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This paper is concerned with the numerical solution of the Sylvester tensor equation, which includes the Sylvester matrix equation
as special case. By applying hierarchical identification principle proposed by Ding and Chen, 2005, and by using tensor arithmetic
concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis
indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are
provided to show that the proposed algorithms are effective.

1. Introduction

This paper is concerned with the solution of the following
equation:

X×
1
𝐴 +X×

2
𝐵 +X×

3
𝐶 = D, (1)

where matrices𝐴 ∈ 𝑅𝑚×𝑚, 𝐵 ∈ 𝑅𝑛×𝑛, and𝐶 ∈ 𝑅𝑙×𝑙, and tensor
D ∈ 𝑅

𝑚×𝑛×𝑙.The properties of the operators×
1
,×
2
, and×

3
are

described in detail in Section 2. WhenX is a 2-mode tensor,
that is, a matrix, (1) reduces to

𝐴𝑋 + 𝑋𝐵
𝑇
= 𝐷. (2)

It is just a Sylvestermatrix equation, which has receivedmuch
attention, often motivated by applications in control theory,
model reduction, signal processing, filtering, and system
identification [1–7]. So we call (1) a Sylvester tensor equation
in this paper.

The simplest direct approach for solving the matrix
equation (2) is Kronecker product method [8] in which the
huge memory is needed, for example, if 𝑚 = 𝑛 = 100, the
dimension of the new coefficient matrix is 10000. Alternative
direct method is to firstly transform coefficient matrices into

special forms, such as Schur canonical form [9], Hessenberg-
Schur form [1], and [10–12], and then to solve another matrix
equation which may be readily computed. Such kinds of
methods have been widely adopted. For example, 3D Schur
decomposition was developed to solve the Sylvester tensor
equation (1) (for more details see [13]). However, these
methods require the transformations of coefficient matrices,
which need considerable cost.

Iterative algorithms for solving matrix equations have
been studied extensively, for example, [14–21]. For example,
Ding and Chen proposed a few simple iterative methods for
matrix equation in [22–24]. The methods, resembling the
classical Jacobi and Gaussian iterations for linear systems, are
easy to implement and cost little per step. Gradient based iter-
ative algorithms and least squares based iterative algorithms
have also been proposed in [25–27] for (coupled) matrix
equations, which include the Sylvester matrix equations and
Lyapunovmatrix equations as a special form. However, to the
best knowledge of the authors, there is hardly any iterative
method for the Sylvester tensor equation in references up to
now.

In this paper, we first extend the gradient based iterative
algorithm for Sylvester matrix equation (2) to solve the
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Sylvester matrix equation (1) based on previous work in [22].
The basic idea of such an algorithm is to regard the unknown
tensor as the system parameter tensor by applying hierarchi-
cal identification principle. Then, we present a more efficient
modified iterative method.The convergence properties of the
two algorithms are proved. Numerical examples are given to
show that the two iterations are effective.

The rest of this paper is organized as follows. In Section 2,
we describe tensor notations and common operations used
throughout the paper. An extension and modification of the
gradient based iterative algorithms to the Sylvester tensor
equation (1) are presented in Section 3. The convergence of
the algorithms are analyzed in Section 4. Section 5 contains
some numerical experiments to illustrate the theoretical
results in this paper. Finally, some conclusions are outlined
in Section 6.

2. Tensor Notations and Basic Operations

In this section, we briefly review some concepts and notations
that are used throughout the paper. Matrices are denoted by
capital letter, for example, 𝐴, 𝐵, and 𝐶. Tensors are denoted
by Euler script letter, for example, X, Y, and Z. The 𝑛 × 𝑛
identity matrix is denoted by 𝐼

𝑛
. The order of a tensor is the

number of dimensions, also known as ways or modes. As a
special case, a vector is 1-mode tensor and a matrix is 2-mode
tensor. The operator vec(⋅) stacks the columns of a matrix
to form a vector. ‖ ⋅ ‖ denotes the Frobenius norm unless
otherwise stated.

