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Abstract. We investigate an expression involving the quotient of the analytic represen-
tations of convex and starlike functions. Sufficient conditions are found for functions to
be starlike of a positive order and convex.
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1. Introduction. Let S denote the class of functions f normalized by f(0)= f ′(0)−
1 = 0 that are analytic and univalent in the unit disk ∆ = {z : |z| < 1}. A func-
tion f in S is said to be starlike of order α, 0 ≤ α < 1, and is denoted by S∗(α)
if Re{zf ′(z)/f(z)} > α, z ∈ ∆, and is said to be convex and is denoted by K if
Re{1+zf ′′(z)/f ′(z)} > 0, z ∈ ∆. Mocanu [9] studied linear combinations of the rep-
resentations of convex and starlike functions and defined the class of α-convex func-
tions. In [8], it was shown that if

Re
[
α
(
1+zf ′′(z)/f ′(z))+(1−α)zf ′(z)/f(z)]> 0 (1.1)

for z ∈∆, then f is starlike for α real and convex for α≥ 1.
In this note, we investigate the properties of functions defined in terms of the quo-

tient of the analytic representations of convex and starlike functions. In particular,
we consider the class Gb consisting of normalized functions f defined by

Gb =
{
f :

∣∣∣∣∣
(
1+zf ′′(z)/f ′(z)
zf ′(z)/f(z)

)
−1

∣∣∣∣∣< b, z ∈∆
}
. (1.2)

We determine sharp values of b for which Gb ⊂ S∗(α),1/2 ≤ α < 1, and also find
values of b for which Gb ⊂K. It is known ([7, 10]) that K ⊂ S∗(1/2). We show that G1 ⊂
S∗(1/2)−K. We also find values of b for which Gb is not starlike and not univalent.
We make use of the following lemma obtained by Jack in [4].

Lemma A. Suppose ω is analytic for |z| ≤ r , ω(0) = 0 and |ω(z0)| =max|z|=r
|ω(z)|.

Then z0ω′(z0)= kω(z0), k≥ 1.

2. Main results

Theorem 1. If 0< b ≤ 1 and Gb is defined by (1.2), then Gb ⊂ S∗
(
2/
(
1+√1+8b)).

The result is sharp for all b.

We prove this theorem in an equivalent form, which we write as
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Theorem 1a. Set b = (1−α)/2α2,1/2 ≤ α < 1. Then Gb ⊂ S∗(α), with extremal
function z/(1−z)2(1−α).

Proof of Theorem 1a. It is well known that ifω(z) is analytic in ∆ withω(0)=
0, then Re

(
1+(1−2α)ω(z)

1−ω(z)
)
> α, z ∈ ∆, if and only if ω(z) is a Schwarz function, i.e.,

|ω(z)|< 1 for z ∈∆ with ω(0)= 0. Set

p(z)= zf ′(z)
f(z)

= 1+(1−2α)ω(z)
1−w(z) (2.1)

Then

1+ zf
′′(z)

f ′(z)
= p(z)+ zp

′(z)
p(z)

(2.2)

and ∣∣∣∣∣
(
1+zf ′′(z)/f ′(z)
zf ′(z)/f(z)

)
−1

∣∣∣∣∣=
∣∣∣∣∣ zp

′(z)
(p(z))2

∣∣∣∣∣=
∣∣∣∣ 2(1−α)zω′(z)
(1+(1−2α)ω(z))2

∣∣∣∣ . (2.3)

If f ∉ S∗(α), then by LemmaA there is a z0 ∈∆ for which |ω(z0)| = 1 and z0ω′(z0)≥
ω(z0). It then follows from (2.3) that

∣∣ z0p′(z0)
(p(z0))2

∣∣≥ 2(1−α)
(2α)2 which contradicts our hypoth-

esis. This completes the proof.

Corollary 1. G1 ⊂ S∗(1/2).
Proof. Set b = 1 in Theorem 1.
Corollary 2. If Re

(
zf ′(z)/f(z)

1+zf ′′(z)/f ′(z)
)
> 1/2 for z ∈∆, then f ∈ S∗(1/2).

Proof. This follows from Corollary 1 upon noting that for any complex value w,
|w−1|< 1⇐⇒ Re(1/w) > 1/2.
We next give a partial converse to Corollary 1.

