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We discuss some aspects concerning the electromagnetic sector of the abelian Lee-Wick (LW) quantum electrodynamics (QED).
Using theDirac’s theory of constrained systems, the higher-order canonical quantization of the LW electromagnetism is performed.
A quantum bound on the LWheavymass is also estimated using the best knownmeasurement of the anomalousmagnetic moment
of the electron. Finally, it is shown that magnetic monopoles can coexist peacefully in the LW scenario.

1. Introduction

In recent years, B. Grinstein, D. O’Connell, and M. Wise
extended the ideas of the LW finite QED [1, 2] to non-
abelian gauge theories and gave rise to the Lee-Wick standard
model (LWSM) [3]. In the LWSM, each field of the standard
model (SM) has associated a massive LW partner, with
these modes being the only parameters added to the SM
framework. LW theories belong to a class of higher-order
gauge models that are very useful to treat ultraviolet diver-
gences. By adding higher-order derivative kinetic terms in the
Lagrangian density, the modified propagator improves the
behavior at high energies scale and induces the appearance
of gauge massive resonances. Unlike the original LW QED,
the LWSM is not finite, but it is renormalizable. The reason is
because the gauge covariant derivate introduces momentum
dependence interactions, giving rise to degree of divergence
of loops diagrams and the modified propagators have better
asymptotic behavior in the ultraviolet range, reducing the
degree of divergence in radiative corrections. By power
counting arguments, these mutual effects cancel each other
and give origin at most to logarithmic divergences, providing
an alternative way to solve the hierarchy puzzle [3]. It also
have been suggested that quantum gravity effects can excite a

Lee-Wick partner to every field in the SM [4, 5], which is the
exact degree of freedom required by the LWSM. In order to
be consistent with the electroweak data, the LW scale must be
of a few TeV [4, 6–8]. Currently, there is a vast literature both
as phenomenological issues and as theoretical aspects of the
LWSM [9–21], which shows the growing interest in the last
few years.

Since LW quantum electrodynamics is the cornerstone of
the LWSM, issues concerning its properties can give a valu-
able insight into our understanding of the LW dynamics. A
fundamental feature regarding quantum field theories (QFT)
is associated with ultraviolet divergences. This shortcoming
is intrinsic to interacting QFTs when excitations are point
particles and interactions are local, which arise due the fact
that the integrals over intermediate energies diverge at their
high energy end [22]. At the classical context, Podolsky [23],
Podolsky and Kikuchi [24, 25], Montgomery [26], and Green
[27, 28] developed completely relativistic electrodynamics
which is free from the defect of infinities self-energies
and which reduces to Maxwell-Lorentz formulation for low
energy phenomenon through the addition of higher-order
derivative kinetic terms in Maxwell electrodynamics. This
field theory has the advantage of maintaining the 𝑈(1) gauge
structure of the QED. In the quantum realm, Sakurai gave
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an outlook relative to divergence difficulties inherent to
quantum theory at high energies [29]. In order to obtain
finite values of physical observables as mass and charge of the
electron in QED, the photon propagator must be modified by
a cut-off parameter, as Pauli-Villars regulator for example. But
the Pauli-Villars prescription is unsatisfactory since it gives
rise to non-Hermitian interactions and scattering processes
do not conserve probabilities, violating thereby the unitarity.
Sakurai suspected that QED must be modified at short
distances to overcome these difficulties at fundamental level.
Soon after Sakurai’s insight, Lee and Wick proposed a way
to treat the QED divergences in ultraviolet range [1, 2].
The basic idea was to promote the Pauli-Villars regulator
as a freedom degree in QED. The outcome is a modified
photon propagator that in high frequencies limit goes as
𝑘
−4, improving the behavior of the electrodynamics at short

distances. Their model is named Lee-Wick finite theory of
QED.Nevertheless, a wrong sign residue appears in the poles,
coming to light negative norm states in the Hilbert space and
thereby breaking unitarity. Lee and Wick argued that these
ghost modes should possess a heavy mass and decay in on-
shell particles. It is worth to note that Lee-Wick original ideas
were abandoned only after the dimensional regularization
schema of gauge theories [30], living a relegation era for
about two decades. Nevertheless, questions in regard to the
foundations of the Lee-Wick finite QED remain open until
today; for example, demonstration concerning the unitarity
at arbitrary loops in perturbative formalism does not exist;
however, no exceptions were found and satisfactory answers
are not yet settled.