2.1. Tensor-Matrix Multiplication. An important operation
for a tensor is the tensor-matrix multiplication [28–30]. The
1-mode product of a tensorX ∈ 𝑅

𝐼×𝐽×𝐾 by amatrix𝐴 ∈ 𝑅𝑃×𝐼,
denoted byX×

1
𝐴, is a 𝑃 × 𝐽 × 𝐾 tensor in which the entries

are given by

(X×
1
𝐴) (𝑝, 𝑗, 𝑘) =

𝐼

∑

𝑖=1

𝑥
𝑖𝑗𝑘
𝑎
𝑝𝑖
. (3)

Similarly, 2-mode multiplication of a tensor by a matrix 𝐵 ∈
𝑅
𝑄×𝐽

(X×
2
𝐵) (𝑖, 𝑞, 𝑘) =

𝐽

∑

𝑗=1

𝑥
𝑖𝑗𝑘
𝑏
𝑞𝑗
. (4)

3-mode multiplication is analogous and is omitted here.
It follows immediately from the definition that 𝑛-mode

and𝑚-mode multiplication commutes if𝑚 ̸= 𝑛:

X×
𝑚
𝐴×
𝑛
𝐵 = X×

𝑛
𝐵×
𝑚
𝐴. (5)

If the modes are the same, then

X×
𝑛
𝐴×
𝑛
𝐵 = X×

𝑛
(𝐵𝐴) . (6)

2.2. Inner Product and Tensor Norm. The inner product of
two tensorsX,Y ∈ 𝑅

𝐼×𝐽×𝐾 is defined by

⟨X,Y⟩ =
𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥
𝑖𝑗𝑘
𝑦
𝑖𝑗𝑘
, (7)

and the norm induced by this inner product is

‖X‖ = √⟨X,X⟩. (8)

For two tensors X and Y, the computation of ‖X −Y‖
can be simplified as follows:

‖X −Y‖
2
= ‖X‖

2
− 2 ⟨X,Y⟩ + ‖Y‖

2
. (9)

Moreover, 𝑛-modemultiplication commutes with respect
to the inner product, that is,

⟨X,Y×
𝑛
𝐴⟩ = ⟨X×

𝑛
𝐴
𝑇
,Y⟩ . (10)

Finally, the tensor norm of 𝑛-mode multiplication is
mutually consistent, that is,





X×
𝑛
𝐴




≤ ‖𝐴‖2 ‖

X‖ . (11)

3. Iterative Algorithms

In this section, we apply the tensor arithmetic concepts and
the hierarchical identification principle to solve the Sylvester
tensor equation (1).

Firstly, we consider the existence and uniqueness of the
solution of (1). By using the Kronecker product, we have

(𝐼
𝑙
⊗ 𝐼
𝑛
⊗ 𝐴 + 𝐼

𝑙
⊗ 𝐵 ⊗ 𝐼

𝑚
+ 𝐶 ⊗ 𝐼

𝑛
⊗ 𝐼
𝑚
) vec (X)

= vec (D) ,
(12)

which is equivalent to (1), This vectorized representation
immediately leads to the following result.

Lemma 1. Equation (1) has a unique solution if and only if
𝜆
𝑖
(𝐴)+𝜆

𝑗
(𝐵)+𝜆

𝑘
(𝐶) ̸= 0 for any 𝑖, 𝑗, and 𝑘, where𝜆

𝑖
(𝐴),𝜆

𝑗
(𝐵)

and𝜆
𝑘
(𝐶) represent the eigenvalues of𝐴, 𝐵, and𝐶, respectively.

In the case of the Sylvester matrix equation (2), this
corresponds to the well-known condition 𝜆

𝑖
(𝐴) + 𝜆

𝑗
(𝐵) ̸= 0,

for any 𝑖 and 𝑗.
In order to drive the iterative algorithms for solving (1),

we need to introduce the following residual tensors:

E
1
:= D −X×

2
𝐵 −X×

3
𝐶,

E
2
:= D −X×

3
𝐶 −X×

1
𝐴,

E
3
:= D −X×

1
𝐴 −X×

2
𝐵.

