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We considered the situation where a container with a permeable boundary is immersed in a larger body of fluid of the same kind.
In this paper, we found mathematical expressions at the permeable interface Γ of a domain Ω, where Ω ⊂ R3. Γ is defined as a
smooth two-dimensional (at least class 𝐶2) manifold in Ω. The Sennet-Frenet formulas for curves without torsion were employed
to find the expressions on the interface Γ. We modelled the flow of Newtonian as well as non-Newtonian fluids through permeable
boundaries which results in nonhomogeneous dynamic and kinematic boundary conditions. The flow is assumed to flow through
the boundary only in the direction of the outer normaln, where the tangential components are assumed to be zero.These conditions
take into account certain assumptions made on the curvature of the boundary regarding the surface density and the shape of Ω;
namely, that the curvature is constrained in a certain way. Stability of the rest state and uniqueness are proved for a special case
where a “shear flow” is assumed.

1. Introduction

The flow of incompressible Navier-Stokes fluids and fluids
of second grade through permeable boundaries and past
porous walls has been studied under various conditions. The
equation of motion for incompressible flows in Newtonian
fluids (Navier-Stokes equations) under no-slip boundary
conditions has been studied extensively from many perspec-
tives. Since the pioneering papers of Leray [1–3] and Hopf
[4] questions of the existence, stability [5, 6], and uniqueness
of both classical and weak solutions have received more than
their fair share of attention.

Recently the same issues have been studied for non-
Newtonian fluids of second grade. The studies cover both
weak solutions [7–12] and classical solutions for homoge-
neous Dirichlet boundary data [13] and nonhomogeneous
boundary data [6, 14, 15].

Unlike Newtonian fluids, fluids of second grade (and
other non-Newtonian species) have the property of develop-
ing “normal stresses differences” at boundaries. It was shown,
for example, by Berker [16] that if an incompressible flow
of a fluid of grade two satisfies the homogeneous Dirichlet
boundary condition. The stress at the boundary is given by

t = (−𝑝 + 𝛼|𝜔|2)n + [𝜇𝜔 + 2𝛼𝜕
𝑡
𝜔] ∧ n, where n is the unit

exterior normal to the boundary and𝜔 = ∇∧k is the vorticity.
The wedge denotes a vector product. Thus there is a normal
component of stress at the boundary in addition to the
pressure. The question becomes what governs the flow across
the boundary? Possible ways of circumventing this question
may be to “prescribe” the normal component of the velocity
field at the boundary or to prescribemass ormomentumflux.
The prescription of shear stress has also been suggested. ([16,
17]).Nonlinear or non-Newtonian fluids are fluids like molten
metals, multigrade oils, printing inks, paints, suspensions,
polymer solutions, molten plastics, blood, protein solutions,
and ice [18]. These fluids cannot be described by the above
model. The study of these interesting substances has proved
to be very important with the growth of the polymer and
plastics industry over the last four decades. Consequently,
an interest has arisen to study the flow of these nonlinear
fluids and, in the case of this model, second-grade fluids,
through permeable boundaries. The boundary conditions
alone in such circumstances are an interesting topic for study.
Works by Berker [16] and Rajagopal and Gupta [19] can be
mentioned in this regard.
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In this study we shall provide an alternative approach
through the formulation of “dynamics at the boundary,” the
idea being that the normal component of velocity at the
boundary is viewed as an unknown function which satisfies
a differential equation intricately coupled to the flow in the
region “enclosed” by the boundary.

A glimpse of the history of the research on non-
Newtonian and Newtonian fluids around porous boundaries
is given in Section 2. Notation and definitions precede Sec-
tions 4 and 5 which deal with the constitutive equations and
themodelling of permeability. In Section 6 the expressions on
the interface Γ are given.The alternative model is studied and
the stability and uniqueness are proved in Section 7. Section 8
concludes the study and further explorations are discussed.

2. Backgroud

Berker [16] studied the two-dimensional creeping flow of a
second-order fluid with nonparallel porous walls. An addi-
tional velocity boundary condition was needed. The other
conditions they usedwere due to the usual no-slip conditions.
This additional velocity boundary condition was to prescribe
the rate of shear at the wall. The problem was then solved
numerically by a standard routine.

In 1989 Rajagopal and Kaloni [20] wrote remarks on
boundary conditions for flows of fluids of the differential
type. Rajagopal [21] discusses a lot of related issues. Rajagopal
and Gupta [19] studied the flow of an incompressible fluid of
second grade past an infinite porous plate subjected to either
suction or blowing at the plate. They studied fluids modelled
by

T = −𝑝I + 𝜇A + 𝛼
1
[𝐷
𝑡
A + A (∇k) + (∇k)𝑇A] + 𝛼

2
A2. (1)

No assumptions were made about the material moduli 𝛼
1

and 𝛼
2
. For the boundary value problem they considered, it

was found that the velocity distributions do not depend on
the normal stress modulus 𝛼

2
, but the pressure does. They

found that it was possible to produce an exact solution which
is asymptotic in nature for both “suction” and “blowing” at
the plate if the material modulus 𝛼

1
> 0. For 𝛼

1
< 0,

they found that such solutions could not exist in the case
of blowing, a result which was in keeping with the classical
incompressible fluid. Fosdick and Rajagopal [22] have shown
that the model (1) whose material modulus 𝛼

1
< 0 exhibits

anomalous behaviour was not to be expected of any fluid
of rheological interest (also see [23]). Proudman studied an
example of steady laminar flow at a large Reynolds number
[24].

Beavers and Joseph [25] studied the flow of a Newtonian
fluid over a porous surface in 1967. They found that if the
governing differential systemwas not to be underdetermined,
it was necessary to specify some condition on the tangential
component of the velocity of the free fluid at the porous
interface. It is usual in these analyses to approximate the
fluid motion near the true boundary with an adherence
condition for the tangential component of velocity of the
free fluid at some boundary. Because of a certain ambiguity
which is implied by the notion of a “true” boundary for a
permeable material, it was found useful to define a nominal

boundary. They fixed a nominal boundary by first defining
a smooth geometric surface and then assuming that the
outermost perimeters of all the surface pores of the permeable
material are in this surface. Thus, if the surface pores were
filled with solid material to the level of their respective
perimeters, a smooth impermeable boundary of the assumed
shape would result. This definition is precise when the
geometry is simple (planes, spheres, cylinders, etc.) but may
not be fully adequate in more complex situations. Beavers
and Joseph’s [25] experiment was designed to examine the
tangential flow in the boundary region of a permeable
interface. The results of this experiment indicate that the
effects of viscous shear appear to penetrate into the permeable
material in a boundary layer region, producing a velocity
distribution similar to that depicted in the following figure.
The tangential component of the velocity of the free fluid
at the porous boundary can be considerably greater than
the mean filter velocity within the body of the porous
material.

In Figure 1 the plane 𝑦 = 0 defines a nominal surface
for the permeable material. The flow through the body of the
permeable material, which is homogeneous and isotropic, is
assumed to be governed by Darcy’s Law. Read more of the
status on Darcy’s Law in [26]. In the absence of body forces
Darcy’s Law may be written as 𝑄 = −(𝑘/𝜇)(𝑑𝑃/𝑑𝑥), where 𝑘
is the “permeability” of the material and𝑄 is the volume flow
rate per unit of the cross-sectional area. As such,𝑄 represents
the filter velocity rather than the true velocity of the fluid
in the pores. The measured pressure gradient is denoted by
𝑑𝑃/𝑑𝑥.

3. Basic Notation

We work in Euclidean 3 space.The following notation will be
used throughout:

|x| := √
3

∑

1

𝑥
2

𝑖
denotes the Euclidean norm.

𝜕
𝑖
:=

𝜕

𝜕𝑥
𝑖

; 𝑖 = 1, 2, 3.

𝜕
𝑡
:=
𝜕

𝜕𝑡
.

[∇𝑝]
𝑖
:= 𝜕
𝑖
𝑝 if 𝑝 is a scalar field.

[∇k]𝑖𝑗 := 𝜕𝑗V𝑖; 𝑖, 𝑗 = 1, 2, 3, if k is a vector field.

[∇k]𝑇
𝑖𝑗
:= 𝜕
𝑖
V
𝑗
; 𝑖, 𝑗 = 1, 2, 3, if k is a vector field.

∇ ⋅ k :=
3

∑

𝑖=1

𝜕
𝑖
V
𝑖

if k is a vector field.

k ⋅ ∇ :=
3

∑

𝑖=1

V
𝑖
𝜕
𝑖

if k is a vector field.
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Figure 1: Velocity profile for the rectilinear flow in a horizontal
channel formed by a permeable lower wall (𝑦 = 0) and an
impermeable upper wall (𝑦 = ℎ).

