ON INTEGERS n WITH $J_{t}(n)<J_{t}(m)$ For $m>n$

J. CHIDAMBARASWAMY
and
P.V. KRISHNAIAH
Department of Mathematics University of Toledo Toledo, OH 43606
(Received April 10, 1987)

ABSTRACT. Let F_{t} be the set of all positive integers n such that $J_{t}(n)<J_{t}(m)$ for all $m>n, J_{t}(n)$ being the Jordan totient function of order t. In this paper, it has been proved that (1) every postive integer d divides infinitely many members of F_{t} (2) if n and n^{\prime} are consecutive members of $F_{t}, \frac{n}{n^{\prime}} \rightarrow 1$ as $n \rightarrow \infty$ in F_{t} (3) every prime p divides n for all sufficiently large $n \varepsilon F_{t}$ and (4) $\log F_{t}(x) \ll \log ^{\frac{1}{2}} x$ where $F_{t}(x)$ is the number of $n \varepsilon F_{t}$ that $n \leqq x$.

KEYS WORDS AND PHRASES. Euler totient function, Jordan totient function of order t. 1980 AMS SUBJECT CLASSIFICATION CODE. 11A,N.

1. INTRODUCTION.

In [1] Masser and Shiu consider the set F of positive integers n such that $\phi(n)<\phi(m)$ for all $m>n$, (n) being the Euler totient function. Calling members of F sparsely totient numbers, they prove, among other results, that (1) every integer divides some member of $F(2)$ every prime divides all sufficiently large members of F (3) the ratio of consecutive members of F approaches 1 and (4) $\log F(x) \ll \log ^{\frac{1}{2}} x$ where $F(x)$ is the counting function of F; that is, the number of members of F which do not exceed x.

In this paper, using similar methods, we extend the above results to the set F_{t} of all positive integers n such that $J_{t}(n)<J_{t}(m)$ for all $m>n, J_{t}(n)$ being the well known Jordan totient function of order t [4]. We recall that $J_{t}(n)$ is defined as the number of incongruent t-vectors $\left(a_{1}, \ldots, a_{t}\right) \bmod n \operatorname{such}$ that $\left(\left(a_{1}, \ldots, a_{t}\right) n\right)=1$, it being understood that t-vectors (a_{1}, \ldots, a_{t}) and (b_{1}, \ldots, b_{t}) are congruent mod n if $a_{i} \equiv b_{i}(\bmod n)$ for $1 \leqq i \leqq t$ and that $J_{t}(n)$ is given by the formula

$$
\begin{equation*}
\mathrm{J}_{\mathrm{t}}(\mathrm{n})=\left.\mathrm{n}^{\mathrm{t}}{ }_{\mathrm{p}}\right|_{\mathrm{n}} ^{\pi}\left(1-\mathrm{p}^{-\mathrm{t}}\right) \tag{1.1}
\end{equation*}
$$

Moreover this function $J_{t}(n)$ coincides with Cohen's [3] generalization $\phi_{t}(n)$ of the Euler totient function, defines as the number of positive integers $a \leqq n{ }^{t}$ such that
$\left(a, n^{t}\right)_{t}=1$ where $(x, y)_{t}$ denotes the largest t power common divisor of x and y. Clearly $J_{1}(n)$ (and hence $\phi_{1}(n)$) is the same as $\phi(n)$.

Denoting by $\omega(n)$ the number of distinct prime factors of n, we order these prime factors as $P_{1}>P_{2}>\ldots>P_{(n)}$; thus $P_{r}=P_{r}(n)$ is the r th largest prime factor of n. Likewise we order the primes not dividing n as $Q_{1}<Q_{2}<\ldots$. Further we write P_{r} for the r th prime in the ascending sequence of all primes. For positive integral n, we write n_{\star} to denote the quotient of n by its largest square free divisor. For a positive integer u, we write α_{u} for the unique positive root of the equation

$$
\begin{equation*}
t x^{t+u}+(t+u) x^{t}-u=0 \tag{1.2}
\end{equation*}
$$

It may be directly verified that

$$
\begin{equation*}
1-\frac{2 u}{t+u} \leq \alpha_{u}<1 \tag{1.3}
\end{equation*}
$$

Finally we write $F_{t}(x)$ for the number of members of F_{t} that do not exceed x.
2. MAIN RESULTS.