Following up previous works [31, 32], the focus of this
paper is on the electromagnetic sector of the LW quantum
electrodynamics and it is organized as follows. In Section 2,
we review some properties of the abelian Lee-Wick electrody-
namics. In Section 3, the higher-order canonical quantization
is considered in detail. In Section 4, we estimate a quan-
tum bound in the LW heavy mass using the experimental
value of the anomalous magnetic moment of the electron.
In Section 5, we discuss the possibility of coexistence of
magnetic monopoles and the duality symmetry in the LW
model. Our conclusions are presented in Section 6.

In our conventions ℏ = 𝑐 = 1 and the signature of the
metric is (+1, −1, −1, −1).

2. Overview of the Abelian Lee-Wick Model

The Abelian LW model is defined by the following gauge-
invariant Lagrangian:

L = −
1

4
𝐹
𝜇]𝐹
𝜇]
−
1

4𝑀2
𝐹
𝜇]◻𝐹
𝜇]
, (1)

where 𝐹
𝜇](= 𝜕𝜇𝐴] − 𝜕]𝐴𝜇) is the field strength.

Let us then show that the above Lagrangian describes two
independent (on-shell) spin-1 fields: massless one and mas-
sive one, with positive and negative norm, respectively. To do
that, it is appropriate to provide another formulation where
an auxiliary field is introduced and the higher-derivative term

is absent.The field theory with real Vectorial fields𝐴
𝜇

and𝑍
𝜇

with Lagrangian

L =
1

2
𝐴
𝜇

◻𝑍
𝜇

+
1

2
𝜕
𝜇

𝐴
𝜇

𝜕]𝑍
]
−
𝑀
2

8
𝐴
𝜇

𝐴
𝜇

+
𝑀
2

4
𝐴
𝜇

𝑍
𝜇

−
𝑀
2

8
𝑍
𝜇

𝑍
𝜇

,

(2)

is equivalent to the field theory with the Lagrangian in (1). In
fact, varying 𝑍

𝜇

gives

𝑍
𝜇

= 𝐴
𝜇

+
2

𝑀2
◻𝐴
𝜇

−
2

𝑀2
𝜕
𝜇

𝜕]𝐴
]
, (3)

and the coupled second-order equations from (2) are fully
equivalent to the fourth-order equations from (1).The system
(2) now separates cleanly into the Lagrangians for two fields,
when we make the change of variables

𝐴
𝜇

= 𝐵
𝜇

+ 𝐶
𝜇

,

𝑍
𝜇

= 𝐵
𝜇

− 𝐶
𝜇

.

(4)

In terms of 𝐵
𝜇

, 𝐶
𝜇

, 𝐵
𝜇] ≡ 𝜕𝜇𝐵] − 𝜕]𝐵𝜇, and 𝐶𝜇] ≡ 𝜕𝜇𝐶] −

𝜕]𝐶𝜇, the Lagrangian now becomes

L = −
1

4
𝐵
𝜇]𝐵
𝜇]
+
1

4
𝐶
𝜇]𝐶
𝜇]
−
𝑀
2

2
𝐶
𝜇

𝐶
𝜇

, (5)

which is nothing but the difference of the Maxwell
Lagrangian for 𝐵

𝜇

and the Proca Lagrangian for 𝐶
𝜇

.
The particle content of the theory can also be obtained

directly from (1). To accomplish this goal we compute the
residues at the simple poles of the saturated propagator
(contraction of the propagator with conserved currents).
Adding to (1) the gauge-fixing term L

𝜆

= −(1/2𝜆)(𝜕
𝜇

𝐴
𝜇

)
2,

where as usual 𝜆 plays the role of the gauge-fixing parameter,
and noting that due to the structure of the theory and
the choice of a linear gauge-fixing functional, no Faddeev-
Popov ghosts are required in this case, we promptly get the
propagator in momentum space; namely,

𝐷
𝜇] (𝑘) =

𝑀
2

𝑘2 (𝑘2 −𝑀2)
{𝜂
𝜇] −

𝑘
𝜇

𝑘]

𝑘2

×[1 + 𝜆(
𝑘
2

𝑀2
− 1)]} .