Theorem 2. If f ∈ S∗(1/2), then ∣∣( 1+zf ′′(z)/f ′(z)zf ′(z)/f(z)
)−1∣∣< 1 for |z|< (2√3−3)1/2 =

0.68 . . . . The result is sharp.

Proof. Set p(z) = zf ′(z)/f)(z) = 1/(1−ω(z)), where ω(z) is a Schwarz func-
tion. We need to find the largest disk |z|<R for which |zp′(z)/p(z))2| = |zω′(z)|< 1.
Dieudonné [2] found the region of values for the derivative of Schwarz functions. This
led to the sharp bound [3],

∣∣ω′(z)
∣∣≤



1, r = |z| ≤ √2−1(
1+r 2)2

4r
(
1−r 2) , r ≥

√
2−1.

(2.4)

Since |zω′(z)| ≤ (1+r 2)2/4(1−r 2)= 1 for r = (2√3−3)1/2, the proof is complete.
3. A counterexample. The extreme points of the closed convex hull of convex func-

tions and functions starlike of order 1/2 are identical. See [1]. Since G1 ⊂ S∗(1/2), one
might, also, expect to have G1 ⊂K. Surprisingly, this is not the case. We now construct
a function f ∈G1−K.
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Theorem 3. G1 �⊂K.
Proof. G1 ⊂ S∗(1/2). Any of f ∈G1 satisfies zf ′(z)/f(z)= 1/(1−ω(z)) for some

Schwarz function ω(z). Setting α = 1/2 in (2.3), we see that f ∈ G1 ⇐⇒ |zω′(z)| < 1
for z ∈ ∆, which means that zω′(z) must, also, be a Schwarz function. Since 1+
zf ′′(z)/f(z) = (1+zω′(z))/(1−ω(z)), it suffices to construct a Schwarz function
Ω(z)= zω′(z) for which

Re
{
1+Ω(z)
1−ω(z)

}
< 0 (3.1)

at some point z ∈ ∆̄. Let
A= {z ∈∆ : |z−z0|< 10−5,z0 = eπi/4 = eiθ0}, (3.2)

and set

φ(z)= (z0+ z̄0)[(1− z̄0z)1/N−1], (3.3)

where N is large enough so that |φ(z)/z| < 10−4 for z ∈ ∆−A and | Imφ(z)| < 10−8
for z ∈A. Define Ω by Ω(z)= 0.9999(z+φ(z)).
We first show that Ω(z) (and, consequently, ω(z)) is a Schwarz function and then

show that inequality (3.1) holds when z = z0.
If

z ∈∆−A, (3.4)

then

|Ω(z)| ≤ 0.9999(|z|+|φ(z)|)≤ 0.9999(1.0001) < 1. (3.5)

If z ∈ A, set z = z0− εeiβ, 0 < ε < 10−5, and note that −2cos θ0 ≤ Reφ(z) ≤ 0. If
Re(z+φ(z))≥ 0, then |z+Reφ(z)| ≤ |z|< 1. If Re(z+φ(z)) < 0, then∣∣z+Reφ(z)∣∣≤ √(cos θ0+ε)2+(sin θ0+ε)2 < √1+4ε < 1+2ε < 1.0001. (3.6)

Thus, if z ∈A,
|Ω(z)| ≤ 0.9999|z+Reφ(z)|+| Imφ(z)|< 0.9999(1.0001)+10−8 = 1. (3.7)

Therefore, Ω(z) is a Schwarz function.
We now show that (3.1) holds at z = z0 for this choice of Ω(z). Since∣∣∣∣Ω(z)z −1

∣∣∣∣= |ω′(z)−1|< 0.0002 for z ∈∆−A, (3.8)

we may write ω(z)= z+η(z), where |η(z)|< 0.0003 for z ∈A. Note that
(|1−ω(z0)|2)Re

(
1+Ω(z0)
1−Ω(z0)

)
= Re {(1−Ω(z0))(1+ω(z0))}
= Re {(1−0.9999z̄0)(1− z̄0−η(z0))}
≤ 1−1.9999cos θ0+0.9999cos 2θ0+2|η(z0)|
< 1−1.9999cos(π/4)+0.0006< 0.

