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We introduce 𝛽-generalized weak contractive multifunctions and give some results about endpoints of the multifunctions. Also,
we give some results about role of a point in the existence of endpoints.

1. Introduction

Let (𝑋, 𝑑) be a metric space, 𝐶𝐵(𝑋) the collection of all
nonempty bounded and closed subsets of 𝑋, and 𝐻 the
Hausdorff metric with respect to 𝑑; that is, 𝐻(𝐴, 𝐵) =
max{sup

𝑥∈𝐴
𝑑(𝑥, 𝐵), sup

𝑦∈𝐵
𝑑(𝑦, 𝐴)} for all 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋),

where 𝑑(𝑥, 𝐵) = inf
𝑦∈𝐵

𝑑(𝑥, 𝑦). Let 𝑇 : 𝑋 → 2𝑋 be
a multifunction. An element 𝑥 ∈ 𝑋 is said to be a fixed
point of 𝑇 whenever 𝑥 ∈ 𝑇𝑥. Also, an element 𝑥 ∈ 𝑋 is
said to be an endpoint of 𝑇 whenever 𝑇𝑥 = {𝑥} [1]. We
say that 𝑇 has the approximate endpoint property whenever
inf
𝑥∈𝑋

sup
𝑦∈𝑇𝑥

𝑑(𝑥, 𝑦) = 0 [1]. Let 𝑓 : 𝑋 → 𝑋 be
a mapping. We say that 𝑓 has the approximate endpoint
property whenever inf

𝑥∈𝑋
𝑑(𝑥, 𝑓𝑥) = 0 [1]. Also, the function

𝑔 : R → R is called upper semicontinuous whenever
lim sup

𝑛→∞
𝑔(𝜆
𝑛
) ≤ 𝑔(𝜆) for all sequences {𝜆

𝑛
}
𝑛≥1

with
𝜆
𝑛

→ 𝜆 [2]. In 2010, Amini-Harandi defined the concept
of approximate endpoint property for multifunctions and
proved the following result (see [1]).

Theorem1. Let𝜓 : [0,∞) → [0,∞) be anupper semicontin-
uous function such that𝜓(𝑡) < 𝑡 and lim inf

𝑡→∞
(𝑡−𝜓(𝑡)) > 0

for all 𝑡 > 0, (𝑋, 𝑑) a complete metric space, and 𝑇 : 𝑋 →
𝐶𝐵(𝑋) a multifunction satisfing 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)) for
all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique endpoint if and only if 𝑇 has
the approximate endpoint property.

Then Moradi and Khojasteh introduced the concept of
generalized weak contractive multifunctions and improved
Theorem 1 by providing the following result [3].

Theorem 2. Let 𝜓 : [0,∞) → [0,∞) be an upper semi-
continuous function such that 𝜓(𝑡) < 𝑡 and lim inf

𝑡→∞
(𝑡 −

𝜓(𝑡)) > 0 for all 𝑡 > 0, (𝑋, 𝑑) a complete metric space, and 𝑇 :
𝑋 → 𝐶𝐵(𝑋) a generalized weak contractive multifunction;
that is, 𝑇 satisfies 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋,
where𝑁(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), (𝑑(𝑥, 𝑇𝑦) +
𝑑(𝑦, 𝑇𝑥))/2}.Then𝑇 has a unique endpoint if and only if𝑇 has
the approximate endpoint property.

In this paper, we introduce 𝛽-generalized weak con-
tractive multifunctions, and by adding some conditions
to assumptions of the results, we give some results about
endpoints of 𝛽-generalized weak contractive multifunctions.
In 2012, the technique of 𝛼-𝜓-contractive mappings was
introduced by Samet et al. [4]. Later, some authors used it
for some subjects in fixed point theory (see for example [5–
8]) or generalized it by using the method of 𝛽-𝜓-contractive
multifunctions (see e.g., [9–12]).

Let (𝑋, 𝑑) be a metric space and 𝛽 : 2𝑋 × 2𝑋 →

[0,∞) a mapping. A multifunction 𝑇 : 𝑋 → 2𝑋

is called 𝛽-generalized weak contraction whenever there
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exists a nondecreasing, upper, semicontinuous function 𝜓 :
[0, +∞) → [0, +∞) such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0 and

𝛽 (𝑇𝑥, 𝑇𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑁 (𝑥, 𝑦)) (1)

for all 𝑥, 𝑦 ∈ 𝑋. We say that 𝑇 is 𝛽-admissible whenever
𝛽(𝐴, 𝐵) ≥ 1 implies that 𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1 for all 𝑥 ∈ 𝐴, and
𝑦 ∈ 𝐵, where 𝐴 and 𝐵 are subsets of 𝑋. We say that 𝑇 has
the property (𝑅)whenever for each convergent sequence {𝑥

𝑛
}

in 𝑋 with 𝑥
𝑛

→ 𝑥 and 𝛽(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) ≥ 1 for all 𝑛 ≥ 1,

we have 𝛽(𝑇𝑥
𝑛
, 𝑇𝑥) ≥ 1. One can find idea of the property

(𝑅) for mappings in [13]. We say that 𝑇 has the property (𝐾)
whenever for each sequence {𝑥

𝑛
} in𝑋with 𝛽(𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) ≥ 1

for all 𝑛 ≥ 1, there exists a natural number 𝑘 such that
𝛽(𝑇𝑥
𝑚
, 𝑇𝑥
𝑛
) ≥ 1 for all𝑚 > 𝑛 ≥ 𝑘. Finally, we say that 𝑇 has

the property (𝐻) whenever for each 𝜀 > 0, there exists 𝑧 ∈ 𝑋
such that sup

𝑎∈𝑇𝑧
𝑑(𝑧, 𝑎) < 𝜀 implies that for every 𝑥 ∈ 𝑋

there exists 𝑦 ∈ 𝑇𝑥 such that𝐻(𝑇𝑥, 𝑇𝑦) = sup
𝑏∈𝑇𝑦

𝑑(𝑦, 𝑏). A
multifunction𝑇 : 𝑋 → 2𝑋 is called lower semicontinuous at
𝑥
0
∈ 𝑋 whenever for each sequence {𝑥

𝑛
} in𝑋 with 𝑥

𝑛
→ 𝑥
0

and every 𝑦 ∈ 𝑇𝑥
0
, there exists a sequence {𝑦

𝑛
} in 𝑋 with

𝑦
𝑛
∈ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1 such that 𝑦

𝑛
→ 𝑦 [14].