We prove the following results:
THEOREM 2.1. Let $k \geq 2, d \geq 1, \ell \geq 0$ be integers such that

$$
\begin{equation*}
d<p_{k+1}-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d^{t}\left(p_{k+\ell}^{t}-1\right)<(d+1)^{t}\left(p_{k}^{t}-1\right) \tag{2.2}
\end{equation*}
$$

Then $d p_{1} \ldots p_{k-1} p_{k+}$ is a member of F_{t}.
COROLLARY 2.1. Every positive integer d divides infinitely many members of F_{t}. COROLLARY 2.2. If n and n^{\prime} are consecutive members of F_{t}, then $n^{-1} n^{\prime} \rightarrow 1$ as $n \rightarrow \infty$ in F_{t}.

THEOREM 2.2. Every prime p divides n for all sufficiently large $n \varepsilon F_{t}$.
THEOREM 2.3. Let u be a fixed positive integer. As $n \rightarrow \infty$ in F_{t} we have
(a) $\underset{n}{\lim \inf } P_{u}(n) \log ^{-1} n=1$
(b) $\quad 1 i m \sup P_{1}(n) \log ^{-1} n \geqq 2$
(c) $\quad \alpha_{u} \leqq \lim \inf Q_{u}(n) \log ^{-1} n \leqq \lim \sup Q_{u}(n) \log _{n}{ }_{n}=1$
(d) $\quad \lim _{n} \sup P_{t+u}(n) \log ^{-1} n \leqq \alpha_{u}^{-1}$
and
(e) $\quad \lim \sup _{n} P_{1}(n) \log ^{-t-1} n \leqq t$

THEOREM 2.4. $\log F_{t}(x) \ll \log ^{\frac{1}{2}} x$.
3. FOR THE PROOFS OF THE THEOREMS WE NEED THE FOLLOWING LEMMAS.

LEMMA 3.1. Let r be a positive integer and $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}, x$ and y be real numbers satisfying (i) $1 \leqq x_{i} \leqq y_{i}$ and $y \geqq x_{i}$ for $i=1, \ldots, r$ and (ii) $x_{1} \ldots x_{r} x<y_{1} \ldots y_{r} y$. Then $\left(x_{1}-1\right) \ldots \ldots\left(x_{r}-1\right)(x-1)<\left(y_{1}-1\right) \ldots\left(y_{r}-1\right)(y-1)$.

This is lemma 3.1 of [6].
For positive integers a and b we write $f(a, b)$ to denote the smallest multiple of b that exceeds a. Clearly

$$
\begin{equation*}
a<f(a, b) \leqq a+b \tag{3.1}
\end{equation*}
$$

LEMMA 3.2. If $n \varepsilon F_{t}$ and

$$
\begin{equation*}
p_{1} \cdots p_{k} \leqq n<p_{1} \cdots p_{k} p_{k+1} \tag{3.2}
\end{equation*}
$$

then $k-2 t<\omega(n) \leqq k$.
PROOF. The second inequality in (3.2) implies that $\omega(n) \leqq k$. Suppose if possible, that $0<\omega(n) \leqq k-2 t$. It follows from (1.1) that

$$
\begin{equation*}
J_{t}(n) m^{-t} \geqq\left(1-p_{1}^{-t}\right) \ldots\left(1-p_{k-2 t}^{-t}\right) . \tag{3.3}
\end{equation*}
$$

Choosing $m=f\left(n, p_{1} \ldots p_{k-t}\right)$, we have, by (3.1) and (3.2),

$$
\begin{equation*}
1<\frac{m}{n} \leqq 1+\frac{p_{1} \cdots p_{k-t}}{n} \leqq 1+\frac{1}{p_{k-t+1} \cdots p_{k}}<1+\frac{1}{p_{k-t}} \tag{3.4}
\end{equation*}
$$