(6)

Contracting (6) with conserved currents 𝐽𝜇(𝑘) yields

M ≡ 𝐽
𝜇

𝐷
𝜇]𝐽

]

= −
𝐽
2

𝑘2
+

𝐽
2

𝑘2 −𝑀2
,

(7)

which allows us to conclude, taking into account that 𝐽2 < 0
[33–35], that the signs of the residues ofM at the poles 𝑘2 = 0
and 𝑘2 = 𝑀2 are, respectively,

ResM (𝑘
2

= 0) > 0, ResM (𝑘
2

= 𝑀
2

) < 0, (8)

which confirms with our previous result.
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It is worth noticing that the wrong sign of the residue
of the heavy particle indicates the instability of the theory
at the classical level. From the quantum point of view it
means that the theory is nonunitary. Luckily, these difficulties
can be circumvented. Indeed, the classical instability can be
removed by imposing a future boundary condition in order
to prevent exponential growth of certain modes. However,
this procedure leads to causality violation in the theory [36];
fortunately, this acausality is suppressed below the scales
associated with the LW particles. On the other hand, Lee and
Wick argued that, despite the presence of the aforementioned
degrees of freedom associated with a nonpositive definite
norm on the Hilbert space, the theory could nonetheless
be unitary as long as the new LW particles obtain decay
widths. There is no general proof of unitary at arbitrary loop
order for the LW electrodynamics; nevertheless, there is no
known example of unitarity violation. Accordingly, the LW
electrodynamics is finite. Therefore, we need not be afraid of
the massive spin-1 ghost.

In summary, we may say that the LW work consists
essentially in the introduction of Pauli-Villars, wrong-sign
propagator, fields as physical degrees of freedom which leads
to amplitudes that are better behaved in the ultraviolet and
render the logarithmically divergent QED finite.

We remark that, for the sake of convenience, we will work
on the representation of the gauge field𝐴

𝜇

as given in (1), with
the propagator as in (6).

3. Lee-Wick Canonical Quantization

Higher-order canonical quantization has been performed
for some authors in the past [37–40]. Nevertheless, some
questionable results are presented in these works.We initially
will accomplish the canonical quantization of the Lee-Wick
electromagnetism and at the end of this section discuss these
controversial outcomes. Our starting point for the higher-
order canonical quantization is the following LW Lagrangian
density:

L = −
1

4
𝐹
2

𝜇] +
1

2𝑀2
𝜕
𝜇

𝐹
𝛼𝛽

𝜕
𝜇
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. (9)

We will analyze (9) instead of (1) since these Lagrangians
are the same up to a total derivate. This choice is due to the
fact that the Lagrangian (1) has third-order derivative fields,
which introduce additional complications in the canonical
quantization. The pairs of canonically conjugate variables
related to Lagrangian (9) are (𝐴𝛼, 𝜋

𝛼

) and (𝐴𝛼, 𝜂
𝛼

), respec-
tively, where 𝐴𝛼 ≡ �̇�

𝛼 is an independent variable. Since
gauge invariance holds in the LW model, the second-order
Lagrangian (9) is degenerate; that is, the Hessian matrix is
singular.

A set of generalized canonical momenta are

𝜋
]
= −𝐹
0]
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𝑀2
(◻𝐹
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.

(10)

Primary constraints are obtained from the definition of
the canonical momenta, without making use of the equations
of motion. According to relations (10), the LWmodel has the
following primary constraints:

𝜂
0

≈ 0,

𝜋
0

+ 𝜕
𝑖

𝜂
𝑖

≈ 0,

(11)

where “≈” means weak equations according to Dirac’s
method [41–44]. It is necessary to evaluate the dynamics
of the constraints. As usual in Hamiltonian formalism, it is
required to compute the canonical Hamiltonian, which is
given by

𝐻
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] .