2. Main Results

Now, we are ready to state and prove our main results.

Theorem 3. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a
𝛽-admissible, 𝛽-generalized weak contractive multifunction
which has the properties (𝑅), (𝐾), and (𝐻). Suppose that there
exist a subset 𝐴 of 𝑋 and 𝑥

0
∈ 𝐴 such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1.

Then 𝑇 has an endpoint if and only if 𝑇 has the approximate
endpoint property.

Proof. It is clear that if 𝑇 has an endpoint, then 𝑇 has the
approximate endpoint property. Conversely, suppose that 𝑇
has the approximate endpoint property. Choose 𝐴 ⊂ 𝑋 and
𝑥
0
∈ 𝐴 such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1. Since 𝑇 has the approximate

endpoint property, for each 𝜀 > 0, there exists 𝑧 ∈ 𝑋 such that
sup
𝑎∈𝑇𝑧

𝑑(𝑧, 𝑎) < 𝜀. Now by using the condition (H), choose
𝑥
1
∈ 𝑇𝑥
0
such that 𝐻(𝑇𝑥

0
, 𝑇𝑥
1
) = sup

𝑎∈𝑇𝑥
1

𝑑(𝑥
1
, 𝑎). Also,

choose 𝑥
2
∈ 𝑇𝑥
1
such that 𝐻(𝑇𝑥

1
, 𝑇𝑥
2
) = sup

𝑎∈𝑇𝑥
2

𝑑(𝑥
2
, 𝑎),

and by continuing this process, we find a sequence {𝑥
𝑛
} in 𝑋

such that 𝑥
𝑛
∈ 𝑇𝑥
𝑛−1

and

𝐻(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) = sup
𝑎∈𝑇𝑥
𝑛

𝑑 (𝑥
𝑛
, 𝑎) , (2)

for all 𝑛 ≥ 1. Since 𝛽(𝐴, 𝑇𝑥
0
) ≥ 1 and 𝑇 is 𝛽-admissible,

𝛽(𝑇𝑥
0
, 𝑇𝑥
1
) ≥ 1. By using induction, it is easy to see that

𝛽(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) ≥ 1 for all 𝑛 ≥ 1. Thus, we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ sup
𝑎∈𝑇𝑥
𝑛

𝑑 (𝑥
𝑛
, 𝑎) = 𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝛽 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜓 (𝑁 (𝑥
𝑛−1

, 𝑥
𝑛
))

(3)

for all 𝑛 ≥ 1. If𝑁(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝑑(𝑥

𝑛−1
, 𝑥
𝑛
), then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) . (4)

If𝑁(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝑑(𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

), then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

)) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) . (5)

If𝑁(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝑑(𝑥

𝑛
, 𝑇𝑥
𝑛
), then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
)) ≤ 𝜓 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)) , (6)

and so 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0. Thus, 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓(𝑑(𝑥
𝑛−1

, 𝑥
𝑛
)). If

𝑁(𝑥
𝑛−1

, 𝑥
𝑛
) =

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛−1

) + 𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

2

=
𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

2

𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

2

≤
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

2

≤
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)

2

≤ max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)} ,

(7)

then 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓(𝑑(𝑥
𝑛−1

, 𝑥
𝑛
)) (other case implies that

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0). Thus,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) (8)

for all 𝑛 ≥ 1.We claim that𝜓(0) = 0. If𝜓(0) > 0, then𝜓2(0) ≥
𝜓(0) > 0 because 𝜓 is nondecreasing. On the other hand,
since 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, we have 𝜓2(0) < 𝜓(0) which is a
contradiction. Hence, 𝜓(0) = 0. Let 𝑑

𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) for all 𝑛.
If there exists a natural number 𝑛

0
such that 𝑑

𝑛
0

= 0, then it is
easy to see that 𝑑

𝑛
= 0 for all 𝑛 ≥ 𝑛

0
, and so lim

𝑛→∞
𝑑
𝑛
= 0.