[∇ ⋅ T]𝑗 :=
3

∑

𝑖=1

𝜕
𝑖
𝑇
𝑖𝑗
; 𝑗 = 1, 2, 3,

if T is a matrix (tensor) with

Euclidean components 𝑇
𝑖𝑗
.

[k ⊗ k]𝑖𝑗 := V
𝑖
V
𝑗
; 𝑖, 𝑗 = 1, 2, 3, if k is a vector.

𝐷
𝑡
:= 𝜕
𝑡
+ k ⋅ ∇; 𝐷

𝑡
is the material time derivative.

k ∧ u := denotes the usual vector

product of the vectors k and u

∇ ∧ k := curl k.
(2)

IfA andB are second order tensors we shall use the notations
A : B = ∑

3

𝑖,𝑗=1
𝐴
𝑖𝑗
𝐵
𝑖𝑗
and |A|2 = A : A. Let Ω ⊂ R3 be a

bounded domain with a smooth (at leastC2) boundary Γ. Let
n = n(𝑥) denote the unit exterior normal to Γ at 𝑥. We shall
be concerned with smooth vector fields k = k(𝑥) defined in
Ω such that on Γ it has the form 𝛾

𝑜
k(𝑥) = −𝜂(𝑥)n(𝑥), where

𝛾
𝑜
is the trace operator denoting boundary values and 𝜂 is

a smooth scalar field defined on Γ. Associated with ∇k we
define the symmetric and skew-symmetric tensors A andW
asA = A(k) = ∇k+(∇k)𝑇 andW =W(k) = ∇k−(∇k)𝑇, where
(∇k)𝑇 denotes the transpose of the gradient of k. The rate of
deformation tensor is related to A by D(k) = (1/2)A(k). We
note that if k is solenoidal (∇⋅k = 0) then traceA(k) = 2∇⋅k =
0 and, for any vector a,W(k)a = 𝜔∧a,where𝜔 = ∇∧k denotes
the vorticity associated with k.

4. The Constitutive Equations

The stress tensor for the linear viscous Newtonian model
is T = −𝑝I + 𝜇(∇k + (∇k)𝑇), with 𝑝 as the pressure, 𝜇
as the coefficient of viscosity, and k as the velocity of the
fluid. This model describes the flow of fluids like water and
other similar fluids. Lamb [27] and Ladyzhenskaya [28] wrote
mathematical theories on viscous incompressible flow.

Fluids of a differential type [29–31], of which Rivlin-
Ericksen fluids are a subclass, are depicted by a popular
nonlinear model. Fluids of complexity n form an important
subclass of the fluids of a differential type. For incompressible
fluids of complexity 𝑛 the Cauchy stress tensor is of the
form T = −𝑝I + F(A

1
, . . . ,A

𝑛
). The pressure 𝑝 is not a

thermodynamic variable and the term −𝑝I reflects Pascal’s
law, which is inherent to all fluids. A

1
, . . . ,A

𝑛
are the first 𝑛

Rivlin-Ericksen tensors [21] defined recursively by

A
1
= ∇k + (∇k)𝑇 = A,

A
𝑛
= 𝐷
𝑡
A
𝑛−1
+ A
𝑛−1
(∇k) + (∇k)𝑇A

𝑛−1
, 𝑛 ≥ 2.

(3)

Fluids of grade n are examples of fluids of complexity 𝑛.
The stress tensors for fluids of grades 1 and 2 respectively, are
assumed to be of the form

T[1] = −𝑝I + 𝜇A
1
,

T[2] = T[1] + 𝛼
1
A
2
+ 𝛼
2
A2
1
,

(4)

where 𝜇 and 𝛼
𝑖
are material coefficients (possibly tempera-

ture-dependent).
For incompressible fluids of second grade, the stress-

deformation relation then becomes
T = T[2] = −𝑝I + 𝜇A + 𝛼

1
𝐷
𝑡
A

+ 𝛼
1
(A∇k + (∇k)𝑇A) + 𝛼2A

2
,

(5)

where 𝑝 and k are the pressure and the velocity fields. Here
𝜇 is the coefficient of viscosity and 𝛼

1
and 𝛼

2
are material

coefficients or “normal stress moduli.” In this case A = A
1
.

To use the relation (5) for the modelling of a fluid, the
fluid has to be compatible with thermodynamics in the sense
that all flows of the fluid must satisfy the Clausius-Duhem
inequality, and the assumptionmust bemade that the specific
Helmholtz free energy is at a minimum when the fluid is in
equilibrium. Under these assumptions, 𝛼

1
and 𝛼

2
[32] must

satisfy
𝛼
1
+ 𝛼
2
= 0. (6)

Considerations of stability of the rest state require the
assumptions 𝜇 and 𝛼

1
to be nonnegative; that is, 𝜇 > 0,

𝛼
1
> 0. See [32]. Under assumption (6), which we shall

follow throughout, the form of the stress tensor T given in
(5) reduces to a more compact expression. To obtain this we
note that ∇k = (1/2)(A +W) and (∇k)𝑇 = (1/2)(A −W), so
that

𝛼
1
(A∇k + (∇k)𝑇A) = 𝛼1

2
[A (A +W) + (A −W)A]

= 𝛼
1
A2 + 𝛼1

2
(AW −WA) .

(7)
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Figure 2: Profile for normal flow through the permeable wall Γ.

Therefore, by (5) and (7)

T = −𝑝I + 𝜇A + 𝛼𝐷
𝑡
A + 𝛼

2
(AW −WA) , (8)

where we have set 𝛼
1
= 𝛼.

Remark 1. Please note that for theNavier-Stokes equationswe
take 𝛼 = 0 [33].

5. Modelling of Permeability

We study the motion of fluids around and through a fixed
porous container filled with the same fluid. The interior of
the porous container is an open bounded set Ω ⊂ R3 and
the porous boundary, Γ, is smooth. The surrounding fluid
domain, Ω

𝑜
, is bounded and its outer boundary is denoted

by Γ
𝑜
. The exterior normal toΩ on Γ is denoted by n. Figure 2

illustrates the situation where the curvature of the boundary
Γ ofΩ is nonnegative.

Permeability of the walls of the container is described by
assuming that at the boundary Γ the flow k has the direction
of the normal:

𝛾
𝑜
k (𝑥, 𝑡) = −𝜂 (𝑥, 𝑡)n (𝑥) . (9)

The velocity component 𝜂 is treated as an unknown and an
evolution equation has to be found for it. We model the
surface Γ as having an effective area measure 𝑑𝑎 which has
a density function 𝜁(𝑥) with respect to the area measure 𝑑𝑠.
Thus 𝑑𝑎 = 𝜁(𝑥)𝑑𝑠. The effective area through which fluid
can permeate is not more than the surface area and therefore
0 ≤ 𝜁(𝑥) ≤ 1 for any 𝑥 ∈ Γ. If 𝜁(𝑥) ≡ 0, the wall is
impermeable and if 𝜁(𝑥) ≡ 1, there is no wall.

In order to obtain expressions for mass and momentum
in a boundary patch Γ, we let the patch be heuristically
represented by a volume 𝐺 built from copies of Γ (Figure 3).
This is in line with the Beavers-Joseph thinking which was
discussed before. For this volume we set up a coordinate
system consisting of a “radial part” 𝑟, which has the direction
of the normal vector n, and a “surface part” made up by
vectors tangential to Γ. For the mass of 𝐺 we obtain

∫
𝐺

𝜌 𝑑𝑥 = ∫
Γ


∫

𝛿

0

𝜌 𝑑𝑟 𝑑𝑎 = ∫
Γ


∫

𝛿

0

𝜌 𝑑𝑟 𝜁 𝑑𝑠 = ∫
Γ


𝜌𝜁𝛿 𝑑𝑠,

(10)

𝛿

G

r

Ωo

Ω
Γ

Figure 3: Heuristics of the permeable boundary.

where 𝛿 is some measure of thickness. With the aid of these
concepts we introduce the surface density of the fluid at 𝑥 ∈ Γ
as

𝜎 (𝑥) = 𝛿 (𝑥) 𝜁 (𝑥) 𝜌, (11)

where 𝜌 is the volume density of the fluid.
To obtain the equation of motion for fluid in the bound-

ary, we assume that the rate of change of linear momentum
in the boundary is explained by stress forces at both sides of
the boundary.

