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Based on special features of array buoy and the research field of location and tracking of underwater target, the research
combines the highly adaptive nonlinear filtering algorithmunscentedKalmanfilterwith the nonlinear programming ofmultistation
array buoy positioning system. In accordance with the model of nonsequential target location, the research utilizes Unscented
Transformation to update the measuring error and covariance matrix of state error, aiming at estimating the filtering of state
variable and acquiring the object’s current state of motion.The research analyzes the positioning performance of algorithm, pursuit
path, astringency, and other performance indexes of target-relevant parameter through numerical simulation experiment. From
the result, the conclusion that multistation array buoy can complete the task of tracing target track very well can be reached, which
provides theoretical foundation for putting the algorithm into engineering practice.

1. Introduction

Sonobuoy is a very important part in integrated aviation anti-
submarine, which is mainly used in large-scale exploratory
search of enemy submarine. Sonobuoy is small in size and can
explore large-area maritime space in short time. Sonobuoys
have low requirements for the installation objects: they can be
carried in quantity by airplanes and be equipped in helicopter,
seaplane, or other fixed wing aircraft. Sonobuoy floats on the
ocean and is slightly influenced by the noise of its carrier.
Therefore, sonobuoy obtains the best detection effect.

One of buoy’s major tasks is the effective location and
tracking of underwater target [1]. Buoy’s task is utilizing
underwater sound sensors to conduct continuous measure-
ment and estimation of targets’ motion parameters such as
orientation, speed, and course.

Traditional buoys mainly adopt liner array sensor to
form wave beam in horizontal or vertical directions. Many
buoys are arranged in the water to form geometric shape
to explore underwater targets. The traditional method has
low positioning accuracy and high requirements of relative
location among buoys. The current randomness of buoys in
the ocean current will influence the positioning accuracy and
cause errors.

The new array buoy adopts plane array and can form
wave beam in both horizontal and vertical directions, which
improves the spatial gain and lower the working frequency.
The combination of receiving array and buoy can greatly
improve the noise detection of buoy system and obtain accu-
rate measurement information. Theoretically, single array
buoy can measure the location of target. However, because
of the complexity and diversity of missions, the need of
optimizing performance index of single array buoy cannot be
satisfied. Therefore, researches begin to arrange multistation
array buoys according to certain formations and integrate
the data from multisensor nodes to locate the underwater
targets accurately [2–6]. Compared with detecting result of
single-station array buoy, multistation array buoy is equipped
with acoustic aperture, which can obtain more reliable and
accurate estimation information.

The centralized structure of fusion model combines the
measurement data coming from different sensors into the
fusion center and then the fusion center will process all
measurement data together. Because of the huge amount of
data, the centralized structure has high requirements for the
processing ability of central nodes. However, compared with
distributed and multisensor system, the centralized structure
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Figure 1: Multistation Array Geometry.

has higher accuracy thanks to the unified disposal of original
data. With the rapid development of central processing unit,
the target estimation and tracking issue which is based on
centralized multisensor system, as a basic question of the
information fusion among multisensor, has received more
and more attention from researches.

In the centralized real-time processing and fusion model
of time series information, buoys will transmit the obser-
vation data of target signals which comes from respective
buoys to fusion processing center. However, in the complicate
transmission process in maritime channel, out-of-sequence
measurements (OOSM) problems will occur due to transport
delay. For example, for the same object, the measurements of
earlier time come later than the measurements of later time.
Out-of-sequence measurement will negatively influence the
reliability and accuracy of multiplatform fusion system. In
order to solve the problem of OOSM, Bar-Shalom et al.
[7, 8] put forward a series of suboptimal algorithms; the
purpose is to use the out-of-sequence measurements for
the current moment to update the target state, in order to
obtainmore accurate state estimation and its error covariance
matrix. Zhou et al. [9] analyzed theoretically the optimality
algorithm which is put forward by Bar-Shalom, point out
that its optimality is associated with the discretization of
process noise model, and propose an improved algorithm
based on discrete time model, improving the accuracy of the
filter. Bar-Shalom et al. [10] used the method of equivalent
observation data in the original literature which extended
one-step-lag OOSM to the multistep lag OOSM. The paper
by Zhang et al. [11] was proposed based on the best linear
unbiased estimation criterion of OOSM. Shen et al. [12] and
Yu et al. [13] put forward solving the data fusion problem of
multisensor OOSM based on one-step-lag OOSM.