Now suppose that 𝑑
𝑛

̸= 0 for all 𝑛. In this case, we have 𝑑
𝑛
≤

𝜓(𝑑
𝑛−1

) < 𝑑
𝑛−1

for all 𝑛. Hence, {𝑑
𝑛
} is a decreasing sequence,

and so there exists 𝑑 ≥ 0 such that lim
𝑛→∞

𝑑
𝑛
= 𝑑. If 𝑑 >

0, then 𝑑
𝑛
> 0 for all 𝑛, and so 𝑑

𝑛
≤ 𝜓(𝑑

𝑛−1
) < 𝑑

𝑛−1
for

all 𝑛. Since 𝜓 is upper and semicontinuous, we obtain 𝑑 =
lim
𝑛→∞

𝑑
𝑛
≤ lim

𝑛→∞
𝜓(𝑑
𝑛−1

) ≤ 𝜓(lim
𝑛→∞

𝑑
𝑛−1

) = 𝜓(𝑑) <
𝑑 which is a contradiction. Thus, lim

𝑛→∞
𝑑
𝑛
= 0. Now, we

prove that {𝑥
𝑛
} is a Cauchy sequence. If {𝑥

𝑛
} is not a Cauchy

sequence, then there exist 𝜀 > 0 and natural numbers 𝑚
𝑘
, 𝑛
𝑘

such that𝑚
𝑘
> 𝑛
𝑘
≥ 𝑘 and 𝑑(𝑥

𝑚
𝑘

, 𝑥
𝑛
𝑘

) ≥ 𝜀 for all 𝑘 ≥ 1. Also,
we choose𝑚

𝑘
as small as possible such that

𝑑 (𝑥
𝑚
𝑘
−1
, 𝑥
𝑛
𝑘

) < 𝜀. (9)
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Thus, 𝜀 ≤ 𝑑(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) ≤ 𝑑(𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
−1
) + 𝑑(𝑥

𝑚
𝑘
−1
, 𝑥
𝑛
𝑘

) ≤
𝑑
𝑚
𝑘
−1

+ 𝜀 for all 𝑘. Hence, lim
𝑘→∞

𝑑(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) = 𝜀. Since 𝑇
has the property (𝐾), we obtain

𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) ≤ 𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1
) + 𝑑 (𝑥

𝑚
𝑘
+1
, 𝑥
𝑛
𝑘
+1
)

+ 𝑑 (𝑥
𝑛
𝑘
+1
, 𝑥
𝑛
𝑘

)

≤ 𝑑
𝑚
𝑘

+ 𝐻(𝑇𝑥
𝑚
𝑘

, 𝑇𝑥
𝑛
𝑘

) + 𝑑
𝑛
𝑘

≤ 𝑑
𝑚
𝑘

+ 𝛽 (𝑇𝑥
𝑚
𝑘

, 𝑇𝑥
𝑛
𝑘

)

× 𝐻(𝑇𝑥
𝑚
𝑘

, 𝑇𝑥
𝑛
𝑘

) + 𝑑
𝑛
𝑘

≤ 𝑑
𝑚
𝑘

+ 𝜓 (𝑁(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

)) + 𝑑
𝑛
𝑘

(∗)

for all 𝑘. Since lim
𝑘→∞

𝑑(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) = 𝜀, lim
𝑘→∞

𝑁(𝑥
𝑚
𝑘

,
𝑥
𝑛
𝑘

) = 𝜀. In fact,

𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

)

≤ 𝑁(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

)

= max{𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) , 𝑑 (𝑥
𝑚
𝑘

, 𝑇𝑥
𝑚
𝑘

) , 𝑑 (𝑥
𝑛
𝑘

, 𝑇𝑥
𝑛
𝑘

) ,

𝑑 (𝑥
𝑚
𝑘

, 𝑇𝑥
𝑛
𝑘

) + 𝑑 (𝑥
𝑛
𝑘

, 𝑇𝑥
𝑚
𝑘

)

2
}

≤ max{𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) , 𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘+1

) , 𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘+1

) ,

𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘+1

) + 𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘+1

)

2
}

≤ max {𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) , 𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘+1

) , 𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘+1

) ,

(𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) + 𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘+1

)

+𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) + 𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑚k+1

))

× (2)
−1} ,

(10)

and so 𝜀 = lim
𝑘→+∞

𝑑(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) ≤ lim
𝑘→∞

𝑁(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

) ≤ 𝜀.
Since 𝜓 is upper semicontinuous, by using (∗) we obtain

𝜀 = lim
𝑘→∞

𝑑 (𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

)

≤ lim
𝑘→∞

𝜓 (𝑁(𝑥
𝑚
𝑘

, 𝑥
𝑛
𝑘

)) ≤ 𝜓 (𝜀) < 𝜀,
(11)

which is a contradiction, and so {𝑥
𝑛
} is a Cauchy sequence.

Choose 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛
→ 𝑥∗. Now, note that

𝐻({𝑥
𝑛
} , 𝑇𝑥
𝑛
) = max{𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , sup
𝑦∈𝑇𝑥

𝑛

𝑑 (𝑥
𝑛
, 𝑦)}

= 𝐻 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

(12)

for all 𝑛, and so

𝐻({𝑥
𝑛
} , 𝑇𝑥
𝑛
) = 𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝛽 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜓 (𝑁 (𝑥
𝑛−1

, 𝑥
𝑛
))

≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ≤ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

(13)

for all 𝑛, and so lim
𝑛→∞

𝐻({𝑥
𝑛
}, 𝑇𝑥
𝑛
) = 0. Since 𝑇 has the

property (𝑅), we obtain

𝐻({𝑥∗} , 𝑇𝑥∗) ≤ 𝑑 (𝑥∗, 𝑥
𝑛
)

+ 𝐻 ({𝑥
𝑛
} , 𝑇𝑥
𝑛
) + 𝐻 (𝑇𝑥

𝑛
, 𝑇𝑥∗)

≤ 𝑑 (𝑥∗, 𝑥
𝑛
) + 𝐻 ({𝑥

𝑛
} , 𝑇𝑥
𝑛
)

+ 𝛽 (𝑇𝑥
𝑛
, 𝑇𝑥∗)𝐻 (𝑇𝑥

𝑛
, 𝑇𝑥∗)

≤ 𝑑 (𝑥∗, 𝑥
𝑛
) + 𝐻 ({𝑥

𝑛
} , 𝑇𝑥
𝑛
)

+ 𝜓 (𝑁 (𝑥
𝑛
, 𝑥∗))

(14)

for all 𝑛. If𝑁(𝑥
𝑛
, 𝑥∗) = 𝑑(𝑥∗, 𝑇𝑥∗), then we have

𝐻({𝑥∗} , 𝑇𝑥∗)