(12)

The primary Hamiltonian𝐻
1

is defined as

𝐻
1

= 𝐻
𝐶

+ ∫𝑑
3x [𝜆
1

𝜂
0

+ 𝜆
2

(𝜋
0

+ 𝜕
𝑖

𝜂
𝑖

)] . (13)

So, applying the Poisson brackets we obtain

̇𝜂
0

= {𝜂
0

, 𝐻
1

} ≈ 0,

(�̇�
0

+ 𝜕
𝑖

̇𝜂
𝑖
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0
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𝜂
𝑖

, 𝐻
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} = 𝜕
𝑖

𝜋
𝑖

≈ 0,

(14)

which reveal the appearance of a nonprimary constraint to
us. The secondary constraint arises from the condition that
the primary constraints should be preserved in time. It is
necessary to identify all the constraints of the model. Then,
computing the Poisson brackets again, but now with the
secondary Hamiltonian

𝐻
2

= 𝐻
𝐶

+ ∫𝑑
3x [𝜆
1

𝜂
0

+ 𝜆
2

(𝜋
0

+ 𝜕
𝑖

𝜂
𝑖
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𝜕
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we get 𝜕
𝑖

�̇�
𝑖

= {𝜕
𝑖

𝜋
𝑖

, 𝐻
2

} ≈ 0. No more constraints appear in
our formalism, which implies that the consistency condition
is identically fulfilled.

Analyzing the Hamilton field equations of motion to 𝐴
0

and 𝐴
𝑖

provides us with

�̇�
0

= {𝐴
0

, 𝐻} = 𝐴
0

+ 𝜆
2

,

�̇�
𝑖
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𝑖
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+ 𝜕
𝑖

𝜆
3

,

(16)

which allow us to choose the following Lagrange multipliers:

𝜆
2

= 0, 𝜆
3

= 0. (17)
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On the other hand, the equations of motion concerning
𝐴
𝑖

and 𝐴
0

yield

̇
𝐴
𝑖
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̇
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1
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Equation (18) is nothing but 𝜂𝑖 = (1/𝑀
2

)𝜕
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𝐹
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function related to the𝜆
1
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𝑗
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0
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The extended Hamiltonian can be expressed as 𝐻
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𝐻
𝐸

= ∫𝑑
3x [𝜋
0

𝐴
0

− 𝜋
𝑖

𝐴
𝑖

+ 𝐴
0

(𝜕
𝑖

𝜂
𝑖

) −
1

2
𝑀
2

𝜂
2

𝑖

+ (𝜕
𝑗

𝜂
𝑖

) 𝐹
𝑗𝑖

−
1

2
𝐹
2

0𝑖

+
1

4
𝐹
2

𝑖𝑗

−
1

2𝑀2
𝜕
𝑖

𝐹
𝑖0

𝜕
𝑗

𝐹
𝑗0

−
1

4𝑀2
𝜕
0

𝐹
𝑖𝑗

𝜕
0

𝐹
𝑖𝑗

+
1

4𝑀2
𝜕
𝑘

𝐹
𝑖𝑗

𝜕
𝑘

𝐹
𝑖𝑗

+
̇
𝐴
0

𝜂
0

] .

(20)

The constraints obtained are all of the first class; that is,
the Poisson bracket with all the other constraints vanishes
identically, which is a direct consequence of 𝑈(1) gauge
invariance. The canonical quantization requires that we
impose a gauge choice and remove the nonphysical variables.
The gauge condition necessary to change the set of the first
class constraints into set of the second class constraints is
obtained by analysing the LW field equations in terms of
potential 𝐴𝜇, which can be expressed as

(1 +
◻

𝑀2
)◻𝐴

]
− 𝜕

]
(1 +

◻

𝑀2
) 𝜕
𝜇

𝐴
𝜇

= 0. (21)

Equation (21) suggests that a possible gauge choice is

(1 +
◻
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) 𝜕
𝜇

𝐴
𝜇

= 𝐶, (22)

where 𝐶 is an arbitrary constant which can be chosen as to
equal to zero, which provides us with the following gauge
conditions:

𝐴
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◻
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0

= 0. (23)

The LW field equation (21) is compatible with this partic-
ular gauge choice. (We could also choose the gauge conditions
𝐴
0

= 0, ∇ ⋅ A = 0, 𝐴
0

= 0.) The gauge constraints also
satisfy the consistency condition. All the constraints obtained
are now of the second class type and are given by

Ω
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= 𝐴
0

≈ 0.
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A set of constraints found enable us to determine the
constrained matrix. The only elements of the 𝐶

𝛼𝛽

≡ {Ω
𝛼

, Ω
𝛽

}

nonzero are
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1

, Ω
4

} = − {Ω
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3
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6
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5
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3

} = 𝛿
3
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Since the constraints are all of the second class, the 𝐶-
matrix is invertible and the Dirac brackets are completely
characterized by

{𝐴 (𝑥) , 𝐵 (𝑥


)}
𝐷

= {𝐴 (𝑥) , 𝐵 (𝑥


)}

− ∫𝑑
3y𝑑3z {𝐴 (𝑥) , Ω

𝑎

(𝑦)} 𝐶
−1

𝑎𝑏

(𝑦, 𝑧) {𝐴 (𝑥) , 𝐵 (𝑥


)} .

(26)

Computing the inverse 𝐶-matrix and taking into account
that the green function 𝐺(x − x) satisfy the equation (1 −
∇
2

/𝑀
2

)∇
2

𝐺(x − x) = −𝛿3(x − x) and this is given by

𝐺(x − x) = 1

4𝜋

1

x − x


[1 − 𝑒
−𝑀|x−x|

] , (27)

and then the Dirac brackets becomes

{𝐴
𝜇

(x, 𝑡) , 𝜋] (x, 𝑡)}
𝐷

= (𝜂
𝜇]
− 𝜂
𝜇0

𝜂
]0
) 𝛿
3
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+ 𝜂
𝜇𝑖

𝜂
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)
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𝜕
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𝜇
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𝐷
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𝜇0

𝜂
]0
) 𝛿
3

(x − x) .
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According to Dirac’s method, we must write these equa-
tions as strong equalities. Using the canonical quantization
prescription ({𝐴, 𝐵}

𝐷

→ −𝑖[𝐴, 𝐵]), the LW commutators are
given by

[𝐴
𝑖

(x, 𝑡) , 𝜋
𝑗

(x, 𝑡)]

= 𝑖𝛿
𝑖𝑗

𝛿
3
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2
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)𝜕
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𝑗
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𝑗
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𝑖𝑗

𝛿
3

(x − x) . (30)

It is worth noting that, in the absence of higher-
order derivative terms, the commutator (29) reproduces the
Maxwell commutation relation. To end up, it is important to
note that the Poincaré algebra is also satisfied.
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The history of the quantization of higher-order electro-
magnetic theories began a long time ago. The first who tried
to perform the higher-order quantization in the electromag-
netism were Podolsky and Kikuchi in 1944 [24] and some
years later Podolsky and Schwed [45] using theGlupta-Bleuer
method; the results obtained however are dubious due to the
fact that in that epoch there was not an easy method to deal
with quantization methods of gauge theories, a procedure
that is not completely clear up to now. In the 1950s, Pitman
Jr. [46] and Richard E. Martin [47] probed some aspects of
Podolsky electrodynamics in their Ph.D. thesis. Again, the
results found are not correct due the inability of treating the
electron self-energy.