In the real problem of tracking underwater target,
Gaussian assumptions of the linear and noise of system
model cannot be met. Therefore, the positioning and track-
ing issue of underwater target is a nonlinear system filter
issue. Unscented Kalman filter (UKF) algorithm, based on
Unscented Transformation (UT) and Kalman filter technol-
ogy, selects some sampling points and approximates themean
value and variance through nonlinear variation. UKF not

only makes nonlinear system filter reach high accuracy, but
also adapts the noise very well. Therefore, UKF can be used
to optimize the problem ofOOSMfilter fusion.WhenOOSM
occurs, adopting OOSM algorithm which is based on UT to
conduct current state estimation and update covariance will
get a more accurate state estimation and its covariance. In
order to improve the robustness during the operation of this
algorithm, there appears square root unscentedKalmanfilter-
ing algorithm. In order to add the nonlinear transformation
of a noise distribution to a state estimation process, Wu et al.
[14] give unscented Kalman filtering algorithm of a dimen-
sion expanding form. Simo [15, 16] deduces a smoothing
algorithmof unscentedKalman filtering algorithm.Directing
at interactive target moving model, Babu et al. [17] and Xu
and Han [18] introduce UKF into the trace analysis of a
maneuvering target by a passive sonar.

This paper is organized as follows. We discuss the local-
ization principle and UKF filtering algorithm by multiarray
buoys in Sections 2 and 3. Section 4 derived the nonsequential
fusion UKF algorithm. In Section 5, simulation results are
briefly described, and Section 6 is a conclusion.

2. The Positioning Technology of
Multistation Array Buoy

2.1. Geometric Model. The site location and system equip-
ment of multiarray buoys are shown as Figure 1. Currently, as
for the operational command of sonarmen, the measurement
of targets’ three-dimensional coordinate is finished through
the cooperation of two-dimensional sonar and height-
measurement sonar. Two-dimensional sonar canmeasure the
location and distance of targets. Height-measurement sonar
can conduct supplementary measurement of height, which is
accurate, simple, easy to control, and low in cost.

In Figure 1, the positioning system of (T/R)
𝑖
multistation

array buoy consists of 𝑖 single-station array buoys. T repre-
sents the transmitting station and R represents the receiving
station. T/R
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2.2. Positioning Principle. The stations of (T/R)
𝑖
multistation

array buoy cooperate with each other; when measuring
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Figure 2: Double-station array buoy two-dimensional positioning
principle.

the target’s direction, azimuth angle information (𝜃
1
, 𝜃
2
⋅ ⋅ ⋅ 𝜃
𝑖
)

could be simply used for positioning. See Figure 2.
The system model takes the base line between two buoys

as 𝑥-axis, lets the midpoint be the origin of coordinates, and
establishes a rectangular coordinate system. The positioning
equation is
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solving (1) to acquire the target location,
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2.3. Positioning Error Analysis. Under the assumed con-
ditions, angle measuring errors of the two buoys and a
station measuring error are 𝜎

𝜃
1

, 𝜎
𝜃
2

, and 𝜎
𝑠
. To keep them

constant, the positioning error equation (3) as shown below
is differentiating from (2):
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Equation (3) is written as a matrix form:

d𝑉 = 𝐶d𝑋 + d𝑋
𝑠
, (5)

wherein d𝑉 = [d𝜃1 d𝜃
2]
𝑇, d𝑋 = [d𝑥 d𝑦]𝑇, and d𝑋

𝑠
=

[𝑘𝜃,1 𝑘
𝜃,2]
𝑇,

𝐶 =
[
[
[

[

−
sin 𝜃
1

𝑟
1

cos 𝜃
1

𝑟
1

−
sin 𝜃
2

𝑟
2

cos 𝜃
2

𝑟
2

]
]
]

]

(6)

solving (5) to acquire the error vector of the target location:
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] . (7)

The relationships between the target location error in the
rectangular coordinate system (d𝑥, d𝑦), the angle measuring
error (d𝜃
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above is
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wherein |𝐶| = sin(𝜃
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2.4. The Geometric Interpretation of Positioning Precision.
Any positioning system has different positioning precisions
for targets in different spatial positions, which means the
positioning error of a target location is closely related to
the geometrical relationship of the target relative to a posi-
tioning station. Positioning stations with different geometric
distributions have different positioning errors for targets
in the same spatial positions. Therefore, the relationship
between positioning errors and the geometric distributions of
positioning stations has to be studied. Meanwhile, under that
condition that the geometric distributions of positioning sta-
tions have been determined, knowing the positioning errors
distributions of this positioning system for different spatial
positions is necessary for effectively using the positioning
system and accurately positioning and tracking a target.