≤ 𝑑 (𝑥∗, 𝑥
𝑛
) + 𝐻 ({𝑥

𝑛
} , 𝑇𝑥
𝑛
) + 𝜓 (𝐻 ({𝑥∗} , 𝑇𝑥∗))

(15)

for all 𝑛. This implies that 𝐻({𝑥∗}, 𝑇𝑥∗) ≤ 𝜓(𝐻({𝑥∗}, 𝑇𝑥∗)),
and so

𝐻({𝑥∗} , 𝑇𝑥∗) = 0. (16)

If𝑁(𝑥
𝑛
, 𝑥∗) = 𝑑(𝑥

𝑛
, 𝑥∗) or𝑁(𝑥

𝑛
, 𝑥∗) ≤ 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

), then it is
easy to see that𝐻({𝑥∗}, 𝑇𝑥∗) = 0. Thus, 𝑥∗ is an endpoint of
𝑇.

Next example shows that a 𝛽-generalized weak con-
tractive multifunction is not necessarily a generalized weak
contractive multifunction.

Example 4. Let 𝑋 = R. Define 𝑇 : 𝑋 → 𝐶𝐵(𝑋) by
𝑇𝑥 = [𝑥, 𝑥 + 2] for all 𝑥 ∈ 𝑋. Suppose that 𝜓 : [0, +∞) →
[0, +∞) is an arbitrary upper semicontinuous function such
that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0. If 𝑥 = 0 and 𝑦 = 2, then
𝐻(𝑇𝑥, 𝑇𝑦) = 𝐻([0, 2], [2, 4]) = 2 and𝑁(𝑥, 𝑦) = 2. Hence,

𝐻(𝑇𝑥, 𝑇𝑦) = 2 ≩ 𝜓 (2) = 𝜓 (𝑁 (𝑥, 𝑦)) . (17)

Thus, 𝑇 is not a generalized weak contractive multifunction.
Now, suppose that 𝜓(𝑡) = 𝑡/2 for all 𝑡 ≥ 0 and define 𝛽 :

2𝑋 × 2𝑋 → [0,∞) by 𝛽(𝐴, 𝐵) = 1/2 for all subsets 𝐴 and 𝐵
of𝑋. Then, we have

𝛽 (𝑇𝑥, 𝑇𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) =
1

2
𝑑 (𝑥, 𝑦)

= 𝜓 (𝑑 (𝑥, 𝑦)) = 𝜓 (𝑁 (𝑥, 𝑦))

(18)

for all 𝑥, 𝑦 ∈ R. Thus, 𝑇 is a 𝛽-generalized weak contractive
multifunction.
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Next example shows that there are multifunctions which
satisfy the conditions of Theorem 3, while they are not
generalized weak contractive multifunctions.

Example 5. Let 𝑋 = [0, 9/2] and let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. Define
𝑇 : 𝑋 → 𝐶𝐵(𝑋) by

𝑇𝑥 =

{{{{{{{{
{{{{{{{{
{

{
𝑥

2
} 0 ≤ 𝑥 ≤ 1

{4𝑥 −
3

2
} 1 < 𝑥 ≤

3

2

{0}
3

2
< 𝑥 ≤

9

2
.

(19)

If 𝑥 = 1 and 𝑦 = 3/2, then

𝐻(𝑇𝑥, 𝑇𝑦) = 𝐻({
1

2
} , {

9

2
}) = 4 > 3

= 𝑁 (𝑥, 𝑦) > 𝜓 (𝑁 (𝑥, 𝑦)) ,

(20)

where 𝜓 : [0, +∞) → [0, +∞) is an arbitrary upper
semicontinuous function such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0.
Thus, 𝑇 is not a generalized weak contractive multifunction.
Now, we show that𝑇 satisfies all conditions ofTheorem 3. For
this aim, define𝜓(𝑡) = 𝑡/2 and 𝛽(𝐴, 𝐵) = 1whenever𝐴 and𝐵
are subsets of [0, 1] and 𝛽(𝐴, 𝐵) = 0 otherwise. First suppose
that 𝑥 ∉ [0, 1] or that 𝑦 ∉ [0, 1]. If 𝑥, 𝑦 ∈ (3/2, 9/2], then
𝑇𝑥, 𝑇𝑦 ⊂ [0, 1] and 𝛽(𝑇𝑥, 𝑇𝑦) = 1. But, 𝐻(𝑇𝑥, 𝑇𝑦) = 0, and
so 𝛽(𝑇𝑥, 𝑇𝑦)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)). If 𝑥 ∈ (1, 3/2] or 𝑦 ∈
(1, 3/2], then𝑇𝑥 ̸⊆ [0, 1], or𝑇𝑦 ̸⊆ [0, 1] and so 𝛽(𝑇𝑥, 𝑇𝑦) = 0.
Hence, 𝛽(𝑇𝑥, 𝑇𝑦)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)). Now, suppose
that 𝑥, 𝑦 ∈ [0, 1]. In this case, we have 𝛽(𝑇𝑥, 𝑇𝑦) ≥
1, 𝐻(𝑇𝑥, 𝑇𝑦) = 𝐻({𝑥/2}, {𝑦/2}) = (1/2)𝑑(𝑥, 𝑦), and
𝑁(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑥/2, 𝑦/2, (𝑑(𝑥, 𝑦/2) + 𝑑(𝑦, 𝑥/2))/2}.
Thus, 𝑑(𝑥, 𝑦) ≤ 𝑁(𝑥, 𝑦), and so

𝛽 (𝑇𝑥, 𝑇𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) =
1

2
𝑑 (𝑥, 𝑦)

≤ 𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝑁 (𝑥, 𝑦)) .