Higher-order canonical quantization by Dirac formal-
ism began in the early 1960s. Since then, some authors
tried to achieve the quantization of higher-order theories
[48–51] via Dirac’s method; on the other hand, canonical
quantization of higher-order electromagnetism starting from
the determination of primary and secondary constraints
has been performed in [37–40]. Nevertheless, there are
some misconceptions in previous works. In [37, 38], the
density Lagrangian is incorrect. On the other hand, in [37],
the number of primary constraints is 2, while in [38] the
same theory discussed in [37] introduces only one primary
constraint. As previously stated, primary constraints follow
solely from the definition of the canonical momenta, while
nonprimary constraints arise directly from the condition that
the primary constraints hold in time [41–44]. In [37, 40] the
authors argue that the gauge ∇ ⋅ A = 0 cannot be used, but
only (1 + ◻/𝑀2)∇ ⋅ A = 0 can be used. In [38], in turn, it
is claimed that both gauges are feasible. Upon gauge fixation,
a set of the first class constraints and gauge conditions turn
into a second class constraints [41–44]. Any gauge condition
can be used provided it is consistent with field equations. We
hope with this brief discussion to close themisunderstanding
concerning the higher-order canonical quantization. We still
emphasize that the Lagrangian (9) used by us is not the
same as the previous one the authors used. Nevertheless, the
physical content is completely equivalent, as it should be.

4. Anomalous Magnetic Moment of the
Electron and the LW Heavy Mass

Taking into account that QED predicts the anomalous
magnetic moment of the electron correctly to ten decimal
places, a quantum bound on the mass 𝑀 of the LW heavy
particle can be found by computing the anomalous electron
magnetic moment in the context of the LW electrodynamics
and comparing afterwards the result obtained with that of
QED. To accomplish this goal, we recall that the anomalous
magnetic moment stems from the vertex correction for the
scattering of the electron by an external field, as it is shown in
Figure 1.

For an electron scattered by an external static magnetic
field and in limit q → 0, the gyromagnetic ratio is given by
[52]

𝑔 = 2 [1 + 𝐹
2

(0)] . (31)

q = p

− p

p − k

p − k

p


k

p

Figure 1: Vertex correction for electron scattering by an external
field.

The form factor of the electron, 𝐹
2

(0), corresponds to
a shift in the 𝑔-factor, usually quoted in the form 𝐹

2

(0) ≡

(𝑔 − 2)/2, and yields the anomalous magnetic moment of the
electron. By employing (31) in the calculation of the diagram
in Figure 1, it can be shown that

𝐹
2

(0) =
𝛼

𝜋
∫

∞

0

𝑑𝛼
1

𝑑𝛼
2

𝑑𝛼
3

𝛿 (1 − Σ𝛼
𝑖

)

× [
𝛼
1

𝛼
2

+ 𝛼
3

−
𝛼
2

1

(𝛼
2

+ 𝛼
3

)

(𝛼
2

+ 𝛼
3

)
2

+ 𝛼
1

/𝜀

] ,

(32)

where 𝜀 ≡ 𝑚2/𝑀2, with 𝑚 being the electron mass. We call
attention to the fact that the term −𝑀2𝑘𝜇𝑘]/𝑘4(𝑘2 −𝑀2)[1 +
𝜆(𝑘
2

/𝑀
2

−1)] that appears in (6)makes no contribution to the
the form factor 𝐹

2

(0) because the propagator always occurs
coupled to conserved currents.

Integrating the above expression first with respect to 𝛼
3

and subsequently with respect to 𝛼
2

gives

𝐹
2

(0) =
𝛼

𝜋
∫

1

0

𝑑𝛼
1

∫

1−𝛼

1

0

𝑑𝛼
2

[
𝛼
1

1 − 𝛼
1

−
𝛼
1

(1 − 𝛼
1

)

(1 − 𝛼
1

)
2

+ 𝛼
1

/𝜀

]

=
𝛼

𝜋
∫

1

0

𝑑𝛼
1

𝛼
2

1

𝛼
1

+ 𝜀(1 − 𝛼
1

)
2

.

(33)

Computing 𝐹
2

(0), we arrive at the conclusion that

𝐹
2

(0) ≈
𝛼

2𝜋
[1 −

2

3
(
𝑚

𝑀
)

2

− 2 (
25

12
+ ln( 𝑚

𝑀
))(

𝑚

𝑀
)

4

+O((
𝑚

𝑀
)

6

)] .