On the other hand, since p_{1}, \ldots, p_{k-t} divide m, we have, in virtue of (3.3),

$$
\begin{aligned}
J_{t}(m) m^{-t} & \leqq\left(1-p_{1}^{-t}\right) \cdots\left(1-p_{k-t}^{-t}\right) \\
& \leqq J_{t}(n) n^{-t}\left(1-p_{k-2 t+1}^{-t}\right) \cdots\left(1-p_{k-t}^{-t}\right) \\
& \leqq J_{t}(n) n^{-t}\left(1-p_{k-t}^{-t}\right)^{t}
\end{aligned}
$$

so that, (3.4) now yields

$$
\frac{J_{t}(m)}{J_{t}(n)}<\left(1+p_{k-t}^{-t}\right)\left(1-p_{k-t}^{-t}\right)^{t}<1
$$

contrary to the hypothesis that $n \varepsilon F_{t}$. Hence the lemma follows.
REMARK 1. Since for each n there is a unique k such that (3.2) holds, lemma 3.2 implies that $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$ in F_{t}.

LEMMA 3.3. If u is a positive integer, $n \varepsilon F_{t}$ and $\omega(n) \geqslant t+u$ then $\alpha_{u} P_{t+u}<Q_{u}$.
PROOF. We write $a=P_{1} \ldots P_{t+u}, b=Q_{1} \ldots Q_{u}$ and $m=n a^{-1} f(a, b)$ so that

$$
\begin{equation*}
1 \quad \frac{m}{n} \quad 1+\frac{b}{a} \quad 1+Q_{u}^{u} P_{t+u}^{-t-u} \tag{3.5}
\end{equation*}
$$

Since Q_{1}, \ldots, Q_{u} are prime factors of m but not of n where as the prime factors P_{1}, \ldots, P_{t+u} of n may or may not divide m, we have

$$
J_{t}(m) m^{-1} \quad\left(1-Q_{1}^{-t}\right) \ldots\left(1-Q_{u}^{-t}\right)\left(1-P_{1}^{-t}\right)^{-1} \ldots\left(1-P_{t+n}^{-t}\right)^{-1} J_{t}(n) n^{-t}
$$

so that (3.5) and the hypothesis that $n \quad F_{t}$ together imply

$$
\begin{aligned}
1<J_{t}(m)\left(J_{t}(n)\right)^{-1} & <\left(1+Q_{u}^{u} P_{t+u}^{-t-u}\right){\underset{i=1}{u}\left(1-Q_{i}^{-t}\right){\underset{i=1}{t+u}}_{\left(1-P_{1}^{-t}\right)^{-1}}}<\left(1+Q_{u}^{u} P_{t+u}^{-t-u}\right)^{t}\left(1-Q_{u}^{-t}\right)^{u}\left(1-P_{t+u}^{-t}\right)^{-t-u}
\end{aligned}
$$

Taking $(t+u)$ th roots and employing the well known inequality $x^{r} \leqq 1+r(x-1)$ for $\mathrm{x}>0,0<r<1$, we obtain

$$
\begin{aligned}
1-P_{t+u}^{-t} & <\left(1-Q_{u}^{-t}\right)^{u / t+u}\left(1+Q_{u}^{u} P_{t+u}^{-t-u}\right)^{t / t+u} \\
& <\left\{1-u Q_{u}^{-t}(t+u)^{-1}\right\} \quad\left\{1+t Q_{u}^{u} p_{t+u}^{-t-u}(t+u)^{-1}\right\} \\
& <1-u Q_{u}^{-t}(t+u)^{-1}+t Q_{u}^{u} P_{t+u}^{-t-u}(t+u)^{-1}
\end{aligned}
$$

Cancelling 1 in the above and multiplying by $(t+u) Q_{u}^{t}$ we arrive at

$$
t\left(Q_{u} P_{t+u}^{-1}\right)^{t+u}+(t+u)\left(Q_{u} P_{t+u}^{-1}\right)^{t}-u>0
$$

which, in virtue of (1.2), implies that $Q_{u} P_{t+u}^{-1}>\alpha_{u}$.
REMARK 2. When $t=u=1$ this lemma 4 of [1] and when $t=1$ this yields a slight improvement of lemma 7 of [1].