Let T and T denote the stress tensors at the sides of
the boundary facing Ω and Ω

𝑜
, respectively, and let P and

P denote the transfer-of-momentum tensors on the two
sides. On an arbitrary boundary patch Γ ⊂ Γ the law of
conservation of linear momentum is stated in the following
way:

𝜕
𝑡
∫
Γ


𝜎 (𝑥) 𝛾
𝑜
k 𝑑𝑠 = ∫

Γ


[Pn − Pn] 𝑑𝑎

+ ∫
Γ


[−T (−n) − Tn] 𝑑𝑠
(12)

with 𝜎 as defined in (11), and it follows that

𝜎 (𝑥) 𝜕
𝑡
𝛾
𝑜
k − 𝜁 [P − P]n = [T − T]n. (13)

From (13) we have 𝜎(𝑥)𝜕
𝑡
𝜂(𝑥, 𝑡) + 𝜁n ⋅ [P − P]n = n ⋅

Tn − n ⋅ Tn. In the domain Ω the momentum flux tensor is
given by P = 𝜌k ⊗ k. In accordance with this, we shall take
P = 𝜌𝜂2n ⊗ n at the boundary. The tensor P will be taken as
zero.

We take T = ℓI to obtain from (13)

𝜎 (𝑥) 𝜕
𝑡
𝜂 + 𝜁𝜌𝜂

2
= n ⋅ Tn − ℓ (𝑡) . (14)

From the incompressibility of the flow inΩ it follows that

−∫
Γ

𝜂 𝑑𝑠 = 0. (15)

6. Expressions at the Interface

In order to obtain expressions for the stress tensors T and
T as well as the acceleration at the boundary through which
only normal flow occurs, we obtain a formal expression for
the symmetric tensor A on a surface which is immersed in
fluid.We shall eventually use these expressions in postulating
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the formofT andT and in formulating a boundary condition
which expresses zero tangential acceleration at a wall.

We consider a smooth vector field k(x) defined on a
domainΩ ⊂ R3 and a smooth two-dimensional (at least class
𝐶
2) manifold Γ ⊂ Ω so that k and ∇k are defined on Γ. Let

n(x) be the unit normal to Γ at the point x ∈ Γ.
At any point x on Γ we consider two orthogonal curves 𝑐

1

and 𝑐
2
in a neighbourhood of 𝑥 parametrised by arc lengths 𝑠

1

and 𝑠
2
, respectively. Let 𝜏1 and 𝜏2 be the unit tangents to the

principal normal curves at a point on the surface. For local
coordinates we use the orthogonal system formed by 𝜏1, 𝜏2,
and n. Under the convention that 𝜏1∧𝜏2 = nwe have n∧𝜏

1
=

𝜏
2
and n ∧ 𝜏

2
= −𝜏
1
. Let 𝜅

1
and 𝜅

2
represent the principal

curvatures at a point on the surface and let𝐾 = 𝜅
1
+𝜅
2
denote

themean curvature.

Assumptions
(1) We shall assume throughout that the surface density

is bounded and bounded away from zero; that is, there
exist constants 𝑠 and 𝑆 such that

0 < 𝑠 ≤ 𝜎 (𝑥) ≤ 𝑆 ∀𝑥 ∈ Γ. (16)

Also, we assume 𝜎 ∈ 𝐶∞(Γ).
(2) Apart from the smoothness of Γ we make two addi-

tional assumptions regarding the shape ofΩ; namely,
that the curvatures 𝜅

1
, 𝜅
2
, and 𝐾 are constrained in

the following way:

(a) There exist constants 𝑔 and 𝐺 such that
0 < 𝑔 ≤ 𝐾 (𝑥) ≤ 𝐺 ∀𝑥 ∈ Γ. (17)

(b) There exists a constant𝐻 such that

0 ≤ 𝜅
2

1
+ 𝜅
2

2
≤ 𝐻
2 on Γ. (18)

Note that these assumptions allow cases where 𝜅
1
and 𝜅
2
can

be of opposite signs.
The Frenet-Serret [34–36] formulae in this case, provid-

ing that there is no torsion, are then
𝜕n
𝜕𝑠
1

= − 𝜅
1
𝜏
1

𝜕n
𝜕𝑠
2

= −𝜅
2
𝜏
2

𝜕𝜏
1

𝜕𝑠
1

= 𝜅
1
n 𝜕𝜏

1

𝜕𝑠
2

= 0

𝜕𝜏
2

𝜕𝑠
1

= 0
𝜕𝜏
2

𝜕𝑠
2

= 𝜅
2
n.

(19)

The surface gradient ∇
𝑠
of a scalar function 𝑓 may be

written as
𝛾
𝑜
(∇𝑓) = ∇

𝑠
(𝛾
𝑜
𝑓) + n𝛾

1
𝑓, (20)

where the trace operator 𝛾
1
denotes the normal derivative.

Also consider

∇
𝑠
𝑓 =

𝜕𝑓

𝜕𝑠
1

𝜏
1
+
𝜕𝑓

𝜕𝑠
2

𝜏
2
,

Δ
𝑠
𝑓 = ∇

𝑠
⋅ (∇
𝑠
𝑓) =

𝜕
2
𝑓

𝜕2𝑠
2

1

+
𝜕
2
𝑓

𝜕2𝑠
2

2

.

(21)

If f is a vector field defined on Γ, the surface gradient ∇
𝑠
is

defined as the tensor

∇
𝑠
f = 𝜕f

𝜕𝑠
1

⊗ 𝜏1 +
𝜕f
𝜕𝑠
2

⊗ 𝜏2. (22)

Surface divergence and surface curl are defined as

∇
𝑠
⋅ f = 𝜏1 ⋅

𝜕f
𝜕𝑠
1

+ 𝜏2 ⋅
𝜕f
𝜕𝑠
2

,

∇
𝑠
∧ f = 𝜏1 ∧

𝜕f
𝜕𝑠
1

+ 𝜏2 ∧
𝜕f
𝜕𝑠
2

.

(23)

The relationship between the surface operators and the
volume operators for a function defined in Ω is given by

𝛾
𝑜
(∇f) = ∇

𝑠
𝛾
𝑜
f + 𝛾
𝑜 [(n ⋅ ∇) f] ⊗ n, (24)

𝛾
𝑜
(∇ ⋅ f) = ∇

𝑠
⋅ 𝛾
𝑜
f + 𝛾
𝑜 [(n ⋅ ∇) f] ⋅ n, (25)

𝛾
𝑜
(∇ ∧ f) = ∇

𝑠
∧ 𝛾
𝑜
f + n ∧ 𝛾

𝑜 [(n ⋅ ∇) f] . (26)

We use (20)–(25) to prove more important results to make
the calculations easier.

Lemma 2. Let 𝜏
1
and 𝜏

2
be two orthogonal unit tangential

vectors and let n be the exterior unit normal vector to Γ. Let 𝛼,
𝛽, and 𝛾 be scalar functions; then

(a) ∇𝑠 ⋅ (𝛼𝜏1) =
𝜕𝛼

𝜕𝑠
1

(b) ∇𝑠 ⋅ (𝛽𝜏2) =
𝜕𝛽

𝜕𝑠
2

(c) ∇𝑠 ⋅ (𝛾n) = −𝛾𝐾.

(27)

Proof. Consider the following:

(a) ∇
𝑠
⋅ (𝛼𝜏
1
) = 𝜏
1
⋅
𝜕

𝜕𝑠
1

(𝛼𝜏
1
) + 𝜏
2
⋅
𝜕

𝜕𝑠
2

(𝛼𝜏
1
) =

𝜕𝛼

𝜕𝑠
1

.

(b) Similar to (a).

(c) ∇
𝑠
⋅ (𝛾n) = 𝜏

1
⋅ [
𝜕𝛾

𝜕𝑠
1

n − 𝜅
1
𝛾𝜏
1
]

+ 𝜏
2
⋅ [
𝜕𝛾

𝜕𝑠
2

n − 𝛾𝜅
2
𝜏
2
]

= −𝛾 [𝜅
1
+ 𝜅
2
] = −𝛾𝐾.

(28)

We shall apply the expressions above to k. By the Frenet-
Serret formulae (torsion is zero) (𝜕/𝜕𝑠

1
)(𝛾
𝑜
k) = −(𝜕𝜂/𝜕𝑠

1
)n−

𝜂(𝜕n/𝜕𝑠
1
) = −(𝜕𝜂/𝜕𝑠

1
)n + 𝜅

1
𝜏1𝜂, and, similarly, 𝜕(𝛾

0
k)/𝜕𝑠
2
=

−(𝜕𝜂/𝜕𝑠
2
)n + 𝜅

2
𝜏2𝜂. Hence
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∇
𝑠
𝛾
𝑜
k = 𝜂 [𝜅

1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2]

− [
𝜕𝜂

𝜕𝑠
1

n ⊗ 𝜏1 +
𝜕𝜂

𝜕𝑠
2

n ⊗ 𝜏2]

= 𝜂 [𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2]

− n ⊗ [
𝜕𝜂

𝜕𝑠
1

𝜏1 +
𝜕𝜂

𝜕𝑠
2

𝜏2]

= 𝜂 [𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2] − n ⊗ ∇𝑠𝜂.