(21)

Therefore, 𝑇 is a 𝛽-generalized weak contractive multifunc-
tion.Now,we show that𝑇 is𝛽-admissible. If𝛽(𝐴, 𝐵) ≥ 1, then
𝐴, 𝐵 ⊂ [0, 1], and so 𝑇𝑥 = {𝑥/2} ∈ [0, 1] and 𝑇𝑦 = {𝑦/2} ∈
[0, 1] for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Thus, 𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1 for all
𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Now, suppose 𝐴 = [0, 1/2] and 𝑥

0
= 1/4.

Then, 𝑇𝑥
0
= {1/8} ∈ [0, 1] and [0, 1/2] ⊂ [0, 1]. Hence,

𝛽(𝐴, 𝑇𝑥
0
) ≥ 1. Now, we show that 𝑇 satisfies the condition

(𝐻). First note that, for each 𝜀 > 0, there exists 𝑧 ∈ 𝑋 such
that sup

𝑎∈𝑇𝑧
𝑑(𝑧, 𝑎) < 𝜀. Now, we show that for each 𝑥 ∈ 𝑋

there exists 𝑦 ∈ 𝑇𝑥 such that 𝐻(𝑇𝑥, 𝑇𝑦) = sup
𝑏∈𝑇𝑦

𝑑(𝑦, 𝑏). If
0 ≤ 𝑥 ≤ 1, then 𝑇𝑥 = {𝑥/2}, 𝑇(𝑥/2) = {𝑥/4}, and

𝐻(𝑇𝑥, 𝑇 (
𝑥

2
)) = 𝐻({

𝑥

2
} , {

𝑥

4
})

=
𝑥

4
= sup
𝑏∈𝑇(𝑥/2)

𝑑 (
𝑥

2
, 𝑏) .

(22)

Since for 1 < 𝑥 ≤ 3/2 we have 5/2 < 4𝑥 − (3/2) ≤ 9/2,
𝑇(4𝑥 − (3/2)) = {0}. Thus,

𝐻(𝑇𝑥, 𝑇 (4𝑥 −
3

2
)) = 𝐻({4𝑥 −

3

2
} , {0})

= 4𝑥 −
3

2
= sup
𝑏∈𝑇(4𝑥−3/2)

𝑑(4𝑥 −
3

2
, 𝑏) .

(23)

If 3/2 < 𝑥 ≤ 9/2, then 𝑇𝑥 = {0} and 𝑇(0) = {0}. Hence,

𝐻(𝑇𝑥, 𝑇 (0)) = 𝐻 ({0} , {0})

= 0 = sup
𝑏∈𝑇(0)

𝑑 (0, 𝑏) .
(24)

It is easy to check that 𝑇 satisfies the conditions (𝑅) and (𝐾).
Note that, 0 is the endpoint of 𝑇.

Now, we add an assumption to obtain uniqueness of
endpoint. In this way, we introduce a new notion. Let 𝑋 be
a set and 𝛽 : 2𝑋 × 2𝑋 → [0,∞) a map. We say that the set𝑋
has the property (𝐺

𝛽
) whenever 𝛽(𝐴, 𝐵) ≥ 1 for all subsets 𝐴

and 𝐵 of𝑋 with 𝐴 ̸⊆ 𝐵 or 𝐵 ̸⊆ 𝐴.

Corollary 6. Let (𝑋, 𝑑) be a complete metric space, 𝛽 :

2𝑋 × 2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋)
a 𝛽-admissible, 𝛽-generalized weak contractive multifunction
which has the properties (𝑅), (𝐾), and (𝐻). Suppose that there
exist a subset 𝐴 of𝑋 and 𝑥

0
∈ 𝐴 such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1. If 𝑇

has the approximate endpoint property and𝑋 has the property
(𝐺
𝛽
), then 𝑇 has a unique endpoint.

Proof. By using Theorem 3, 𝑇 has a endpoint. If 𝑇 has
two distinct endpoints 𝑥∗ and 𝑦∗, then 𝛽(𝑇𝑥∗, 𝑇𝑦∗) =
𝛽({𝑥∗}, {𝑦∗}) ≥ 1 because𝑋 has the property (𝐺

𝛽
). Hence,

𝑑 (𝑥∗, 𝑦∗) ≤ 𝐻 (𝑇𝑥∗, 𝑇𝑦∗)

≤ 𝛽 (𝑇𝑥∗, 𝑇𝑦∗)𝐻 (𝑇𝑥∗, 𝑇𝑦∗)

≤ 𝜓 (𝑁 (𝑥∗, 𝑦∗)) < 𝑁 (𝑥∗, 𝑦∗)

= 𝑑 (𝑥∗, 𝑦∗) ,

(25)

which is a contradiction.Thus, 𝑇 has a unique endpoint.

In Example 5, 𝑇 has a unique endpoint, while𝑋 does has
not the property (𝐺

𝛽
). Also,𝑇 has the property (𝑅), while𝑇 is

not lower semicontinuous. To see this, consider the sequence
{𝑥
𝑛
} defined by

𝑥
𝑛
=

{{{
{{{
{

1 −
1

𝑛
𝑛 = 2𝑘

1 +
1

𝑛
𝑛 = 2𝑘 − 1

(26)

for 𝑘 ≥ 1 and put 𝑦 = 1/2 and 𝑥
0
= 1. Then 𝑥

𝑛
→ 1 and 𝑦 ∈

𝑇𝑥
0
= {1/2}. Let {𝑦

𝑛
} be an arbitrary sequence in𝑋 such that

𝑦
𝑛
∈ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1. Then, 𝑦

2𝑘−1
∈ 𝑇𝑥
2𝑘−1

and 𝑦
2𝑘

∈ 𝑇𝑥
2𝑘

for all 𝑘. But, 𝑦
2𝑘−1

= 4𝑥
2𝑘−1

− (3/2) for sufficiently large 𝑘
and 𝑦

2𝑘
= 𝑥
2𝑘
/2 for all 𝑘 since 𝑦

2𝑘−1
→ 5/2, 𝑦

𝑛
 1/2. This

implies that 𝑇 is not lower semicontinuous.
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Corollary 7. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a 𝛽-
admissiblemultifunctionwhich has the properties (𝑅), (𝐾), and
(𝐻). Suppose that 𝑋 has the property (𝐺