LEMMA 3.4. For $n \varepsilon F_{t}$ we have $P_{1}(n)<t\left(Q_{1}(n)\right)^{t+1}$.
PROOF. We write P for $P_{1}(n)$ and Q for $Q_{1}(n)$. Suppose $P \geqq t Q^{t+ \pm}$ choosing $m=n f(P, Q) P^{-1}$ we see that

$$
\begin{equation*}
1<\frac{m}{n} \leqq 1+\frac{Q}{P} \leqq 1+\frac{1}{t Q^{t}} \tag{3.6}
\end{equation*}
$$

Arguing as in lemma 3.3, we have, since $P \geqq Q^{t+1}$ by our assumption,

$$
\begin{aligned}
J_{t}(m) m^{-t} & \leqq\left(1-Q^{-t}\right)\left(1-P^{-t}\right)^{-1} J_{t}(n) n^{-t} \\
& \leqq\left(1-Q^{-t}\right)\left(1-Q^{-t(t+1)}\right)^{-1} J_{t}(n) n^{-t} \\
& =\left(1+Q^{-t}+\ldots+Q^{-t^{2}}\right)^{-1} J_{t}(n) n^{-t}
\end{aligned}
$$

so that by (3.6)

$$
J_{t}(m)\left(J_{t}(n)\right)^{-1} \leq\left(1+Q^{-t}+\ldots+Q^{-t^{2}}\right)^{-1}\left(1+t^{-1} Q^{-t}\right)^{t} \leq 1
$$

contrary to the hypothesis. This establishes the lemma.
LEMMA 3.5. For $n \varepsilon F_{t}, n_{*}<t\left(Q_{1}(n)\right)^{t+1}$.
PROOF. Writing $m=n f\left(n_{\star}, Q\right) n_{*}{ }^{-1}$, we note that

$$
1<\frac{m}{n} \leq 1+\frac{Q}{n_{\star}}
$$

so that, since $n \varepsilon F_{t}$,

$$
\begin{aligned}
\exp (0)=1<J_{t}(m)\left(J_{t}(n)\right)^{-1} & \leqq\left(1-Q^{-t}\right)\left(1+Q n_{\star}^{-1}\right)^{t} \\
& <\exp \left(-Q^{-t}\right) \exp \left(t Q n_{\star}^{-1}\right)
\end{aligned}
$$

The lemma follows on comparing the exponents.
LEMMA 3.6. Let $A \geqq 0, M \geqq 3$ and $\pi(A ; M)$ be the number of primes p with $A<p \leqq A+M(\pi(A ; M)=\pi(A+M)-\pi(A))$.

Then

$$
\pi(A ; M) \leqq 2 M(\log M)^{-1}\left\{1+0\left(\log \log M \log ^{-1} M\right)\right\}
$$

and the 0 -constant is independent of A.
This is Theorem 4.5, Chapter 19 of [2].
REMARK 3. Lemma 3.6 implies that $\pi(A ; M) \leqq 3 M \log ^{-1} M$ for all $A \geqq 0$ and sufficiently large M.
4. PROOFS OF THEOREMS.

PROOF OF THEOREM 2.1. Let $n=d p_{1} \ldots p_{k-1} p_{k+\ell}$ where d, k, ℓ satisfy (2.1) and (2.2). From (1.1) and (2.2) we have

$$
\begin{align*}
J_{t}(n) & \leqq d^{t}\left(p_{1}^{t}-1\right) \ldots\left(p_{k-1}^{t}\right)\left(p_{k+}^{t}-1\right) \\
& <(d+t)^{t}\left(p_{1}^{t}-1\right) \ldots\left(p_{k-1}^{t}-1\right)\left(p_{k}^{t}-1\right) \tag{4.1}
\end{align*}
$$