(29)

The transpose is given by

(∇
𝑠
(𝛾
𝑜
k))𝑇 = 𝜂 [𝜅

1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2] − ∇𝑠𝜂 ⊗ n. (30)

To find an expression forA at Γ, we need an expression for∇k
on the boundary:

𝛾
𝑜
(∇k) = ∇

𝑠
(𝛾
𝑜
k) + 𝛾

𝑜 [(n ⋅ ∇) k] ⊗ n. (31)

Although we know that the divergence of k will be zero, it is
helpful to observe that 𝜃 = 𝛾

𝑜
(∇⋅k) = ∇

𝑠
⋅(𝛾
𝑜
k)+𝛾
𝑜
[(n⋅∇)k]⋅n,

where

∇
𝑠
⋅ (𝛾
𝑜
k) = −𝜏1 ⋅

𝜕

𝜕𝑠
1

(𝜂n) − 𝜏2 ⋅
𝜕

𝜕𝑠
2

(𝜂n)

= −𝜏1 ⋅ [
𝜕𝜂

𝜕𝑠
1

n − 𝜂𝜅
1
𝜏1] − 𝜏2 ⋅ (

𝜕𝜂

𝜕𝑠
2

n − 𝜂𝜅
2
𝜏2)

= 𝜂 (𝜅
1
+ 𝜅
2
)

= 𝜂𝐾.

(32)

Hence 𝜃 = 𝜂𝐾 + 𝛾
𝑜
[(n ⋅ ∇)k] ⋅ n.

We proceed to find expressions for 𝛾
𝑜
(k ⋅ ∇)k, 𝛾

𝑜
(∇k), and

𝛾
𝑜
(∇k)𝑇.
We know that 𝜔 ∧ n =W(k)n = (n ⋅ ∇)k − (∇k)𝑇n, and

𝛾
𝑜
(∇k)𝑇n = (∇

𝑠
(𝛾
𝑜
k))𝑇n + 𝛾

𝑜
([n ⋅ (n ⋅ ∇) k]n)

= − (∇
𝑠
𝜂) + (𝜃 − 𝐾𝜂)n.

(33)

Therefore,

(n ⋅ ∇) 𝛾
𝑜
k = (𝛾o𝜔 ∧ n) − ∇𝑠𝜂 + (𝜃 − 𝐾𝜂)n. (34)

Multiply (34) with −𝜂 to obtain

𝛾
𝑜
(k ⋅ ∇) k = −𝜂 (n ⋅ ∇) 𝛾

𝑜
k = 𝐾𝜂2n + 𝜂 [∇

𝑠
𝜂 − 𝛾0𝜔 ∧ n] .

(35)

From (31) we now obtain

𝛾
𝑜
(∇k) = ∇

𝑠
k + [𝛾o𝜔 ∧ n − ∇𝑠𝜂 + (𝜃 − 𝐾𝜂)n] ⊗ n

= 𝜂 [𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2]

− n ⊗ ∇
𝑠
𝜂 − ∇
𝑠
𝜂 ⊗ n + (𝛾o𝜔 ∧ n) ⊗ n

+ (𝜃 − 𝐾𝜂)n ⊗ n

= 𝜂 [𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2 − 𝐾n ⊗ n]

− [n ⊗ ∇
𝑠
𝜂 + ∇
𝑠
𝜂 ⊗ n]

+ (𝛾o𝜔 ∧ n) ⊗ n + 𝜃n ⊗ n.

(36)

The transpose is

𝛾
𝑜
(∇k)𝑇 = 𝜂 [𝜅

1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2 − 𝐾n ⊗ n]

− [n ⊗ ∇
𝑠
𝜂 + ∇
𝑠
𝜂 ⊗ n]

+ n ⊗ (𝛾o𝜔 ∧ n) + 𝜃n ⊗ n.

(37)

Thus we have

𝛾
𝑜 (A) = 𝛾𝑜 (∇k) + 𝛾𝑜(∇k)

𝑇

= ∇
𝑠
𝛾
𝑜
k + (∇

𝑠
𝛾
𝑜
k)𝑇 + 𝛾

𝑜
([(n ⋅ ∇) k] ⊗ n)

+ 𝛾
𝑜 (n ⊗ [(n ⋅ ∇) k])

= 2𝜂 [𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2 − 𝐾n ⊗ n]

− 2 [n ⊗ ∇
𝑠
𝜂 + ∇
𝑠
𝜂 ⊗ n]

+ n ⊗ (𝛾o𝜔 ∧ n) + (𝛾o𝜔 ∧ n) ⊗ n. + 2𝜃n ⊗ n.

(38)

Let us define the symmetrical tensorsM and N by

M = [𝐾n ⊗ n − (𝜅
1
𝜏1 ⊗ 𝜏1 + 𝜅2𝜏2 ⊗ 𝜏2)] ,

N = n ⊗ (𝛾o𝜔 ∧ n) + (𝛾o𝜔 ∧ n) ⊗ n

+ 2𝜃n ⊗ n − 2 (n ⊗ ∇
𝑠
𝜂 + ∇
𝑠
𝜂 ⊗ n)

= n ⊗ [𝛾o𝜔 ∧ n − 2∇𝑠𝜂]

+ [𝛾o𝜔 ∧ n − 2∇𝑠𝜂] ⊗ n + 2𝜃n ⊗ n

= n ⊗ 𝜓 + 𝜓 ⊗ n − 2𝜃n ⊗ n,

(39)

with

𝜓 = 𝛾o𝜔 ∧ n − 2∇𝑠𝜂 (40)

a tangential vector. Then, for a vector field of the form k =
−𝜂n on Γ, from (38) we have

𝛾
𝑜
A = −2𝜂M + N on Γ. (41)
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In local coordinates we have the representations

M = (

−𝜅
1
0 0

0 −𝜅
2
0

0 0 𝐾

) ,

N = (
0 0 𝜓 ⋅ 𝜏1
0 0 𝜓 ⋅ 𝜏2
𝜓 ⋅ 𝜏1 𝜓 ⋅ 𝜏2 −2𝜃

) .

(42)

If ∇ ⋅ k = 0, it follows that trA = 0, which is in line with
incompressibility.

We would further like to obtain expressions for the terms
n ⋅ Δk, n ⋅ [(k ⋅ ∇)A]n, and n ⋅ [AW −WA]n on the boundary
Γ.

Lemma 3. Let n be the exterior normal to the boundary Γ, k ∈
D, and A = −2𝜂M + N with M and N as defined in (39). We
assume that ∇ ⋅ k = 0 and 𝛾o𝜔 ∧ n = 2∇

𝑠
𝜂, which implies that

N = 0. Then

(a) 𝛾
𝑜
(−n ⋅ Δk) = Δ

𝑠
𝜂

(b) 𝛾𝑜 [n ⋅ [(k ⋅ ∇)A]n] = −4𝜂
2
𝐾
𝐺
− 2𝜂Δ

𝑠
𝜂

(c) 𝛾
𝑜 [n ⋅ [AW −WA]n] = 0,

(43)

where𝐾
𝐺
denotes the Gauss-curvature.

Proof. (a) We have chosen 𝜏1, 𝜏2, and n so that 𝜏1 ∧ 𝜏2 = n.
In view of the incompressibility and the fact that there is zero
tangential velocity

𝛾
𝑜
(−Δk) = ∇ ∧ 𝛾o𝜔

= 𝜏1 ∧ 𝜕𝑠
1

[𝜂
1
𝜏2 − 𝜂2𝜏1] + 𝜏2 ∧ 𝜕𝑠

2

[𝜂
1
𝜏2 − 𝜂2𝜏1]

+ a tangential term

= 𝜏1 ∧ [𝜕𝑠
1

𝜂
1
𝜏2 − 𝜂2𝜅1n]

+ 𝜏2 ∧ [𝜂1𝜅2n − 𝜕𝑠
1

𝜂
2
𝜏1] + ⋅ ⋅ ⋅

= (𝜕
𝑠
1

𝜂
1
+ 𝜕
𝑠
2

𝜂
2
)n + ⋅ ⋅ ⋅

= Δ
𝑠
𝜂n.

(44)

(b) Consider the tensor∇⋅A built from “row vectors” with
(e
1
, e
2
, e
3
) a basis for R3. Then

∇ ⋅ A = (
∇ ⋅ Ae

1

∇ ⋅ Ae
2

∇ ⋅ Ae
3

)

= (

∇
𝑠
⋅ Ae
1

∇
𝑠
⋅ Ae
2

∇
𝑠
⋅ Ae
3

) + (

n ⋅ [(n ⋅ ∇)Ae
1
]

n ⋅ [(n ⋅ ∇)Ae2]
n ⋅ [(n ⋅ ∇)Ae

3
]

)

= ∇
𝑠
⋅ A + [(n ⋅ ∇)A]n.