In order to describe the relationship between a posi-
tioning error and geometry and measuring the influence of
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a geometric position on positioning performance, a noun,
“geometric dilution of precision” (short forGDOP), is defined
and can be expressed in a two-dimensional surface as follows:

GDOP = [𝜎
2

𝑥
+ 𝜎
2

𝑦
]
1/2

. (9)

Geometric dilution of precision describes the relationship
between the positioning error and the base station geometric
distribution participating in the positioning. It can become a
standard studying the distribution regularities of positioning
errors in different geometric distributions, and it can also
become a reference for choosing the position of a base station
when establishing a new buoy system.

3. The Filtering Algorithm Based on UKF

3.1. UT Transforming Principle. The traditional method [19]
has low positioning accuracy and high requirements of
relative location among buoys. The current randomness of
buoys in the ocean current will influence the positioning
accuracy and cause errors.

UKF is a filtering algorithm [20] combining UT
(Unscented Transformation) and Kalman filtering technique.
By specially selecting some Sigma sampling points and better
approximating the mean and variance of random variables
after nonlinear transformation, UKF can not only make the
nonlinear system filter arrive at a higher precision, but also
adapt well to a noise.

UKF filter firstly applies UT to a state equation and
then estimates the filter by transformed state variables. UT
is selecting some points in an original state distribution
according to certain rules to make matrix and covariance of
these points equal the mean and covariance of the original
state distribution and to substitute these points into a non-
linear system function; thus acquire data points of a relevant
nonlinear function; finally evaluate the transformed mean
and covariance according to the point set.

Assume that there is an 𝑛-dimension random vector 𝑥 ∼

𝑁(𝑥, 𝑃); 𝑚-dimension random vector 𝑧 is one nonlinear
function of 𝑥, 𝑧 = 𝑓(𝑥); the statistical property of 𝑥 is (𝑥, 𝑃

𝑥
);

and the statistical property of 𝑦, (𝑧, 𝑃
𝑧
) is transmitted by a

nonlinear function 𝑓(𝑥).
The transformation is formulating a certain number of

points 𝜉
𝑖
(𝑖 = 0, 1, . . . , 𝐿) based on amount of information

(𝑥, 𝑃
𝑥
), and these points are called points 𝜎. Calculating

the results of points 𝜎, 𝛾
𝑖
(𝑖 = 0, 1, . . . , 𝐿), transmitted by

𝑓(𝑥), and calculating (𝑧, 𝑃
𝑧
) based on 𝛾

𝑖
(𝑖 = 0, 1, . . . , 𝐿),

commonly the number of points 𝜎 is 2𝑛 + 1; that is, 𝐿 = 2𝑛.
The transformation is as the following two steps.

3.1.1. Evaluating Points 𝜎 andTheir Weight. Consider
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wherein 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛; 𝑛 is the dimensionality of the
state vector 𝑥; a scale parameter 𝛼 determines the dispersion
degree of points 𝜎; and 𝛼 is usually a small positive number.
In order to ensure that the covariance matrix is a positively
definite matrix, 𝜅 is usually 0. 𝛽 describes the distribution
information of state 𝑥 (if the distribution information of state
𝑥 follows Gaussian distribution, the optimal value of 𝛽 is
0). (√(𝑛 + 𝜆)𝑃

𝑥
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statistical property, respectively.

3.1.2. Calculating the Results of Points 𝜎, 𝛾
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UT is different from Monte Carlo method. The former is
selecting a few points 𝜎 from the given distribution based on
the certain rules but not determining the points by random
sampling. In addition, the UT is not a common method of
weighting, so it is also not a sampling statistics.

3.2. UKF Filtering Algorithm. If using UT to replace the
local linearization means in EKF algorithm, UKF filtering
algorithm can be acquired. The equation of UKF filter is as
follows:

(A) For a given state �̂�
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and a covariance matrix
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(B) Evaluating information �̂�
𝑘|𝑘−1

and 𝑃
𝑘|𝑘−1
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𝜎 by applying UT, calculating �̂�
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and 𝑃

𝑘|𝑘−1
of
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points 𝜎 by the transmission result of a nonlinear
measurement equation, and having the following
equations through the transmission of 𝑥

𝑘
by the

measurement equation,
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Calculating a measurement one-step prediction, a
covariance of a measurement error, and a cross-
covariance matrix between a state error and a mea-
surement error after UT, that is,
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(14)

(C) After acquiring a new measurement value 𝑧
𝑘
, updat-

ing the filter, and acquiring the update value of the
filter and the covariance matrix of an evaluated error,
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wherein𝑊
𝑘
is a gain matrix of the filter.