(34)

The first term of the above equation is equal to that
calculated by Schwinger in 1948 [53]. Since then 𝐹

2

(0) has
been calculated to order𝛼10 forQED.The second termof (34)
is the most important correction related to the parameter𝑀
of the LW electrodynamics.
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Recent calculations concerning𝐹
2

(0) in the framework of
QED give for the electron [54]

𝐹
2

(0) = 1 159 652 181.78 (0.06) (0.04) (0.02) × 10
−12

,

(35)

where the uncertainty comes mostly from that of the best
non-QED value of the fine structure constant 𝛼. The current
experimental value for the anomalous magnetic moment is,
in turn, [55]

𝐹
2

(0) = 1 159 652 180.73 (0.28) × 10
−12

. (36)

Comparing the theoretical value predicted by QED with
the experimental one shows that these results agree in 1 part
in 1012. As a consequence,

2

3
(
𝑚

𝑀
)

2

< 10
−12

. (37)

Consequently, a lower limit on the heavy particle Lee and
Wick hypothesized that the existence is𝑀 ≈ 409GeV.

5. Duality Symmetry and Monopoles in the
Lee-Wick Electrodynamics

An important question concerning the LW finite QED is
whether or not the LW heavy particle and magnetic charge
can live in peace in its context. To answer this question we
introduce magnetic current 𝐽𝜇

𝑚

= (𝜌
𝑚

, J
𝑚

) in the LW dual
field equations. It is fairly straightforward to show that the
resulting system of modified higher-order field equations,
namely,

(1 +
◻

𝑀2
) 𝜕
𝜇

𝐹
𝜇]
= 𝐽

]
𝑒

, (38)

𝜕
𝜇

𝐹
𝜇]
= 𝐽

]
𝑚

, (39)

where 𝐹𝜇] = (1/2)𝜖𝜇]𝛼𝛽𝐹
𝛼𝛽

(𝜖
0123

= +1), describes the exis-
tence of a magnetic charge. In fact, assuming the absence of
electric fields, charges, and currents and the absence of mag-
netic current, we are left essentially with two equations for
the magnetic field which have the familiar Dirac monopole
solution B = (𝑞

𝑚

/4𝜋𝑟
2

)r̂, where 𝑞
𝑚

is the magnetic charge.
Using the usual methods, the Dirac quantization condition
(𝑞
𝑒

𝑞
𝑚

/4𝜋) = 𝑛/2, where 𝑞
𝑒

is the electric charge and 𝑛 is an
integer, can be promptly recovered. We have thus succeeded
in finding a consistent system of Maxwell + Vectorial boson
mass + magnetic charge equations. We remark that the Dirac
monopole and the massive Vectorial boson cannot coexist in
the context of Proca massive electrodynamics [56] because
the latter, unlike the LW QED, is not gauge invariant. The
very existence of the Dirac monopole is undoubtedly linked
to the existence of the gauge invariance of the corresponding
theory. Interestingly enough, the system formed by (38)
and (39) is not symmetric under the duality transformation
𝐹
𝜇]

→ 𝐹
𝜇], 𝐹𝜇] → −𝐹

𝜇], augmented by 𝐽𝜇
𝑒

→ 𝐽
𝜇

𝑚

,
𝐽
𝜇

𝑚

→ −𝐽
𝜇

𝑒

. This fact raises an interesting question: would
it be possible to accommodate simultaneously magnetic

charge and duality transformations in the framework of a
higher-order electromagnetic model? A good attempt in this
direction might be, for instance, the model defined by the
field equations

(1 +
◻

𝑀2
) 𝜕
𝜇

𝐹
𝜇]
= 𝐽

]
𝑒

, (40)

(1 +
◻

𝑀2
) 𝜕
𝜇

𝐹
𝜇]
= 𝐽

]
𝑚

(41)

since it is symmetric under duality transformations. It is
worth noticing that (1 + ◻/𝑀2)𝜕

𝜇

𝐹
𝜇]
= 𝐽

]
𝑚

is identically
zero in the absence of the magnetic current. Let us see then
whether this model admits a monopole-like solution. For a
magnetostatic charge of strength 𝑞