(45)

Hence, 𝛾
𝑜
[(n ⋅ ∇)A]n = 𝛾

𝑜
[∇ ⋅ A] − ∇

𝑠
⋅ 𝛾
𝑜
(A).

Furthermore,

∇
𝑠
⋅ 𝛾
𝑜 [A] = −2 (𝑀∇𝑠𝜂 + 𝜂∇𝑠 ⋅ 𝑀) (46)

and now

n ⋅ [∇
𝑠
⋅ [𝛾
𝑜
A]] = −2 (n ⋅ 𝑀∇

𝑠
𝜂 + 𝜂n ⋅ (∇

𝑠
⋅ 𝑀))

= −2𝜂n ⋅ (∇
𝑠
⋅ 𝑀) .

(47)

Here we used the fact that𝑀n = −𝐾n. Determine n ⋅ [∇
𝑠
⋅𝑀]

term by term to obtain

n ⋅ [∇
𝑠
⋅ [𝛾
𝑜
A]] = −2𝜂 (𝜅2

1
+ 𝜅
2

2
− 𝐾
2
)

= −2𝜂 (2𝜅
1
𝜅
2
) = −4𝐾

𝐺
𝜂.

(48)

𝐾
𝐺
denotes the Gauss-curvature and is bounded by assump-

tions (17) and (18). Hence

𝛾
𝑜
n ⋅ [(n ⋅ ∇)A]n = 𝛾𝑜 [n ⋅ Δk] − 4𝜂𝐾𝐺 = −4𝜂𝐾𝐺 − Δ 𝑠𝜂.

(49)

The term we use in the proof of (57) is therefore

−𝜂𝛾
𝑜 [n ⋅ [(n ⋅ ∇)A]n] = +4𝜂

2
𝐾
𝐺
+ 𝜂Δ
𝑠
𝜂. (50)

(c) n ⋅ (AW −WA)n = An ⋅Wn +Wn ⋅ An = 2An ⋅Wn.

Here we make use of the additional boundary conditions
(52) and (55) and the fact thatWn = 𝛾o𝜔 ∧ n to obtain that

An ⋅Wn = An ⋅ (𝛾o𝜔 ∧ n)

= (𝛾o𝜔 ∧ n) ⋅ [−2𝜂𝐾n]

= 0.

(51)

6.1. Explicit Form of the Dynamic Boundary Condition. It
is shown that for a smooth two-dimensional manifold Γ
contained in a domain Ω ⊂ R3 the following is true for a
vector field k which is of the form k = −𝜂n on Γ:

𝛾
𝑜 [A] = −2𝜂M + N, (52)

whereM and N are defined in (39).
If k is solenoidal, as in the case under consideration, 𝜃 =

0. A straightforward application of Stokes’ theorem shows
that 𝜔 is tangential to the boundary, which implies that 𝜓 is
tangential to the boundary. Indeed, let Γ be any patch of the
surface Γ; then

∫
Γ


(∇ ∧ f) ⋅ n 𝑑𝑠 = ∫
𝜕Γ


f ⋅ 𝑑𝜏, (53)

where 𝑑𝜏 is a vector tangential to the boundary. Now if f =
𝛾
𝑜
k = −𝜂n, then ∫

𝜕Γ

f ⋅𝑑𝜏 = 0, and that implies that ∫

Γ

(∇∧k)⋅

n𝑑𝑠 = 0 for all Γ ⊂ Γ, which in turn implies that (∇∧k)⋅n = 0.
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In the problem under consideration we shall assume that
the “rate of deformation” tensor A has precisely the form
(52) on the boundary Γ with n the unit exterior normal (the
traditional rate of deformation is defined as D = (1/2)A).

We shall consider a kinematic boundary condition, which
has a physical meaning in that there are no tangential
components of deformation at the interface boundary. This
concerns the form of the tensor N.

Towards this, we observe from (52) that

𝛾
0 [An] = −2𝐾𝜂n + 𝜓. (54)

It follows from (54) that there are no tangential components
of deformation at Γ if and only if 𝜓 = 0; that is,

𝛾o𝜔 ∧ n = 2∇𝑠𝜂. (55)

This is the kinematic boundary condition.
The various terms in n ⋅ Tn, with T on a surface Γ, given

by (8), may be expressed as follows (see Lemma 3):

n ⋅ 𝛾
𝑜
An = −2𝐾𝜂

n ⋅ 𝛾
𝑜
𝜕
𝑡 [An] = 𝜕𝑡 [n ⋅ An] = −2𝐾𝜂𝑡

(56)

𝛾
𝑜 [n ⋅ [(k ⋅ ∇)A]n] = +4𝐾𝐺𝜂

2
+ 𝜂Δ
𝑠
𝜂 (57)

n ⋅ [AW −WA]n = 0. (58)

Guided by these expressions and (8), we assume that, at
Γ,

n ⋅ 𝛾
𝑜
Tn = − [𝛾

𝑜
𝑝 + 2𝜇𝐾𝜂 + 2𝛼𝐾𝜂

𝑡
− 4𝛼𝐾

𝐺
𝜂
2
− 𝛼𝜂Δ

𝑠
𝜂] .

(59)

For the stress tensor T in the fluid exterior to Ω we assume
that n ⋅ Tn = ℓ(𝑡). This amounts to the situation where the
fluid inΩ

𝑜
is at rest. As a result we have

n ⋅ (𝛿T)n = n ⋅ [T − T]n

= − [𝛾
𝑜
𝑝 + 2𝜇𝐾𝜂 + 2𝛼𝐾𝜂

𝑡
− 4𝛼𝐾

𝐺
𝜂
2
− 𝛼𝜂Δ

𝑠
𝜂]

− ℓ (𝑡) .

(60)

From (13), (14), and (60) we obtain

𝜎
−1/2

(𝜎 + 2𝛼𝐾) 𝜂
𝑡
+ 𝜎
−1/2
𝛾
0
𝑝 = 𝑠 (𝜂) (61)

with 𝑠(𝜂) = 𝜎−1/2[(−𝑘+4𝛼𝐾
𝐺
)𝜂
2
−2𝜇𝜂𝐾+𝛼𝜂Δ

𝑠
𝜂−ℓ(𝑡)], and

𝑘 = 𝜁𝜌.
Equation (61) is the explicit form of the dynamic bound-

ary condition.

7. An Alternative Model: ProblemA

Although it was possible to prove stability and uniqueness for
the original model (see [33, 37]), we could not find a way to
a possible proof of existence for a classical solution. In this
chapter we describe an alternative model which displays all

the properties of the original problemwith respect to stability
and uniqueness.

In the alternativemodel the dynamics at the boundary are
formulated by assuming a “shear flow” of the form

k∗ (𝑦, 𝑡) = −𝜂 (𝑠
1
, 𝑠
2
, 𝑡)n (𝑦) (62)

with 𝑠
1
and 𝑠
2
as the surface parameters (like arc length). It

is assumed that the “body force” acting on the shearing fluid
at the boundary is proportional to the difference between the
pressures 𝛾

𝑜
𝑝 and ℓ(𝑡). Under these assumptions the equation

governing the evolution of 𝜂 is

𝜕
𝑡
[𝜌𝜂 − 𝛼Δ

𝑠
𝜂] + 𝛿

−1
𝛾
𝑜
𝑝 = 𝜇Δ

𝑠
𝜂 + 𝛿
−1
ℓ (𝑡) , (63)

where 𝛾
𝑜
k = −𝜂n, and 𝑝 is the resulting pressure through

the boundary with thickness 𝛿. Δ
𝑠
is the Laplace-Beltrami

operator (Δ
𝑠
= ∇
𝑠
⋅ ∇
𝑠
) and ∇

𝑠
denotes the surface gradient.

The parameter 𝛿 has the physical dimension of length and
may be thought of as the “thickness” of the “shear layer” (see
[38], Sect 123, p. 506). Equation (63) is derived by calculating
the stress tensor for a shear flow and noticing that terms of
the form k∗ ⋅ ∇

𝑠
vanish. The term 𝛿

−1
ℓ(𝑡) may be left out

since, as before, it disappears when projections are taken.The
kinematic boundary condition is still imposed.

7.1. Definitions. All spaces of vector fields are denoted by
boldface letters.

(1) Let Ω be a bounded domain in R3 with a smooth
boundary Γ (of class 𝐶∞), Ω

𝑇
= Ω × (0, 𝑇), and

Γ
𝑇
= Γ × (0, 𝑇).