𝛽
), and there exist a

subset 𝐴 of X, 𝑥
0
∈ 𝐴 and 𝑘 ∈ [0, 1) such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1

and 𝛽(𝑇𝑥, 𝑇𝑦)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑁(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Then
𝑇 has a unique endpoint if and only if 𝑇 has the approximate
endpoint property.

Proof. It is sufficient that we define 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0.
Then, Theorem 3 and Corollary 6 guarantee the result.

It has been proved that lower semicontinuity of themulti-
function 𝑇 and the property (𝑅) are independent conditions
[9].We can replace lower semicontinuity of themultifunction
instead of the property (𝑅) to obtain the next result. Its proof
is similar to the proof of Theorem 3.

Theorem 8. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a lower
semicontinuous, 𝛽-admissible, 𝛽-generalized weak contractive
multifunction which has the properties (𝐾) and (𝐻). Suppose
that there exist a subset 𝐴 of 𝑋 and 𝑥

0
∈ 𝐴 such that

𝛽(𝐴, 𝑇𝑥
0
) ≥ 1. Then 𝑇 has the approximate endpoint property

if and only if 𝑇 has an endpoint.

Corollary 9. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a lower
semicontinuous, 𝛽-admissible, 𝛽-generalized weak contractive
multifunction which has the properties (𝐾) and (𝐻). Suppose
that there exist a subset 𝐴 of 𝑋 and 𝑥

0
∈ 𝐴 such that

𝛽(𝐴, 𝑇𝑥
0
) ≥ 1. If 𝑇 has the approximate endpoint property

and 𝑋 has the property (𝐺
𝛽
), then 𝑇 has a unique endpoint.

Corollary 10. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a 𝛽-
admissiblemultifunctionwhich has the properties (𝑅), (𝐾), and
(𝐻). Suppose that 𝑋 has the property (𝐺

𝛽
), and there exist a

subset 𝐴 of 𝑋, 𝑥
0
∈ 𝐴 and 𝑘 ∈ [0, 1) such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1

and 𝛽(𝑇𝑥, 𝑇𝑦)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑁(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. If 𝑇 has
the approximate endpoint property, then Fix(𝑇) = End(𝑇) =
{𝑥}.

Proof. If we put 𝜓(𝑡) = 𝑘𝑡, then, by using Theorem 2.10 in
[9],𝑇 has a fixed point. Since𝑇 has the approximate endpoint
property, by using Corollary 7, 𝑇 has a unique endpoint such
𝑥. Let 𝑦 ∈ Fix(𝑇). If 𝑇𝑥 = 𝑇𝑦, then 𝑦 = 𝑥. If 𝑇𝑥 ̸= 𝑇𝑦, then
𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1 because𝑋 has the property (𝐺

𝛽
). Also, we have

𝑑 (𝑥, 𝑦) ≤ 𝐻 ({𝑥} , 𝑇𝑦) = 𝐻 (𝑇𝑥, 𝑇𝑦)

≤ 𝛽 (𝑇𝑥, 𝑇𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑁 (𝑥, 𝑦) .

(27)

But, 𝑁(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), (𝑑(𝑥, 𝑇𝑦) +
𝑑(𝑦, 𝑇𝑥))/2} = 𝑑(𝑥, 𝑦). Thus, 𝑑(𝑥, 𝑦) = 0, and so Fix(𝑇) =
End(𝑇) = {𝑥}.

Next corollary shows us the role of a point in the existence
of endpoints.

Corollary 11. Let (𝑋, 𝑑) be a complete metric space, 𝑥∗ ∈ 𝑋 a
fixed element, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a multifunction such that
𝑇 has the property (𝐻) and 𝑥∗ ∈ 𝑇𝑥∩𝑇𝑦 for all subsets𝐴 and
𝐵 of𝑋 with 𝑥∗ ∈ 𝐴 ∩ 𝐵 and all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Assume that
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥∗ ∈ 𝑇𝑥 ∩ 𝑇𝑦,
where 𝜓 : [0, +∞) → [0, +∞) is a nondecreasing upper
semicontinuous function such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0.
Suppose that there exist a subset 𝐴

0
of 𝑋 and 𝑥

0
∈ 𝐴
0
such

that 𝑥∗ ∈ 𝐴
0
∩𝑇𝑥
0
. Assume that for each convergent sequence

{𝑥
𝑛
} in 𝑋 with 𝑥

𝑛
→ 𝑥 and 𝑥∗ ∈ 𝑇𝑥

𝑛−1
∩ 𝑇𝑥
𝑛
, for all 𝑛 ≥ 1,

one has 𝑥∗ ∈ 𝑇𝑥
𝑛
∩ 𝑇𝑥. Also, for each sequence {𝑥

𝑛
} in 𝑋

with 𝑥∗ ∈ 𝑇𝑥
𝑛−1

∩ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1, there exists a natural

number 𝑘 such that 𝑥∗ ∈ 𝑇𝑥
𝑚
∩𝑇𝑥
𝑛
for all𝑚 > 𝑛 ≥ 𝑘. Then 𝑇

has an endpoint if and only if 𝑇 has the approximate endpoint
property.