Let $m>n$. There is a unique s such that $p_{1} \cdots p_{s} \leqq m<p_{1} \cdots p_{s+1}$ and the last inequality implies that $\omega(m) \leqq s$. Hence

$$
\begin{align*}
J_{t}(m) & \geqq m^{t}\left(1-p_{1}^{-t}\right) \ldots\left(1-p_{s}^{-t}\right) \\
& \geqq\left(p_{1}^{t}-1\right) \cdots\left(p_{s}^{t-1}\right) \tag{4.2}
\end{align*}
$$

Case (1) $s \geq k+1$. We have, by (4.2),

$$
\begin{array}{rlrl}
J_{t}(m) & \geqq\left(p_{1}^{t}-1\right) \cdots\left(p_{k}^{t}-1\right)\left(p_{k+1}^{t}-1\right) & \\
& >\left(p_{1}^{t}-1\right) \cdots\left(p_{k}^{t}-1\right)(d+1)^{t} & \text { by }(2.1) \\
& \geqq J_{t}(n) & & \text { by }(4.1)
\end{array}
$$

Case (2) $s \leqq k, \omega(m) \leqq k-1$. In this case

$$
J_{t}(m) m^{-t} \geq\left(1-p_{1}^{-t}\right) \ldots\left(1-p_{k-1}^{-t}\right)
$$

where as

$$
\begin{aligned}
J_{t}(n) n^{-s} & \leqq\left(1-p_{1}^{-t}\right) \ldots \ldots\left(1-p_{k-1}^{-t}\right)\left(1-p_{k+}^{-t}\right) \\
& <\left(1-p_{1}^{-t}\right) \ldots \ldots\left(1-p_{k-1}^{-t}\right)
\end{aligned}
$$

so that $J_{t}(m)>J_{t}(n)$.
Case (3) $s \leqq k=\omega(m)$ and $m_{k} \geqq d+1$. In this case $s=k=\omega(m)$ and

$$
\begin{aligned}
J_{t}(m) & =\left.m_{*}^{t} \quad p^{\pi}\right|_{\mathrm{m}} ^{\pi}\left(p^{t}-1\right) \\
& \geqq m_{*}^{t} \quad\left(p_{1}^{t}-1\right) \ldots \ldots\left(p_{k}^{t}-1\right) \\
& \geqq(d+1)^{t}\left(p_{1}^{t}-1\right) \ldots \ldots\left(p_{k}^{t}-1\right) \\
& >J_{t}(n)
\end{aligned}
$$

in virtue of (4.1).
Case (4) $s \leq k=\omega(m)$ and $m_{*} \leqq d$. Let $m=m_{*} q_{1} \ldots q_{k}, q_{i}$'s being the distinct prime factors of m in ascending order. Then $q_{i} \geq p_{i}$ and since $m>n$ we have

$$
q_{1} \ldots q_{k-1} q_{k}>p_{1} \cdots \cdots p_{k-1}\left(d p_{k+\ell} m_{\star}^{-1}\right)
$$

Taking $r=k-1, y_{i}=q_{i}^{t}, y=q_{k}^{t}, x_{i}=p_{i}^{t}$ and $x=d^{t} p_{k+l^{\prime}}^{m_{k}^{-t}}$ in lemma 3.1 we obtain

$$
\left(q_{1}^{t}-1\right) \ldots\left(q_{k-1}^{t}\right)\left(q_{k}^{t}-1\right)>\left(p_{1}^{t}-1\right) \ldots\left(p_{k-1}^{t}-1\right)\left(d^{t} p_{k+\ell}^{t} m_{*}^{-t}-1\right)
$$

so that

$$
\begin{aligned}
J_{t}(m) & =m_{*}^{t}\left(q_{1}^{t}-1\right) \ldots\left(q_{k}^{t}-1\right)>\left(p_{1}^{t}-1\right) \ldots\left(p_{k-1}^{t}-1\right)\left(d^{t} p_{k+l^{t}}^{t} m_{*}^{t}\right) \\
& >d^{t}\left(p_{1}^{t}-1\right) \ldots\left(p_{k-1}^{t}-1\right)\left(p_{k+l^{-1}}^{t}\right) \\
& \geqq J_{t}(n)
\end{aligned}
$$

by (4.1). This completes the proof of Theorem 2.1.
PROOF OF COROLLARY 2.1. Let d be any positive integer. For each $k \geq 2$ such that (2.1) holds, we can take $\ell=0$ so that (2.2) holds. Thus $d p_{1} \ldots p_{k} \in F_{t}$ for each $k \geq 2$ such that $p_{k+1}>d+1$.