(2) 𝐻𝑚,𝑞(Ω), for𝑚 a nonnegative integer and 1 < 𝑞 < ∞,
is the usual Sobolev space (of real-valued functions)
embedded in 𝐿𝑞(Ω) with norm ‖ ⋅ ‖

𝑚,𝑞
. 𝐻𝑚(Ω), for

𝑚 a nonnegative integer, denotes the Sobolev space
𝐻
𝑚,2
(Ω) of order 𝑚. By this agreement H𝑚(Ω) is

the Sobolev space of three vector fields and the
components are elements of𝐻𝑚(Ω). In particular, the
norm and scalar products in H1(Ω) are defined by
‖u‖2
1
= ‖u‖2

Ω
+‖∇u‖2

Ω
and (u, k)

1
= ∫
Ω
u ⋅k𝑑𝑥+∫

Ω
∇u :

∇k𝑑𝑥.
(3) With the above notation H0(Ω) denotes the Hilbert

space L2(Ω) of vector functions u(𝑥) = (𝑢
1
(𝑥),

𝑢
2
(𝑥), 𝑢
3
(𝑥)), with 𝑥 ∈ Ω, for which |u|2 is integrable

on Ω. The norm and scalar products for u, k ∈ L2(Ω)
are defined as ‖u‖2

Ω
= ∫
Ω
|u|2𝑑𝑥 and (u, k)

Ω
= ∫
Ω
u ⋅

k𝑑𝑥.
(4) There exists a linear continuous operator 𝛾

𝑜
∈ L(H1

(Ω), L2(𝜕Ω)), called the trace operator, such that 𝛾
𝑜
u

= the “restriction” of u to 𝜕Ω for every function u ∈
H1(Ω) which is continuous in Ω. The space H1

𝑜
(Ω)

is the kernel of 𝛾
𝑜
. The image space 𝛾

𝑜
(H1(Ω)) is a

dense subspace of L2(Γ) denoted byH1/2(Γ).The trace
operator is bounded. Indeed, there exists a constant
𝐶
1
> 0 such that
𝛾𝑜u

Γ
≤ 𝐶
1‖u‖1 ∀u ∈ H1 (Ω) . (64)
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Reference [39, Theorem 9.4, page 41]. We shall refer
to this result (64) as the Trace theorem.

(5) For the deformation we use the following notation
for the norm and scalar products: (A(u),A(k))

Ω
=

∫
Ω
A(u) : A(k)𝑑𝑥 and ‖A‖2

Ω
= ∫
Ω
|A|2𝑑𝑥.

(6) We define the domainD by

D = {k ∈ H2 (Ω) : ∇ ⋅ k = 0 in Ω, 𝛾
𝑜
k

= −𝜂n ∈ L2 (Γ) ,A (k) = −2𝜂M on Γ} .
(65)

D is a closed subspace ofH2(Ω). Elements ofD satisfy
the kinematical boundary conditions (55).

(7) H1
𝜍
(Ω) denotes the closure ofD inH1(Ω)with respect

to the Sobolev norm ‖ ⋅ ‖
1
.

(8) The norm of 𝛾
𝑜
k ∈ L2(Γ) on the boundary Γ is chosen

as

𝛾𝑜k


2

Γ
=
𝜂


2

Γ
= ∫
Γ

𝜎 (𝑥)
𝛾𝑜k



2
𝑑𝑠. (66)

The associated scalar product is

(𝛾
𝑜
u, 𝛾
𝑜
k)
Γ
= ∫
Γ

𝜎 (𝑥) 𝛾
𝑜
u ⋅ 𝛾
𝑜
k 𝑑𝑠. (67)

According to assumption (16) this is equivalent to the
usual L2 metric. It is assumed that the function 𝜎 ∈
𝐶
∞
(Γ).

(9) For the purpose of stability and uniqueness we define
the following norm:

∫
Γ

𝜂 𝑑𝑠 =
𝜂
0,Γ
. (68)

(10) We shall deal extensively with the energy associated
with fluids of second grade defined for the purpose of
this study by

𝐸V =
𝛼

2
‖A(k)‖2

Ω
+ 𝜌‖k‖2

Ω
+ 𝐶
1

𝜂


2

0,Γ
+ 𝐶
2

∇𝑠𝜂


2

0,Γ
, (69)

with 𝐶
1
= (𝛿𝜌 − 2𝛼𝐾) and 𝐶

2
= 𝛼𝛿. 𝐸1/2V is evidently

a norm on H1
𝜍
(Ω). We shall refer to the quantity 𝐸1/2V

as the energy norm of k.
(11) The constant𝐶, which appears in inequalities, denotes

a generic positive constant. Sometimes it is necessary
to indicate the quantities onwhich a constant depends
in brackets or by a subscript.

7.2. Important Identities

Identity 1. For any symmetric tensor A and any arbitrary
tensor B, we have A : B = A : B

𝑠
, with B

𝑠
= (1/2)(B + B𝑇).

Proof. Consider the following:

A : B = A𝑇 : B𝑇 = A : B𝑇 = 1
2
A (B + B𝑇) = A : B

𝑠
. (70)

Expressions are necessary for inner products of the form
(𝐷
𝑡
F, F)
Ω
, where F is either a vector or a second order tensor.

𝐷
𝑡
= 𝜕
𝑡
+ k ⋅ ∇ is the material derivative. In order to obtain

simple expressions for the scalar product, we notice that if ∘
denotes either the usual scalar product or the “colon” product,
then

[𝜕
𝑡
F + (k ⋅ ∇)F] ∘ F = 1

2
𝜕
𝑡|F|
2
+
1

2
∇ ⋅ (|F|2k) , (71)

provided ∇ ⋅ k = 0. Hence the following identity.

Identity 2. For any smooth vector or tensor quantity F(𝑥, 𝑡)
and any v ∈ D, we have

(𝐷
𝑡
F, F)
Ω
=
1

2
𝜕
𝑡‖F‖
2

Ω
−
1

2
∫
Γ

|F|2𝜂 𝑑𝑠. (72)

Proof. By the divergence theorem

(𝜕
𝑡
F + (k ⋅ ∇)F, F) = 1

2
𝜕
𝑡
∫
Ω

|F|2𝑑𝑥 + 1
2
∫
Ω

∇ ⋅ (|F|2k) 𝑑𝑥

=
1

2
𝜕
𝑡‖F‖
2

Ω
+
1

2
∫
Γ

|F|2k ⋅ n 𝑑𝑠

=
1

2
𝜕
𝑡‖F‖
2

Ω
−
1

2
∫
Γ

|F|2𝜂 𝑑𝑠.
(73)

Later in this study we shall employ the energy method.
It will become necessary to use the various boundary condi-
tions in order to prove stability.The following is important to
obtain the required results.

Identity 3. If 𝑓 ∈ 𝐻1(Ω) is a scalar field and v ∈ D, then

∫
Ω

(k ⋅ ∇) 𝑓 𝑑𝑥 = −∫
Γ

𝜂𝑓𝑑𝑠. (74)

Proof. Integrating by parts and using the fact that k is sole-
noidal

∫
Ω

(k ⋅ ∇) 𝑓 𝑑𝑥 = ∫
Γ

𝑓k ⋅ n 𝑑𝑠 − ∫
Ω

𝑓∇ ⋅ k 𝑑𝑥 = −∫
Γ

𝜂𝑓𝑑𝑠.

(75)

We note that, in particular for k ∈ D, the imbedding of
H2(Ω) in the space of bounded continuous functions makes
the choice 𝑓 = |k|2 possible, and it follows from Identity 3
that

∫
Ω

(k ⋅ ∇) |k|2𝑑𝑠 = −∫
Γ

𝜂


3
𝑑𝑠. (76)
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For k ∈ Dwemay also choose𝑓 = |A(k)|2, and it follows that

∫
Ω

(k ⋅ ∇) |A (k)|2𝑑𝑥 = −∫
Γ

|A (k)|2𝜂 𝑑𝑠

= −∫
Γ

4𝜂
3
|M|2𝑑𝑠

(77)

since N = 0 onD.
The following will be of immediate importance.

Identity 4. For any v ∈ D,

‖A(k)‖2
Ω
= 2‖∇k‖2

Ω
+ 2∫
Γ

𝐾 (𝑥) 𝜂
2
𝑑𝑠. (78)

Proof. From the definition of A it is evident that |A(k)|2 =
2|∇k|2+2∇k : ∇𝑇k. Now∇⋅[(k ⋅∇)k] = ∇k : ∇𝑇k+(k ⋅∇)(∇⋅k),
and, since ∇ ⋅ k = 0, ∇k : ∇𝑇k = ∇ ⋅ [(k ⋅ ∇)k], integration over
Ω and Identity 1 yield

‖A(k)‖2
Ω
= 2‖∇k‖2

Ω
+ 2∫
Ω

∇ ⋅ [(k ⋅ ∇) k] 𝑑𝑥

= 2‖∇k‖2
Ω
+ 2∫
Γ

n ⋅ [(k ⋅ ∇) k] 𝑑𝑠

= 2‖∇k‖2
Ω
− 2∫
Γ

𝜂n ⊗ n : [∇k] 𝑑𝑠

= 2‖∇k‖2
Ω
− ∫
Γ

𝜂n ⋅ A (k)n 𝑑𝑠

= 2‖∇k‖2
Ω
+ 2∫
Γ

𝐾 (𝑥) 𝜂
2
𝑑𝑠.