𝑚

fixed at the origin, the
solution of the preceding equations is

B = 𝑞𝑚
4𝜋
[
1 − (1 +𝑀𝑟) 𝑒

−𝑀𝑟

𝑟2
] r̂, (42)

which for large distances reduces to the Dirac result, as it
should be. Our point, nonetheless, is to ascertain whether
or not this solution describes a magnetic monopole at short
distances. To see this we calculate the flux of the radial
magnetic field through a spherical surface 𝜕R of radius 𝑟with
the static monopole of strength 𝑞

𝑚

at its center. Performing
the computation we promptly find∮

𝜕R
B ⋅ n̂ 𝑑𝐴 = 𝑞

𝑚

[1− (1+

𝑀𝑟)𝑒
−𝑀𝑟

] which implies that, for𝑀𝑟 ≪ 1, ∮
𝜕R

B ⋅ n̂ 𝑑𝐴 ≈
0. Now, taking into account that if B = ∇ × A, ∮

𝜕R
B ⋅

n̂ 𝑑𝐴 vanishes identically, we come to conclusion that A can
exist everywhere in the region under consideration, which
shows us that in the short range limit the Dirac quantization
condition cannot be recovered. To see if this actually occurs,
we take into account that, for 𝑀𝑟 ≪ 1, B ≈ (𝑞

𝑚

𝑀
2

/8𝜋)r̂,
implying that the magnetic field is constant at short distances
instead of falls down with 1/𝑟2. This bizarre behavior of the
magnetic field certainly precludes us from recovering the
Dirac quantization condition. One heuristic way of seeing
that is to consider the motion of a particle of mass 𝑚 and
charge 𝑞

𝑒

in the field of the magnetic monopole. From the
equation of motion of the electric charge, 𝑚 ̈r = 𝑞

𝑒

̇r × B, we
get the ratio of change of its angular momentum

𝑑

𝑑𝑡
(r × 𝑚 ̇r) =

𝑞
𝑒

𝑞
𝑚

𝑀
2

𝑟
2

8𝜋

𝑑r̂
𝑑𝑡
, (43)

a result that prevents us from defining a conserved total
angular momentum as in the case of the Dirac monopole.
Now, if the distances are neither too large nor much small,
the potential vector cannot exist everywhere in the domain
bounded by 𝜕R because 𝐹𝜇] satisfies (41) rather than (39).
Unlucky, we could not overcome this difficult by introducing
the concept of a string as Dirac did since in this case ∇ ⋅
B = (𝑞

𝑚

𝑀
2

/4𝜋)(𝑒
−𝑀𝑟

/𝑟) does not vanishe anywhere in
the aforementioned domain. The preceding analysis leads
us to conjecture that Dirac-like monopoles and duality
transformations cannot be accommodated in the context of
one and same higher-order electromagnetic model.
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6. Final Remarks

In this paper, we have studied many issues of the elec-
tromagnetic sector of the LW model. First, we saw that
questions related to higher-order canonical quantization can
be very tricky, as for instance, the definition of primary
and nonprimary constraints as well as the gauge conditions.
Extensive argumentation why it is the correct way to proceed
in higher-order canonical quantization was accomplished at
the end of Section 3.

About magnetic monopoles, a possible road of inves-
tigation concerning Lorentz violation theories was carried
out. One interesting theory to evaluate this scenario is the
Myers-Pospelov (MP)model. MP is an effective higher-order
gauge invariant theory that violates the Lorentz symmetry
in the electromagnetic sector. It would be interesting to
analyze the eventual existence of magnetic monopoles and
the presence of dual symmetry in a model that violates
the Lorentz symmetry together with higher-order derivative
terms. Another field of great interest would be the search
for monopoles in the non-abelian generalization of Lee-Wick
QED. In the context of LWSM, the search for monopoles can
be achieved by finding topologically nontrivial finite-energy
solutions.

To conclude, the bound we have found on the LW heavy
mass was obtained using the most accurate experimental
data currently available as input for the anomalous magnetic
moment of the electron. As far as the truly (loop) quantum
effects are concerned, a quick glance at (37) clearly shows
that a better agreement between theory and experiment
concerning the anomalous magnetic moment of the electron
would lead to the improvement of the quantum bound.
Consequently, there is great probability of setting a better
quantum bound on the LW heavy mass in the foreseeable
future.
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