(13)

According to the hierarchical identification principle [22], (1)
is decomposed into three subsystems:

X×
1
𝐴 = E

1
, X×

2
𝐵 = E

2
, X×

3
𝐶 = E

3
. (14)

Consider the following least squares problem:

𝐽
1
(X) =

1

2





X×
1
𝐴 −E

1






2

,

𝐽
2
(X) =

1

2





X×
2
𝐵 −E

2






2

,

𝐽
3
(X) =

1

2





X×
3
𝐶 −E

3






2

.

(15)
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Note that the derivatives of 𝐽
𝑖
(𝑖 = 1, 2, 3) with respect to X

are derived in [30] and are given by
𝐽
1
(X)

𝜕X
= (X×

1
𝐴 −E

1
) ×
1
𝐴
𝑇
,

𝐽
2
(X)

𝜕X
= (X×

2
𝐵 −E

2
) ×
2
𝐵
𝑇
,

𝐽
3
(X)

𝜕X
= (X×

3
𝐶 −E

3
) ×
3
𝐶
𝑇
.

(16)

Minimizing 𝐽
𝑖
(X) (𝑖 = 1, 2, 3) leads to the following recursive

equations:

X
𝑘

1
= X
𝑘−1

1
+ 𝜇 (E

1
−X
𝑘−1

1
×
1
𝐴)×
1
𝐴
𝑇
,

X
𝑘

2
= X
𝑘−1

2
+ 𝜇 (E

2
−X
𝑘−1

2
×
2
𝐵) ×
2
𝐵
𝑇
,

X
𝑘

3
= X
𝑘−1

3
+ 𝜇 (E

3
−X
𝑘−1

3
×
3
𝐶)×
3
𝐶
𝑇
,

(17)

where 𝜇 is iterative step length and is given in the following
section.

Substituting (13) into (17) and replacing the unknown
variableX in (13) with their estimate at time (𝑘 − 1), we have

X
𝑘

1
= X
𝑘−1

1
+ 𝜇R

𝑘−1

1
×
1
𝐴
𝑇
,

X
𝑘

2
= X
𝑘−1

2
+ 𝜇R

𝑘−1

2
×
2
𝐵
𝑇
,

X
𝑘

3
= X
𝑘−1

3
+ 𝜇R

𝑘−1

3
×
3
𝐶
𝑇
,

(18)

where R𝑘
𝑖
= D − X𝑘

𝑖
×
1
𝐴 − X𝑘

𝑖
×
2
𝐵 − X𝑘

𝑖
×
3
𝐶 (𝑖 = 1, 2, 3).

Taking the average ofX𝑘
1
,X𝑘
2
, andX𝑘

3
, we obtainAlgorithm 1.

Remark 2. Note that when we compute X𝑘
2
in Algorithm 1,

theX𝑘
1
has been computed. Similarly, when we computeX𝑘

3
,

theX𝑘
1
andX𝑘

2
have been computed. Hence, we can fully take

advantage of the information ofX𝑘
𝑖
(𝑖 = 1, 2, 3) to update the

X𝑘−1 and get a more efficient algorithm as in Algorithm 2.

4. Convergence Analysis

In this section, we will discuss convergence properties of the
algorithms in the previous section. The following theorem
provides a sufficient condition to guarantee convergence of
the Algorithm 1.

Theorem 3. If the Sylvester tensor equation (1) has a unique
solution X∗ and 0 < 𝜇 < 2/(‖𝐴‖2

2
+ ‖𝐵‖

2

2
+ ‖𝐶‖

2

2
), then the

iterative solutionX𝑘 given by the Algorithm 1 converges toX∗
for arbitrary initial valueX0.

Proof. Define the error tensors

̃X
𝑘

:= X
𝑘
−X, ̃X

𝑘

𝑖
:= X
𝑘

𝑖
−X, (𝑖 = 1, 2, 3) , (19)

U
𝑘
:=
̃X
𝑘−1

×
1
𝐴, V

𝑘
:=
̃X
𝑘−1

×
2
𝐵,

W
𝑘
:=
̃X
𝑘−1

×
3
𝐶.