(79)

Thus, if the curvature 𝐾 is positive everywhere on Γ, it
becomes apparent that A(k) = 0 if and only if k = 0.

Identity 5. For any bilinear form 𝑏 on a Hilbert space 𝐻, we
have, for any v,w ∈ 𝐻 and with u = v − w that 𝑏(v, v) −
𝑏(w,w) = 𝑏(u, v) + 𝑏(w, u).

Identity 6. Let f and g be tensor fields of the same order and let
∘ denote the “scalar product” in such tensor fields. For v ∈ D
it is true that

∫
Ω

[f ∘ (k ⋅ ∇) g + g ∘ (k ⋅ ∇) f] 𝑑𝑥 = −∫
Γ

𝜂Vf ∘ g 𝑑𝑠. (80)

Proof. Consider the following:

∫
Ω

f ∘ (k ⋅ ∇) g 𝑑𝑥 = ∫
Γ

(k ⋅ n) f ∘ g 𝑑𝑠 − ∫
Ω

g ∘ (k ⋅ ∇) f 𝑑𝑥,
(81)

thus

∫
Ω

[f ∘ (k ⋅ ∇) g + g ∘ (k ⋅ ∇) f] 𝑑𝑥 = ∫
Γ

𝜂Vf ∘ g 𝑑𝑠. (82)

7.3. Inequalities

Lemma 4. Under the assumptions (17) and (16), for k ∈ D,
k = 0 if and only if A(k) = 0.

Proof. From (16), (78), and (17) we have

𝑔

𝑆

𝜂


2

Γ
+ ‖∇k‖2

Ω
≤
1

2
‖A(k)‖2

Ω
≤ ‖∇k‖2

Ω
+
𝐺

𝑠

𝜂


2

Γ
, (83)

and the result follows.

The following two lemmas are important in establishing
a Poincaré inequality.

Lemma 5. The bilinear forms 𝑎(u, k) = (A(u),A(k))
Ω
and

𝑏(u, k) = 𝜌(u, k)
Ω
+ 𝐶
1
(𝛾
𝑜
u, 𝛾
𝑜
k)
Γ
+ 𝐶
2
(∇
𝑠
𝜂
𝑢
, ∇
𝑠
𝜂V)Γ are

bounded in the spaceH1
𝜍
(Ω). 𝐶

1
and 𝐶

2
are positive constants.

Proof. For u and k ∈ H1
𝜍
(Ω) and by (16), (17), and the

Schwartz inequality

|𝑎 (u, k)| = |(A (u) ,A (k))|

=


2(∇u, ∇k)

Ω
+ 2∫
Γ

𝐾 (𝑥) 𝜂
𝑢
𝜂V𝑑𝑠



≤ 2‖u‖1‖k‖1 +
2𝐺

𝑠2

𝛾𝑜u
Γ

𝛾𝑜k
Γ
.

(84)

Hence, by the Trace theorem

|𝑎 (u, k)| ≤ 𝐶‖u‖1‖k‖1. (85)

Furthermore,

|𝑏 (u, k)| = 𝜌(u, k)Ω + 𝐶1(𝛾𝑜u, 𝛾𝑜k)Γ + 𝐶2(∇𝑠𝜂𝑢, ∇𝑠𝜂𝑢)Γ


≤ 𝜌‖u‖1‖k‖1 + 𝐶1
𝛾𝑜u

Γ

𝛾𝑜k
Γ

+ 𝐶
2

∇𝑠𝜂𝑢
Γ

∇𝑠𝜂V
Γ

≤ 𝐶‖u‖1‖k‖1,
(86)

by the Trace theorem and𝐶
1
and𝐶

2
as defined and𝐶 generic.

Lemma 6. The bilinear form |𝑎(u, k)| = (A(u),A(k))
Ω

is
coercive in the sense that there exist constants 𝑐

1
> 0 and 𝑐

𝑜
≥ 0

such that

|𝑎 (u, u)| ≥ 𝑐1‖u‖
2

1
− 𝑐
𝑜
𝑏 (u, u) . (87)

Proof. From (83) we have

𝑎 (u, u) = (A (u) ,A (u))
Ω

≥ 2‖∇u‖2
Ω
+
2𝑔

𝑆

𝜂


2

Γ

= 2‖u‖2
1
− 2‖u‖2

Ω
+
2𝑔

𝑆

𝜂


2

Γ
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≥ 2‖u‖2
1
−
2

𝜌
(𝜌‖u‖2

Ω
) −

2

𝜌
𝐶
1

𝜂


2

Γ
−
2

𝜌
𝐶
2

∇𝑠𝜂𝑢


2

Γ

= 2‖u‖2
1
−
2

𝜌
𝑏 (u, u) .

(88)

We can now obtain a generalised Poincaré inequality.

Lemma 7. There exists a smallest possible constant 𝛽 > 0 such
that, for every k ∈ H1

𝜍
(Ω),

𝛽

2
‖A(k)‖2

Ω
≥ 𝜌‖k‖2

Ω
+ 𝐶
1

𝛾𝑜k


2

Γ
+ 𝐶
2

∇𝑠𝜂𝑢


2

Γ
. (89)

Proof. From the smoothness of Γ (which is always assumed),
it follows that the embedding 𝐽 : u ∈ H1(Ω) → ⟨u, 𝛾

𝑜
u⟩ ∈

L2(Ω) × L2(Γ) is compact [40]. From the boundedness
and coerciveness proved above it follows that there exists
a smallest eigenvalue 𝜆 and associated eigenfunction u ∈

H1
𝜍
(Ω) for which 𝑏(u, u) = 1 (see [34]):

𝜆 = inf {𝑎 (k, k) : k ∈ H1
𝜍
(Ω) ; 𝑏 (k, k) = 1} = 𝑎 (u, u) (90)

𝜆 > 0, for if it is zero, it follows that u = 0, which cannot be.
It follows from (90) that for any k ∈ H1

𝜍
(Ω) the inequality

𝑎 (k, k) ≥ 𝜆 [𝜌‖k‖2
Ω
+ 𝐶
1

𝛾𝑜k


2

Γ
+ 𝐶
2

∇𝑠𝜂𝑢


2

Γ
] (91)

holds and that 𝜆 is the largest such constant. Finally, we set
𝛽 = 2/𝜆.

Remark 8. It is now easy to see that ‖A(⋅)‖
Ω
is a norm on

H1
𝜍
(Ω).

In fact, we have the following lemma.

Lemma 9. For all k ∈ H1
𝜍
(Ω) we have

𝛼

2
‖A(k)‖2

Ω
≤ 𝐸V ≤

𝛼 + 𝛽 + 2

2
‖A(k)‖2

Ω
. (92)

Proof. Add (𝛼/2)‖A(k)‖2
Ω
+ 𝐶
2
‖∇
𝑠
𝜂‖
2

0Γ
to both sides of the

inequality (89):

𝐸V =
𝛼

2
‖A(k)‖2

Ω
+ 𝜌‖k‖2

Ω
+ 𝐶
1

𝜂


2

Γ
+ 𝐶
2

∇𝑠𝜂
0,Γ

≤
𝛼 + 𝛽 + 2

2
‖A(k)‖2

Ω
.

(93)

From the definition of the energy norm it is clear that

𝛼

2
‖A(k)‖2

Ω
≤ 𝐸V, (94)

and the result follows.

From Lemma 7 it is clear that these are the best estimates
of this form.

Lemma 10. The norms ‖A(k)‖
Ω
and 𝐸1/2V are equivalent to the

norm in the Sobolev spaceH1(Ω).

Proof. From (83) and (89) it follows that

‖A (k)‖2
Ω
≥ 2‖∇k‖2

Ω
,

‖A(k)‖2
Ω
≥
2𝜌

𝛽
‖k‖2
Ω
.

(95)

The addition of the two inequalities above yields

‖A(k)‖2
Ω
≥ ‖∇k‖2

Ω
+
𝜌

𝛽
‖k‖2
Ω
. (96)

Let 𝑘 = min (1, 𝜌/𝛽); then

‖A(k)‖2
Ω
≥ 𝑘‖k‖2

1
. (97)

Equation (83) yields

‖A(k)‖2
Ω
≤ 2‖∇k‖2

Ω
+
2𝐺

𝑠

𝜂


2

Γ

≤ 2‖∇k‖2
Ω
+ 2‖k‖2

Ω
+
2𝐺

𝑠

𝜂


2

Γ
,

(98)

and from the Trace theorem it follows that

‖A(k)‖2
Ω
≤ 𝐶‖k‖2

1
. (99)

From (92) it is evident that the energy norm is equivalent to
the norm ‖A(k)‖

Ω
.