Proof. It is sufficient we define 𝛽 : 2𝑋 × 2𝑋 → [0,∞) by
𝛽(𝐴, 𝐵) = 1 whenever 𝑥∗ ∈ 𝐴∩𝐵 and 𝛽(𝐴, 𝐵) = 0 otherwise,
and then we use Theorem 3.

Corollary 12. Let (𝑋, 𝑑) be a complete metric space, x∗ ∈ 𝑋
a fixed element and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a lower semicontinuous
multifunction such that 𝑇 has the property (𝐻) and 𝑥∗ ∈ 𝑇𝑥∩
𝑇𝑦 for all subsets 𝐴 and 𝐵 of𝑋 with 𝑥∗ ∈ 𝐴 ∩ 𝐵 and all 𝑥 ∈ 𝐴
and 𝑦 ∈ 𝐵. Assume that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑁 (𝑥, 𝑦)) (28)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥∗ ∈ 𝑇𝑥 ∩ 𝑇𝑦, where 𝜓 : [0, +∞) →
[0, +∞) is a nondecreasing upper semicontinuous function
such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0. Suppose that there exist a
subset 𝐴

0
of𝑋 and 𝑥

0
∈ 𝐴
0
such that 𝑥∗ ∈ 𝐴

0
∩ 𝑇𝑥
0
. Assume

that for each convergent sequence {𝑥
𝑛
} in𝑋 with 𝑥

𝑛
→ 𝑥 and

𝑥∗ ∈ 𝑇𝑥
𝑛−1

∩𝑇𝑥
𝑛
for all 𝑛 ≥ 1, we have 𝑥∗ ∈ 𝑇𝑥

𝑛
∩𝑇𝑥. Then 𝑇

has an endpoint if and only if 𝑇 has the approximate endpoint
property.

Proof. It is sufficient to define 𝛽 : 2𝑋 × 2𝑋 → [0,∞) by
𝛽(𝐴, 𝐵) = 1 whenever 𝑥∗ ∈ 𝐴∩𝐵 and 𝛽(𝐴, 𝐵) = 0 otherwise,
and then we use Theorem 8.

Let (𝑋, 𝑑, ≤) be an ordered metric space. Define the order
⪯ on arbitrary subsets 𝐴 and 𝐵 of 𝑋 by 𝐴 ⪯ 𝐵 if and only if
for each 𝑎 ∈ 𝐴 there exists 𝑏 ∈ 𝐵 such that 𝑎 ≤ 𝑏. It is easy to
check that (𝐶𝐵(𝑋), ⪯) is a partially ordered set.

Theorem 13. Let (𝑋, 𝑑, ≤) be a complete ordered metric space
and 𝑇 a closed and bounded valued multifunction on 𝑋 such
that 𝑇 has the property (𝐻) and 𝑇𝑥 ⪯ 𝑇𝑦 for all subsets 𝐴
and 𝐵 of 𝑋 with 𝐴 ⪯ 𝐵 and all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Assume
that 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑇𝑥 ⪯ 𝑇𝑦,
where 𝜓 : [0, +∞) → [0, +∞) is a nondecreasing upper
semicontinuous function such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0.
Suppose that there exist a subset 𝐴

0
of 𝑋 and 𝑥

0
∈ 𝐴
0
such

that 𝐴
0

⪯ 𝑇𝑥
0
. Assume that for each convergent sequence

{𝑥
𝑛
} in 𝑋 with 𝑥

𝑛
→ 𝑥 and 𝑇𝑥

𝑛−1
⪯ 𝑇𝑥

𝑛
, for all 𝑛 ≥ 1,

one has 𝑇𝑥
𝑛

⪯ 𝑇𝑥. Also, for each sequence {𝑥
𝑛
} in 𝑋 with

𝑇𝑥
𝑛−1

⪯ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1, there exists a natural number 𝑘 such

that 𝑇𝑥
𝑚
⪯ 𝑇𝑥
𝑛
for all 𝑚 > 𝑛 ≥ 𝑘. Then 𝑇 has an endpoint if

and only if 𝑇 has the approximate endpoint property.
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Proof. Define 𝛽(𝐴, 𝐵) = 1 whenever 𝐴 ⪯ 𝐵 and 𝛽(𝐴, 𝐵) = 0
otherwise, and then we use Theorem 3.

Corollary 14. Let (𝑋, 𝑑, ≤) be a complete ordered metric space
and 𝑇 a closed and bounded valued multifunction on 𝑋 such
that 𝑇 has the property (𝐻) and 𝑇𝑥 ⪯ 𝑇𝑦 for all subsets 𝐴
and 𝐵 of 𝑋 with 𝐴 ⪯ 𝐵, all 𝑥 ∈ 𝐴, and 𝑦 ∈ 𝐵. Assume that
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑇𝑥 ⪯ 𝑇𝑦,
where 𝜓 : [0, +∞) → [0, +∞) is a nondecreasing upper
semicontinuous function such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0.
Suppose that there exist a subset 𝐴

0
of 𝑋 and 𝑥

0
∈ 𝐴
0
such

that 𝐴
0

⪯ 𝑇𝑥
0
. Assume that for each convergent sequence

{𝑥
𝑛
} in 𝑋 with 𝑥

𝑛
→ 𝑥 and 𝑇𝑥

𝑛−1
⪯ 𝑇𝑥

𝑛
, for all 𝑛 ≥ 1,

one has 𝑇𝑥
𝑛

⪯ 𝑇𝑥. Also, for each sequence {𝑥
𝑛
} in 𝑋 with

𝑇𝑥
𝑛−1

⪯ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1, there exists a natural number 𝑘 such

that 𝑇𝑥
𝑚
⪯ 𝑇𝑥
𝑛
for all 𝑚 > 𝑛 ≥ 𝑘. If 𝑇 has the approximate

endpoint property and 𝐴 ⪯ 𝐵 for all subsets𝐴 and 𝐵 of𝑋 with
𝐴 ̸⊆ 𝐵 or 𝐵 ̸⊆ 𝐴, then 𝑇 has a unique endpoint.