(20)

Using (1) and Algorithm 1, the following equalities are trivial:

̃X
𝑘

1
=
̃X
𝑘−1

− 𝜇L
𝑘
×
1
𝐴
𝑇
,

̃X
𝑘

2
=
̃X
𝑘−1

− 𝜇L
𝑘
×
2
𝐵
𝑇
,

̃X
𝑘

3
=
̃X
𝑘−1

− 𝜇L
𝑘
×
3
𝐶
𝑇
,

(21)

where L𝑘 = U𝑘 +V𝑘 +W𝑘. Taking norm on both sides of
(21), and using (9)–(11), we have









̃X
𝑘

1









2

≤









̃X
𝑘−1








2

+ 𝜇
2
‖𝐴‖
2

2






L
𝑘




2

− 2𝜇 ⟨U
𝑘
,L
𝑘
⟩ ,









̃X
𝑘

2









2

≤









̃X
𝑘−1








2

+ 𝜇
2
‖𝐵‖
2

2






L
𝑘




2

− 2𝜇 ⟨V
𝑘
,L
𝑘
⟩ ,









̃X
𝑘

3









2

≤









̃X
𝑘−1








2

+ 𝜇
2
‖𝐶‖
2

2






L
𝑘




2

− 2𝜇 ⟨W
𝑘
,L
𝑘
⟩ .

(22)

According to (19) and (22), we have









̃X
𝑘








2

≤









̃X
𝑘

1









2

+









̃X
𝑘

2









2

+









̃X
𝑘

3









2

3

≤









̃X
𝑘−1








2

+

𝜇
2

3






L
𝑘




2

(‖𝐴‖
2

2
+ ‖𝐵‖
2

2
+ ‖𝐶‖

2

2
)

−

2𝜇

3

‖L‖
2

=









̃X
𝑘−1








2

−

𝜇

3

{2 − 𝜇 (‖𝐴‖
2

2
+ ‖𝐵‖
2

2
+ ‖𝐶‖

2

2
)}






L
𝑘




2

≤








̃X
0





2

−

𝜇

3

{2 − 𝜇 (‖𝐴‖
2

2
+ ‖𝐵‖
2

2
+ ‖𝐶‖

2

2
)}

𝑘

∑

𝑖=1






L
𝑖




2

,

(23)

that is,









̃X
𝑘








2

+

𝜇

3

{2 − 𝜇 (‖𝐴‖
2

2
+ ‖𝐵‖
2

2
+ ‖𝐶‖

2

2
)}

𝑘

∑

𝑖=1






L
𝑖




2

≤








̃X
0





2

.

(24)

Since 0 < 𝜇 < 2/(‖𝐴‖2
2
+ ‖𝐵‖
2

2
+ ‖𝐶‖

2

2
), we have

∞

∑

𝑖=1






L
𝑖




2

≤








̃X
0





2

< ∞. (25)

This implies that as 𝑘 → ∞,L𝑘 → 0, that is,

̃X
𝑘−1

×
1
𝐴 +

̃X
𝑘−1

×
2
𝐵 +

̃X
𝑘−1

×
3
𝐶 → 0. (26)

According to Lemma 1, ̃X
𝑘

→ 0 as 𝑘 → ∞. Thus, the
theorem holds.

Based onTheorem 3, we have the following theorem.
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Input: 𝐴, 𝐵, 𝐶,D, and 𝜇.
Output: X.
InitializeX0.
For 𝑘 = 1, 2, . . . , 𝑘max

ComputeR𝑘−1 = D −X𝑘−1×
1
𝐴 −X𝑘−1×

2
𝐵 −X𝑘−1×

3
𝐶,

X𝑘
1
= X𝑘−1 + 𝜇R𝑘−1×

1
𝐴
𝑇,

X𝑘
2
= X𝑘−1 + 𝜇R𝑘−1×

2
𝐵
𝑇,

X𝑘
3
= X𝑘−1 + 𝜇R𝑘−1×

3
𝐶
𝑇,

X𝑘 = (X𝑘
1
+X𝑘
2
+X𝑘
3
)/3.