4. Nonsequential Fusion UKF Algorithm

4.1. Fusion Model. A centralized fusion structure sends mea-
surement values given by all the not fixed coding sensors
after observing targets to a fusion center, and let a center
processor uniformly process this measurement information.
In the information fusion center, the observation platforms
of sensors are numbered consecutively combined with a
sequential fusion idea.

First, predict and update the state in the first sensor. To
be clear that the first sensor is not a single sensor but refers
to the first to be processing nodes and is not necessarily the
same sensor in every processing time.Then input the updated
result of the first sensor as the updated state of the second
sensor and continue updating. Similarly, update the values
of state estimation using the measurement values of many

Sensor 2

Sensor i

Sensor 1

Centralized fusion center

Motion target S

M
ea

su
re

m
en

t s
ign

al

Sequential signal

Figure 3: Diagram illustrating centralized structure.

sensors and ensure that the updated sequence of the sensors
would not affect the final result of fusion during the process of
updating.The purpose is to ensure the precision of estimated
results based on certain calculation complexity. As for out-of-
sequence centralized fusion structure, see Figure 3.

4.2. Out-of-Sequence UKF Algorithm. The state equation
and measurement equation of underwater multistation buoy
array of nonlinear system model can be expressed as follows:

𝑥
𝑘+1

= 𝑓 (𝑥
𝑘
, 𝑞
𝑘
) ,

𝑦
𝑘
= ℎ (𝑥

𝑘
) + 𝑟
𝑘
,

(16)

wherein 𝑓 is the state transition function, ℎ is the measure-
ment function, 𝑞

𝑘
∼ 𝑁(0, 𝑄

𝑘
) is the process noise, and 𝑟

𝑘
∼

𝑁(0, 𝑅
𝑘
) is measurement noise and also is the innovation.

Those two noises, irrelevant to each other, are zero mean
gauss noises.

When using UKF algorithm, first we need to define the
extended state and the covariance matrix as

�̂�
𝑎

𝑘
=
[
[

[

�̂�
𝑘

�̂�
𝑘

�̂�
𝑘

]
]

]

,

𝑃
𝑎

𝑘
=
[
[

[

𝑃
𝑘

0 0

0 𝑄
𝑘

0

0 0 𝑅
𝑘

]
]

]

(17)

according to formula (10) to get 2𝑛
𝑎
+ 1 sampling points 𝜁𝑥

𝑖,𝑘

and the weight allocation of sampling points 𝜔(𝑚)
𝑖

.
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By usingUT conversion, information prediction equation
can be acquired as formula (14). Defined 𝑖

𝑘
is information

state contribution and 𝐼
𝑘
is the covariance matrix of 𝑖

𝑘
as

𝑖
𝑘
= 𝐻
𝑇

𝑘
𝑅
−1

𝑘
[𝑟
𝑘
+ 𝐻
𝑘
�̂�
𝑘|𝑘−1

] ,

𝐼
𝑘
= 𝐻
𝑇

𝑘
𝑅
−1

𝑘
𝐻
𝑘
,

(18)

wherein 𝐻
𝑘
is the Jacobian matrix, 𝑄

𝑘
is process noise

covariance, and𝑅
𝑘
ismeasurement noise covariance and𝑅

𝑘
=

𝑦
𝑘
− ℎ(�̂�
𝑘|𝑘−1

).
Therefore information contribution value can be updated

as

𝑖
𝑘+1

= 𝐻
𝑇

𝑘+1
𝑅
−1

𝑘+1
[𝑟
𝑘+1

+ 𝐻
𝑘+1

�̂�
𝑘+1|𝑘

] ,

𝐼
𝑘+1

= 𝐻
𝑇

𝑘+1
𝑅
−1

𝑘+1
𝐻
𝑘+1

.

(19)

On the condition of multistation buoy observation, the
information contribution value of No. 𝑠 (𝑠 = 1, 2, . . . , 𝑠) buoy
is

𝑖
𝑠

𝑘+1
= 𝐻
𝑠

𝑘+1
(𝑅
−1

𝑘+1
)
−1

[𝑟
𝑠

𝑘+1
+ 𝐻
𝑘+1

�̂�
𝑘+1|𝑘

] ,

𝐼
𝑠

𝑘+1
= (𝐻
𝑠

𝑘+1
)
𝑇
(𝑅
−1

𝑘+1
)
−1

𝐻
𝑠

𝑘+1
.