(3.9)

Hence, the function f for which 1+zf ′′(z)/f ′(z)= (1+Ω(z))/(1−ω(z)) must be
in G1−K.
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4. Convexity. Since G1 �⊂ K, we can ask if Gb ⊂ K for some b < 1. In general,
S∗(α) �⊂ K even for α arbitrary close to 1 (b close to 0). To see this, we note that
fn(z)= z+anzn is in S∗(α) if and only if |an| ≤ (1−α)/(n−α) and fn(z)∈K if and
only if |an| ≤ 1/n2. Thus, f(z)= z+(1−α)/(n−α)zn ∈ S∗(α)−K for n> 2/(1−α).
We next show that there are values of b for which the functions in Gb must be

convex.

Theorem 4. Gb ⊂K for b ≤√2/2.
Proof. Since f ∈ Gb ⊂ G1 ⊂ S∗(1/2), we may write zf ′(z)/f(z) = 1/(1−ω(z)),

whereω is a Schwarz function. For f ∈Gb, we take α= 1/2 in (2.3) to obtain |zω′(z)|
<
√
2/2 and, consequently, |ω(z)|<√2/2, z ∈∆. We need to show that

Re
{
1+zf ′′(z)/f ′(z)}= Re

{(
1+zω′(z)

)
(
1−ω(z))

}
> 0. (4.1)

Since ∣∣∣∣arg
(
1+zω′(z)
1−ω(z)

)∣∣∣∣≤ ∣∣arg(1+zω′(z)
)∣∣+∣∣arg(1−ω(z))∣∣

≤ π
4
+ π
4
= π
2
,

(4.2)

the result follows.

In [6], MacGregor found the radius of convexity for S∗(1/2) to be (2
√
3−3)1/2 =

0.68 . . . . Since G1 ⊂ S∗(1/2), we know that the radius of convexity is at least this
large. The following consequence of Theorem 4 is that functions in G1 are convex in
the disk |z|<√2/2.

Corollary. If f ∈Gb,
√
2/2≤ b ≤ 1, then f is convex in the disk |z|<√2/2b.

Proof. If |zω′(z)|< 1 for z ∈∆, then |zω′(z)|< t for |z|< t < 1. If f ∈Gb, then
|zω′(z)|< b for z ∈∆. Hence, |zω′(z)|<√2/2 when |z|<√2/2b.

5. Examples. Theorem 1 gives a sharp order of starlikeness for Gb when 0< b ≤ 1,
with G1 ⊂ S∗(1/2). Our methods do not extend to b > 1, but we expect the order of
starlikeness to decrease from 1/2 to 0 as b increases from 1 to some value b0 after
which functions in Gb need not be starlike. We do not have a sharp result for b > 1,
but our next example shows that the univalent functions in Gb are not necessarily
starlike for b ≥ 11.66.
The function h(z)= z(1−iz)i−1 is spiral-like [11] and, hence, in S because

Re
{
eπi/4

zh′(z)
h(z)

}
= 1√

2

(
1−|z|2
|1−iz|2

)
> 0, z ∈∆. (5.1)

Since zh′(z)/h(z)= (1+z)/(1−iz), we see that h is not starlike for |z|<a,√2/2<
a< 1. Thus, f(z)= fa(z)= h(az)/a is not starlike for z ∈∆. Setting p(z)= zf ′(z)/
f(z)= (1+az)/(1−aiz), we have∣∣∣∣∣ zp

′(z)(
p(z)

)2
∣∣∣∣∣=

∣∣∣∣ (1+i)az(1+az)2
∣∣∣∣≤

√
2a

(1−a)2 < 11.66 (5.2)
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for a sufficiently close to
√
2/2. Hence, f ∈Gb−S∗(0) for b = 11.66.

Finally, we show that the functions in Gb need not be univalent. In [5], it is shown
for h(z) = z(1− iz)i−1 that g(z) = ∫ z

0 h(t)/tdt = (1− iz)i − 1 is not in S because
g(z0) = g(−z0) for z0 = i(e2π −1)/(e2π +1),|z0| = 0.996 . . . . We, thus, conclude that
for f(z)= g(cz)/c, c = 0.997, f ∈Gb−S for b sufficiently large.
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