End

Algorithm 1: The gradient based iterative algorithm (GI).

Input:𝐴, 𝐵, 𝐶,D, and 𝜅.
Output:X.
InitializeX0.
For 𝑘 = 1, 2, . . . , 𝑘max

X𝑘
1
= X𝑘−1 + 𝜅(D −X𝑘−1×

1
𝐴 −X𝑘−1×

2
𝐵 −X𝑘−1×

3
𝐶)×
1
𝐴
𝑇,

X𝑘−1 = (X𝑘
1
+X𝑘−1
2
+X𝑘−1
3
)/3,

X𝑘
2
= X𝑘−1 + 𝜅(D −X𝑘−1×

1
𝐴 −X𝑘−1×

2
𝐵 −X𝑘−1×

3
𝐶)×
2
𝐵
𝑇,

X𝑘−1 = (X𝑘
1
+X𝑘
2
+X𝑘−1
3
)/3,

X𝑘
3
= X𝑘−1 + 𝜅(D −X𝑘−1×

1
𝐴 −X𝑘−1×

2
𝐵 −X𝑘−1×

3
𝐶)×
3
𝐶
𝑇,

X𝑘 = (X𝑘
1
+X𝑘
2
+X𝑘
3
)/3.

End

Algorithm 2: The modified gradient based iterative algorithm (MGI).

Theorem 4. If the Sylvester tensor equation (1) has a unique
solution X∗ and 0 < 𝜅 < min{1/‖𝐴‖2

2
, 1/‖𝐵‖

2

2
, 1/‖𝐶‖

2

2
}, then

the iterative solutionX𝑘 given by the Algorithm 2 converges to
X∗ for any initial valueX0.

Proof. The proof is similar to Theorem 3 and hence omitted.

Nowwe consider the convergence rate of the Algorithm 1.
From (19) and (21), it is not difficult to get the following
residual error equation:

vec (̃X
𝑘

) = [𝐼
𝑚𝑛𝑙
−

𝜇

3

𝑃]

𝑘

vec (̃X
0

) , (27)

where 𝑃 = 𝐼
𝑙
⊗ 𝐼
𝑛
⊗𝐴
𝑇
𝐴+𝐼
𝑙
⊗𝐵⊗𝐴

𝑇
+𝐶⊗𝐼

𝑛
⊗𝐴
𝑇
+ 𝐼
𝑙
⊗𝐵
𝑇
⊗

𝐴+ 𝐼
𝑙
⊗𝐵
𝑇
𝐵⊗ 𝐼
𝑚
+𝐶
𝑇
⊗ 𝐼
𝑛
⊗𝐴+𝐶

𝑇
⊗𝐵⊗ 𝐼

𝑚
+𝐶⊗𝐵

𝑇
⊗ 𝐼
𝑚
+

𝐶
𝑇
𝐶 ⊗ 𝐼
𝑛
⊗ 𝐼
𝑚
. We observe that the closer the eigenvalues of

𝜇𝑃 are to 3, the closer the eigenvalues of 𝐼
𝑚𝑛𝑙
− (𝜇/3)𝑃 tend

to zero, and hence, the faster the residual error̃X
𝑘

converges
to zero. So the convergence rate of Algorithm 1 depends on
the condition number of the associated system [22]; that is,
Algorithm 1 has a fast convergence rate for a small condition
number of 𝑃. The analysis of Algorithm 2 is similar; hence, it
is omitted here.

5. Numerical Experiments

This section gives some examples to illustrate the perfor-
mance of the proposed algorithms. All the implementations
are based on the codes from the MATLAB Tensor Toolbox
developed by Bader and Kolda [31, 32].

Example 5. Let

𝐴 = (
3 1

−1 2
) , 𝐵 = (

1 1

−1 1
) ,

𝐶 = (
1 0

1 −2
) ,

D (:, :, 1) = (
10 13

15 11
) , D (:, :, 2) = (

14 3

3 0
) .