Remark 11. From the above lemma we may claim from the
embeddingH1(Ω) → L3(Γ), [40], that there exists a constant
𝜏 > 0 such that

∫
Γ

𝛾𝑜k


3

Γ
𝑑𝑠 ≤ 𝜏‖A (k)‖3

Ω
for every k ∈ H1

𝜎
(Ω) . (100)

7.4. Stability and Uniqueness for the Model Problem A. k ∈
H3(Ω) ∩D satisfies the system of evolution equations

𝐷
𝑡
[𝜌k (𝑥, 𝑡)] = ∇ ⋅ T (𝜌, k) in Ω × (0,∞)

𝜕
𝑡
[𝜌𝜂 − 𝛼Δ

𝑠
𝜂] + 𝛿

−1
𝛾
𝑜
𝑝 = 𝜇Δ

𝑠
𝜂 at Γ × (0,∞)

𝛾
𝑜 [A (k)] = −2𝜂𝑀 at Γ × (0,∞) .

(101)

We now derive an energy identity for the solutions of
(101). Take the L2(Ω), scalar product with k on both sides of
(101)
1
. This produces

(𝐷
𝑡
(𝜌k) , k) =

𝜌

2
𝜕
𝑡‖k‖
2

Ω
−
𝜌

2
∫
Ω

𝜂
3
𝑑𝑠

= (∇ ⋅ T, k)

= ∫
Γ

𝛾
𝑜
k ⋅ Tn 𝑑𝑠 − (T, ∇k)

= −∫
Γ

𝜂n ⋅ Tn 𝑑𝑠 − 1
2
∫
Ω

T : A 𝑑𝑥.

(102)
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According to the formulation of the original problem on the
boundary where 𝑠(𝜂) = n ⋅ Tn, we obtain

− ∫
Γ

𝜂n ⋅ Tn 𝑑𝑠

= −∫
Γ

𝜂 ( − 𝛾
𝑜
𝑝 − 2𝜇𝜂𝐾 − 2𝛼𝐾𝜂

𝑡

+ 4𝛼𝐾
𝐺
𝜂
2
− 𝛼𝜂Δ

𝑠
𝜂 − ℓ (𝑡) ) 𝑑𝑠.

(103)

From (101)
2
we obtain

𝛾
𝑜
𝑝 = −𝛿𝜕

𝑡
[𝜌𝜂 − 𝛼Δ

𝑠
𝜂] + 𝛿𝜇Δ

𝑠
𝜂. (104)

Substitute (104) into (103) to obtain

−∫
Γ

𝜂n ⋅ Tn 𝑑𝑠 = −𝜕
𝑡
∫
Γ

𝛿𝜌

2

𝜂


2
𝑑𝑠 − 𝛿𝛼𝜕

𝑡

∇𝑠𝜂


2

0,Γ

− 𝛿𝜇
∇𝑠𝜂



2

0,Γ

+ 2𝜇𝛿∫
Γ

𝐾𝜂
2
𝑑𝑠 + 𝜕

𝑡
∫
Γ

𝛿𝛼𝐾
𝜂


2
𝑑𝑠

− 4𝛼𝛿∫
Γ

𝐾
𝐺
𝜂
3
𝑑𝑠 − 𝛼𝛿∫

Γ

𝜂
∇𝑠𝜂



2
𝑑𝑠.

(105)

Also

−
1

2
(T,A)Ω = −

1

2
𝜇‖A‖2
Ω
−
𝛼

4
𝜕
𝑡‖A‖
2

Ω
+ 𝛼∫
Γ

|M|2𝜂3𝑑𝑠. (106)

Therefore the energy identity for ProblemA is

𝜕
𝑡
[
𝜌

2
‖k‖2
Ω
+
𝛼

4
‖A(k)‖2

Ω

+∫
Γ

(
𝜌𝛿

2
− 𝛼𝐾)

𝜂


2
𝑑𝑠 + 𝛿𝛼

∇𝑠𝜂


2

0,Γ
]

= −
1

2
𝜇‖A (k)‖2

Ω
+ 𝛼∫
Γ

(|𝑀|
2
− 4𝛿𝐾

𝐺
)
𝜂


3
𝑑𝑠

− 𝛿𝜇
∇𝑠𝜂



2

Γ
+ 2𝜇𝛿∫

Γ

𝐾
𝜂


2
𝑑𝑠 − 𝛼𝛿∫

Γ

𝜂
∇𝑠𝜂



2
𝑑𝑠.

(107)

Now we can define an energy norm for ProblemA as follows:

𝐸V (𝑡) = 𝜌‖k‖
2

Ω
+
𝛼

2
‖A(k)‖2

Ω

+ ∫
Γ

(𝛿𝜌 − 2𝛼𝐾)
𝜂


2
𝑑𝑠 + 2𝛿𝛼

∇𝑠𝜂


2

0,Γ
.

(108)

Note that here we have to make the assumption that 𝛿𝜌 −
2𝛼𝐾 > 0, which gives us a restriction on 𝐾. We define a
parameter

𝑝
2
=
𝛼𝐾

𝛿𝜌
. (109)

It is now clear that stability can only be proved under the
assumption that 𝑝

2
∈ (0, 1/2).

The Poincaré inequality (see [39]) states that there exists
a smallest constant 𝑐 such that ‖𝜂‖2

0,Γ
≥ 𝑐‖∇

𝑠
𝜂‖
2

0,Γ
. Applying

the Schwartz inequality and the above Poincaré inequality, we
obtain

𝑑

𝑑𝑡
𝐸V (𝑡) ≤ −𝜇‖A(k)‖

2

Ω
+ 2𝛼 (𝐺

2
+ 𝐻
2
+ 4𝛿𝐺

2
)
𝜂


3

0,Γ

+ 2𝛿
∇𝑠𝜂



2

0,Γ
(𝜇 + 𝛼

𝜂
0,Γ
) + 4𝛿𝜇𝐺

𝜂


2

0,Γ

≤ −𝐸V [𝜇 − 2𝛼 (𝐺
2
+ 𝐻
2
+ 2𝛿𝐺

2
− 𝛿) 𝐸

1/2

V

− 2𝛿𝜇 − 4𝛿𝜇𝐺] .

(110)

With 2𝛼(𝐺2+𝐻2+4𝛿𝐺2−𝛿) = 𝜖∗ and𝜇(1−2𝛿−4𝛿𝐺) = 𝜖∗∗
we have

𝑑

𝑑𝑡
𝐸V ≤ −𝐸V [𝜖

∗∗
𝜇 − 𝜖
∗
𝐸
1/2

V ] . (111)

Theorem 12 (stability for problem A). If 𝑝
2
∈ (0, 1/2)

and 𝐸V(0) < (𝜖
∗∗
𝜇/𝜖
∗
)
2, then the energy 𝐸V(𝑡) decreases

exponentially to zero as 𝑡 → ∞.

The uniqueness of the solution of ProblemA is treated in
the same way as the uniqueness of the solution of the original
problem (see [33]).

8. Conclusion

An extensive study was conducted to find expressions for
the stress tensors of Newtonian and non-Newtonian fluids
at a permeable surface. We employed the Serret-Frenet
formulae exactly for this reason. Stability of the rest state and
uniqueness were proven for a special case where a shear flow
was taken into account.

These results proved to be valuable in applications for
the study of blood flow, where they were applied to model
the permeability of special capillaries in the formation of
cerebrospinal fluid [41, 42]. Here the authors have presented
a mathematical model of the flow of blood through the
permeable boundary of a blocked choroidal capillary in
which the parameters could be controlled. The blood plasma
was modelled as a Newtonian fluid and the nonlinear Stokes
equations were supplemented with a boundary condition
at the permeable interface of the specialized capillary. The
existence of a unique weak solution, which depends on the
viscosity and the nature of the curvature of the capillary, was
proved. By incorporating in this model all the ultrafiltration
parameters, which are presented in [41, 42], the authors
have attempted (within the prescribed morphological and
physiological properties of the microvascular environment)
to adapt the model used by Maritz and Sauer [33] to real-
life situations. Further applications could be found in the
modelling of other permeable systems in the human body like
the lymphatic glands and the urinary system.

With this research the authors have tried to prepare the
ground for the applications of these results in the exploring
of permeable surfaces in biosciences, engineering, and the
natural sciences. The open question regarding the existence
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of a classical solution for the system (101) will be addressed in
further research.
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