Correspond-
ingly, the optimal 𝑐

𝑘
related to each moment can be obtained,

which is shown in Figure 8. Regardless of the samples 𝑐
𝑘
= 0,

the other samples can be used to fit a five-order polynomial
function when meeting the threshold of fitting 𝑒

𝑐
= 10
−4:

c (𝑡) = −0.0005𝑡5 + 0.0175𝑡4 − 0.2341𝑡3 + 1.532𝑡2

− 5.0034𝑡 + 6.9496.

(34)

Considering the samples 𝑐
𝑘
= 0, the coefficient function

for an unexpected joint-locked failure can be expressed as

c
𝑘
(𝑡) =

{{{

{{{

{

0 0 ≤ 𝑡 < 𝑡
𝑠1

c (𝑡) 𝑡
𝑠1
≤ 𝑡 ≤ 𝑡

𝑠2

0 𝑡
𝑠2
≤ 𝑡 < 𝑡

𝑒
.

(35)

𝑡
𝑠1
and 𝑡
𝑠2
are segment points. The criterion to determine

the segment points is defined as follows: the values of
objective function compensated with 𝑐

𝑘
= c
𝑘
(𝑡
𝑠
) and 𝑐

𝑘
= 0

are the same; namely,


f
𝑐𝑘=c𝑘(𝑡𝑠) − f

𝑐𝑘=0


∈ 𝜀. (36)

𝜀 represents infinitesimal. However, for each possible
failure moment 𝑡, there is a feasible region for the related
coefficient 𝑡𝑐

𝑘
∈ [
𝑡
𝑐
𝑘

min
,
𝑡
𝑐
𝑘

max
]. If 𝑡
𝑠
selected according to (36)

guarantees c(𝑡
𝑠
) ∉ [
𝑡𝑠𝑐
𝑘

min
,
𝑡𝑠𝑐
𝑘

max
], it should be abandoned.

Instead of it, the segment points are set as 𝑡
𝑠
= {𝑡
𝑠
| c(𝑡) =

𝑡𝑠𝑐
𝑘

max or c(𝑡) = 𝑡𝑠𝑐
𝑘

min
, 𝑡
𝑠
∈ 𝑅
+
}.

Accordingly, two segment points can be obtained as 𝑡
𝑠1
=

1.1 s, 𝑡
𝑠2
= 10.9 s. Then (35) can be expressed as

c
𝑘
(𝑡) =

{{{{

{{{{

{

0 0 ≤ 𝑡 < 1.1

−0.0005𝑡
5
+ 0.0175𝑡

4
− 0.2341𝑡

3
+ 1.532𝑡

2
− 5.0034𝑡 + 6.9496 1.1 ≤ 𝑡 ≤ 10.9

0 10.9 ≤ 𝑡 < 12.

(37)

Based on (37), the compensation vector of each control
interval u(c

𝑘
(𝑡)) can be obtained, with which the velocity

jump can be reduced no matter when joint-locked failure
occurs.

4.4. Verification of the Coefficient Function Related to Unex-
pected Joint-Locked Failure. In order to verify the efficiency
of the optimal coefficient function (37), assume joint-locked
failure occurs at each control interval; namely, failure occurs
at 0.05 s, 0.1 s, 0.15 s, . . . , 12 s. Via the velocity compensation

vector based on (37), the velocity jumps related to each failure
time are shown in Figure 9.

At most failure time, the joint velocity jump can be
significantly reduced. The average velocity jump equals
4.9𝑒
−3 rad/s after compensation. Compared with the average

value of 0.0172 rad/s before compensation, velocity jump
is reduced 71.5% averagely. Especially in period of 𝑡

𝑠3
–𝑡
𝑠4
,

the performance of jump reduction is remarkable, and the
velocity jump is reduced below 5𝑒−3 rad/s.
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Before velocity jump reduction, during a control interval
Δ𝑡 = 0.05 s, joint acceleration needs to change 0.344 rad/s2
averagely when joint-locked failure occurs. In order to afford
the acceleration, huge joint torque is needed. When the safe
threshold of joint acceleration is set as 0.15 rad/s2 to protect
joint torque not exceeding the rated torque, the change
of velocity cannot be achieved and huge impact will be
affected on joint motor. After velocity jump reduction, the
requirement for joint acceleration is reduced to 0.098 rad/s2
averagely, which fulfills the safe threshold and the impact
on the joint can be eliminated. In this way, the proposed
trajectory strategy is of great efficiency in smoothing the
velocity parameter and guaranteeing motion safety.