(28)

Then, the solution ofX is

X (:, :, 1) = (
1 2

3 4
) , X (:, :, 2) = (

4 2

3 1
) . (29)

Taking X0 = 0, 𝜇 = 2.8 ∗ 1/(‖𝐴‖2
2
+ ‖𝐵‖

2

2
+ ‖𝐶‖

2

2
) ≈ 0.1067,

𝜅 = 2.8 ∗ min{1/‖𝐴‖2
2
, 1/‖𝐵‖

2

2
, 1/‖𝐶‖

2

2
} ≈ 0.2747, we apply

Algorithms 1 and 2 to compute approximate solution in (1).
Since the exact solution is known in this example, we plot
the values ||X𝑘 −X||/||X|| to indicate the convergence of the
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Figure 1: Comparison of convergence curves using GI and MGI
algorithms.

sequence {X𝑘}.These values are plotted on logarithmic scales,
if the curve is approximate decreasing line, then it is indicated
that the convergence of the sequence is at least linear.

From Figure 1, we can see that two algorithms are conver-
gent linearly and MGI algorithm converges much faster than
GI algorithm.

Remark 6. The effect of changing the step length 𝜇 and
𝜅 is illustrated in Figure 2. We observe that the larger the
step length is, the faster the convergence of the algorithm.
However, if the step length is too large, the algorithm may
diverge. How to choose a best step length is still a issue to be
studied [22].

Example 7. This example comes from [22], except for 𝐶 and
D which will be set to a random matrix (and tensor). The
MATLAB codes which generate these matrices and compute
the step lengths are as follow:

m = 30; n = 30; l = 30; rand(’state’,0);
alpha = 3;

A = triu(rand(m, m),1) + diag(alpha +
diag(rand(m)));

B = triu(rand(n, n),1) + diag(alpha + diag
(rand(n)));

C = triu(rand(l,l),1) + diag(alpha
+ diag (rand(l)));

D = tenrand([m, n, l]);

mu = 2.2/(norm(A) ∧2 + norm(B) ∧2 + norm
(C) ∧2); %Compute 𝜇

Table 1: The effect of the condition number of matrix 𝑃 on two
algorithms.

𝛼 𝜅(𝑃)
The number of
iteration (GI)

The number of
iteration (MGI)

2 73.1190 461 377
3 22.1410 134 105
5 7.9640 44 33
8 4.1285 40 14

kappa = 1.2 ∗ min([1/norm(A) ∧2, 1/norm
(B) ∧2, 1/norm(C) ∧2]); %Compute 𝜅.

Since the exact solution in this example is unknown, we plot
the relative residual errors
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From Figure 3, we can see that the convergence of GI
algorithm tends to slow down after some iterative steps. The
MGI algorithm converges linearly, and much faster than GI
method.

Example 8. In this example, we consider the effect of the
condition number ofmatrix𝑃 on two algorithms.The stoping
criterion is set to be 10−6.TheMATLAB codeswhich generate
these matrices are as follows:

m = 20; n = 10; l = 5; rand(’state’,0);
A = rand(m, m) + diag(ones(m, 1)) ∗ alpha;

B = rand(n, n) + diag(ones(n, 1)) ∗ alpha;

C = rand(l, l) + diag(ones(l, 1)) ∗ alpha;

D = tenrand([m, n, l]).

For different 𝛼, the number of iterations and the cor-
responding condition number (𝜅(𝑃)) of the matrix 𝑃 are
outlined in Table 1.

The results of Table 1 affirm the analysis at the end of
Section 4. In particular, we see that the convergence rate
becomes faster as the condition number of 𝑃 decreases.

6. Conclusions

We have presented the gradient based iterative algorithms for
solving Sylvester tensor equation, Sylvester matrix equation
as a special case included. They are based on the hierarchical
identification principle and tensor arithmetic concepts. The
convergence analysis indicates that the iterative solutions
given by the proposed algorithms converge to exact solution
for any initial values. Such statement is also confirmed by
the given numerical examples. In addition, the idea of this
paper can be easily extended to study iterative solutions of
high order (X is𝑁-mode tensor) Sylvester tensor equation.
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