(20)

Therefore, we can acquire the integrated result ofmultistation
array buoy as follows:

�̂�
𝑘+1

= �̂�
𝑘+1|𝑘

+

𝑆

∑
𝑠=1

𝑖
𝑠

𝑘+1
. (21)

5. Numerical Simulation and Result Analysis

According to the principle that double-station array buoy
uses angle information to conduct two-dimensional posi-
tioning described in Section 3.1, we carried out simulation
to positioning performance of algorithm. The parameters
when making simulation are the following: the target moves
towards 𝑥 direction ±20 km and towards 𝑦 direction ±20 km,
underwater sound velocity V

𝑐
= 1.5 km/s, the coordinate

of T/R station is (−7.5, 0) km, and 𝑅 station is (7.5, 0) km,
angulation errors 𝜎

𝜃
𝑇

= 1.5mrad, 𝜎
𝜃
𝑅

= 1.5mrad, stations
measuring error 𝜎

𝑠
= 15m, Monte-Carlo: 500 times. We

can get two-dimensional positioning error graph and three-
dimensional GDOP graph, as shown in Figures 4 and 5,
respectively.

From the two abovementioned graphs, we can see that
when positioning using double-station array buoy, the distri-
bution of positioning error is as follows: the whole graph is
a regular butterfly in shape, comprising three areas: baseline
area (two array buoy connection parts), wide board area (the
extended part outside the baseline), and side board area (the
extended part with two stations as vertex). The positioning
precision in the baseline area is worse; thewide board area has
the typical feature of bistatic sonar systemwith balanced error
distribution; GDOP isoline extends outside from the baseline
with slowly decreased precision, covering most of areas; side
board area is the worst area in positioning precision.
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Figure 4: Spatial distribution of double-station array buoy two-
dimensional target positioning error.
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Figure 5: Distribution graph of three-dimensional space.

Based on the analysis on abovementioned positioning
andUKF filtering step described in Section 3.2, we conducted
numerical simulation to the tracking effect of double-station
array buoy. The parameters of simulation are as follows:
acoustic velocity: 1500m/s, sampling interval: 1 s, simulation
length sampling for 1000 times, buoy direction-finding error
of mean square deviation: 5𝜋/180, frequency measurement
error of mean square deviation: 0.1 Hz, target initial position:
(−2500, 4500), velocity: 10m/s, course: 3𝜋/4, and frequency:
1000Hz, and the mean square deviations of the disturbance
noises from velocity, course, and frequency are all defined
as 0.1. Figures 6 and 8 show the simulation results of the
simulation matrix of determinant, in which the double-
station and four-station array buoys are vertical to the target
course. Figures 7 and 9 show the estimation astringency
curves of relevant parameters including velocity, frequency,
and course.
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Figure 6: Schematic diagram of a single simulation tracking.
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Figure 7: Estimation astringency curve of speed, frequency, and
course.

In order to obtain the data about the changes of target
frequency over time, we use short-time Fourier transform
method to estimate frequency. For each FFT, transform the
lengths of 256 sampling points with 50% overlapping ratio
and 1024 algorithm length.

After obtaining FFT of each interval, select the largest
frequency point as the measured frequency of the interval.
Conduct smooth filtering to the calculated frequency signal
using 32-pecking-order-number of FIR low-pass filter with
100Hz low pass cut-off frequency.
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Figure 8: Schematic diagram of a single simulation tracking.
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Figure 9: Estimation astringency curve of speed, frequency, and
course.

From Figures 6 and 9, we can see that the proposed
algorithm in this paper can track the target trajectory well
and parameters such as target speed, frequency, and course
can be converged efficiently. Contrasting Figures 7 and 9, the
number of iterations decreased from 500 to 200. The results
show that multistation array buoy can effectively improve the
computation efficiency.

In industry application, the cost of dropping buoy is one
of the factors we must take into consideration. Therefore,
it is reasonable to balance the accuracy requirements and
computation time is very necessary.
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6. Conclusion

This paper studies the positioning and tracking of under-
water moving target utilizing double-station array buoy
and analyzed relevant performance under the framework of
unscented Kalman filter (UKF) theory. The result shows that
reasonable numerical simulation method can finish the task
of tracking the target trajectory under the condition of simu-
lation very well and the relevant parameters such as speed,
course, and frequency have astringency. The conclusion of
this paper aims to provide theoretical foundation for putting
the algorithm into engineering practice.

In the process of target tracking, some false alarm and
dismissal probability frommeasuring datamay occur because
of the influence of complex ocean environment. In this
situation, the OOSM problem will become more complex,
which requires more future researches on the nonlinear out-
of-sequence filtering problem.
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