During periods of 0–𝑡
𝑠1
and 𝑡
𝑠2
–𝑡
𝑒
, the reduction perfor-

mance of velocity jump is worse than other periods. Accord-
ing to (37), the compensation coefficient in this period equals
0, which means no compensation is introduced. So when
joint-locked failure occurs in this period, the velocity jump
cannot be reduced with the proposed method. However, the
velocity jump in this period is below 0.01 rad/s (0.57∘/s),
which is acceptable for space manipulator in most applica-
tions.

Periods of 𝑡
0
–𝑡
𝑠3
and 𝑡
𝑠4
–𝑡
𝑒
are almost consistent with the

acceleration stage and deceleration stage of path planning.
Velocity in operation space changes quickly in the two stages,
making the velocity compensation insufficient for jump
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reduction. As a result, the reduction performance is not ideal
in these periods. Period 𝑡

𝑠3
–𝑡
𝑠4
corresponds to the uniform

motion stage of path planning, the velocity in operation space
during this stage is stable, and the velocity jump reduction
is significant. It can be concluded that velocity changing
in operation space at the failure time can influence the
performance of velocity jump reduction.

In conclusion, the coefficient function obtained based on
a priori failure information is verified efficiently in reducing
the velocity jumps caused by an unexpected joint-locked
failure. And velocity changing in operation space at the failure
time can influence the reduction performance.The limitation
of the method is that when joint-locked failure occurs at the
initial and end period of path planning, the velocity jump
cannot be reduced. However, velocity jumps in these periods
are always small, which can be ignored in space manipulator
applications.

5. Conclusion

With the proposed trajectory optimization strategy in the
paper, the on-orbit operations can be executed to completion
without shutting down the space manipulator when joint-
locked failure occurs unexpectedly. The velocity jumps in
both joint space and operation space caused by joint-locked
failure are simultaneously reduced, and the impact caused on
space manipulator structure can be eliminated. As a result,
the safety of space manipulator and related parts can be guar-
anteed. The core of the strategy is the construction of global
compensation vector for joint velocity, which consists of the
gradient of reducedmanipulability, orthogonal matrix of null
space, and coefficient. The strategy can deal with velocity
jumps reduction problem caused by joint-locked failure at
either a particular time or an unexpected time. For joint-
locked failure at a particular time, the optimal coefficient
of compensation vector can be obtained to achieve velocity
jump minimal. For joint-locked failure at an unexpected
time, a priori failure information is obtained by assuming
the possible failure time and calculating the corresponding
optimal coefficient. Then the law of coefficient is concluded
for trajectory optimization. As a result, coefficient is turned
into function form and a function fitting method based on a
priori failure information is proposed. With simulations, the
efficiency of the method is verified in reducing the velocity
jumps no matter when joint-locked failure occurs.

For further study, the effect of the initial configuration
of manipulator on the velocity jump reduction performance
should be discussed in-depth. Besides, the velocity in oper-
ation space is planned by the trapezoidal planning with
parabola transition in the paper. However, the reduction
performance in the acceleration and deceleration stage is
not ideal compared with the uniform motion stage, which
is considered to be the limitation of the velocity planning
method in operation space. By changing the planning way
of velocity in operation space, the reduction performance
for velocity jump is worthy to be researched. In addition,
the paper concentrates on space manipulator and single
joint failure. For arbitrary serial manipulator, the trajectory

optimization strategy is adaptable, which can also be devel-
oped for multiple joint failure tolerance.
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