Proof. Define 𝛽(𝐴, 𝐵) = 1 whenever 𝐴 ⪯ 𝐵 and 𝛽(𝐴, 𝐵) = 0
otherwise, and then we use Corollary 6.

Let (𝑋, 𝑑) be a metric space and 𝑇 : 𝑋 → 2𝑋

a multifunction. We say that 𝑇 is an 𝐻𝑆-multifunction
whenever for each 𝑥 ∈ 𝑋 there exists 𝑦 ∈ 𝑇𝑥 such that
𝐻(𝑇𝑥, 𝑇𝑦) = sup

𝑏∈𝑇y𝑑(𝑦, 𝑏). It is obvious that each 𝐻𝑆-
multifunction is an multifunction which has the property
(𝐻). Thus, one can conclude similar results to above ones for
𝐻𝑆-multifunctions. Here, we provide some ones. Although
by considering 𝐻𝑆-multifunction we restrict ourselves, we
obtain strange results with respect to above ones. One can
prove the following by reading exactly the proofs of similar
above results.

Theorem 15. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a 𝛽-
admissible, 𝛽-generalized weak contractive 𝐻𝑆-multifunction
which has the properties (𝑅) and (𝐾). Suppose that there exist a
subset𝐴 of𝑋 and 𝑥

0
∈ 𝐴 such that 𝛽(𝐴, 𝑇𝑥

0
) ≥ 1. Then 𝑇 has

an endpoint, and so 𝑇 has the approximate endpoint property.

Theorem 16. Let (𝑋, 𝑑) be a complete metric space, 𝛽 : 2𝑋 ×

2𝑋 → [0,∞) a mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a
lower semicontinuous, 𝛽-admissible, and 𝛽-generalized weak
contractive 𝐻𝑆-multifunction which has the property (𝐾).
Suppose that there exist a subset 𝐴 of 𝑋 and 𝑥

0
∈ 𝐴 such

that 𝛽(𝐴, 𝑇𝑥
0
) ≥ 1. Then 𝑇 has an endpoint, and so 𝑇 has

the approximate endpoint property.

The next result is a consequence of Theorem 15.

Corollary 17. Let (𝑋, 𝑑) be a complete metric space, 𝑥∗ ∈ 𝑋 a
fixed element, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) an 𝐻𝑆-multifunction
such that 𝑥∗ ∈ 𝑇𝑥 ∩ 𝑇𝑦 for all subsets 𝐴 and 𝐵 of 𝑋 with
𝑥∗ ∈ 𝐴 ∩ 𝐵, all 𝑥 ∈ 𝐴, and 𝑦 ∈ 𝐵. Assume that 𝐻(𝑇𝑥, 𝑇𝑦) ≤
𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥∗ ∈ 𝑇𝑥 ∩ 𝑇𝑦, where 𝜓 :
[0, +∞) → [0, +∞) is a nondecreasing upper semicontinuous
function such that𝜓(𝑡) < 𝑡 for all 𝑡 > 0. Suppose that there exist
a subset𝐴

0
of𝑋 and 𝑥

0
∈ 𝐴
0
such that 𝑥∗ ∈ 𝐴

0
∩𝑇𝑥
0
. Assume

that for each convergent sequence {𝑥
𝑛
} in𝑋 with 𝑥

𝑛
→ 𝑥 and

𝑥∗ ∈ 𝑇𝑥
𝑛−1

∩𝑇𝑥
𝑛
for all 𝑛 ≥ 1 one has 𝑥∗ ∈ 𝑇𝑥

𝑛
∩𝑇𝑥. Also, for

each sequence {𝑥
𝑛
} in 𝑋 with 𝑥∗ ∈ 𝑇𝑥

𝑛−1
∩ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1,

there exists a natural number 𝑘 such that 𝑥∗ ∈ 𝑇𝑥
𝑚
∩ 𝑇𝑥
𝑛

for all 𝑚 > 𝑛 ≥ 𝑘. Then 𝑇 has an endpoint, and so 𝑇 has the
approximate endpoint property.

The next result is a consequence of Theorem 16.

Corollary 18. Let (𝑋, 𝑑, ≤) be a complete ordered metric space
and 𝑇 a closed and bounded valued lower semicontinuous𝐻𝑆-
multifunction on 𝑋 such that 𝑇𝑥 ⪯ 𝑇𝑦 for all subsets 𝐴 and
𝐵 of 𝑋 with 𝐴 ⪯ 𝐵, all 𝑥 ∈ 𝐴, and 𝑦 ∈ 𝐵. Assume that
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑁(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑇𝑥 ⪯ 𝑇𝑦,
where 𝜓 : [0, +∞) → [0, +∞) is a nondecreasing upper
semicontinuous function such that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0.
Suppose that there exist a subset 𝐴

0
of 𝑋 and 𝑥

0
∈ 𝐴
0
such

that 𝐴
0
⪯ 𝑇𝑥
0
. Assume that for each sequence {𝑥

𝑛
} in 𝑋 with

𝑇𝑥
𝑛−1

⪯ 𝑇𝑥
𝑛
for all 𝑛 ≥ 1, there exists a natural number 𝑘 such

that 𝑇𝑥
𝑚

⪯ 𝑇𝑥
𝑛
for all 𝑚 > 𝑛 ≥ 𝑘. Then 𝑇 has an endpoint,

and so 𝑇 has the approximate endpoint property.
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