As the proof of Corollary 2.2 is essentially the same as that of the Corollary given in section 3 of [1], we omit it.

PROOF OF THEOREM 2.2. Let p be a given prime. Choosing r such that $p_{r}>\mathrm{p}_{1}^{-1}$, we see that $\omega(\mathrm{n}) \geq \mathrm{r}+\mathrm{t}+1$ for all n in F_{t} such that $\mathrm{n} \geq \mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{r}+3 \mathrm{t}}$ in virtue of lemma 2. For such n we have

$$
P_{t+1} \geq P_{r}>p \alpha_{1}^{-1}
$$

so that

$$
Q_{1}>\alpha_{1} P_{t+1}>p
$$

in virtue of lemma $3.3(u=1)$, yielding that $p \mid n$.
REMARK 1. Though this theorem follows immediately from Theorem 2.3 a direct proof seems desirable.

PROOF OF THEOREM 2.3. (a) For any $n \varepsilon F_{t}$, there is a unique integer k satisfying

$$
\begin{equation*}
p_{1} \cdots p_{k} \leq n<p_{1} \cdots p_{k+1} . \tag{4.3}
\end{equation*}
$$

By lemma 3.2, $\omega=\omega(n) \geqq k-2 t+1$ so that, for a fixed integer u, $P_{u}(n) \geqq p_{\omega-u+1} \geqq p_{k-2 t-u+2} \sim \log n$ as $n \rightarrow \infty$ in F_{t} since, by the prime numbers theorem $(\theta(x) \sim x)$,

$$
p_{k} \sim \log \left(p_{1} \ldots p_{k}\right) \sim \log n
$$

and

$$
p_{k-2 t-u+2} \sim p_{k} \text { as } k \rightarrow \infty \quad \text { (hence as } n \rightarrow \infty \text { in } F_{t} \text {). }
$$

Thus $\lim \inf _{n} \frac{P_{u}(n)}{\log n} \geq 1$. On the other hand, considering members n of F_{t} of the form $p_{1} \ldots p_{k}$ (take $d=1, \ell=0$ in theorem 2.1), we have

$$
P_{u}(n) \leqq P_{1}(n)=p_{k} \sim \log n
$$

as $n \rightarrow \infty$ through such members of F_{t}. Hence

$$
\underset{n}{\lim \inf } \frac{P_{u}(n)}{\log n}=1
$$

(b) For $k \geqq 2, \ell \geqq 0$ theorem 2.1 (with $d=1$) says that

$$
p_{k+\ell}^{t}<2^{t}\left(p_{k}^{t}-1\right)+1 \Rightarrow p_{1} \cdots p_{k-1} p_{k+\ell} \varepsilon F_{t}
$$

choosing ℓ to be the largest subject to the above condition we have

$$
\begin{equation*}
p_{k++1}^{t} \geqq 2^{t}\left(p_{k}^{t}-1\right)+1>p_{k+\ell}^{t} \tag{4.4}
\end{equation*}
$$

so that

$$
p_{k+\ell+1}<2\left(p_{k}-1\right) \sim 2 \log n
$$

where $n-p_{1} \cdots p_{k-1} p_{k+\ell}$, since n satisfies (4.3) in virtue of (4.4). Now $P_{1}(n)=p_{k+\ell} \sim p_{k+\ell+1}$ and this yields

$$
\underset{n}{\lim \sup } \frac{p_{1}(n)}{\log n} \geq 2 .
$$

(c) Since, by lemma 3.3, $Q_{u}>\alpha_{u} P_{t+u}$, we have, from (a)

$$
\underset{n}{\lim \inf } \frac{Q_{u}(n)}{\log n} \geq \alpha_{u}
$$

On the other hand, choosing k as in (4.3) we see that $Q_{1} \leqq p_{k+1}$ and hence $Q_{u} \leq p_{k+u}$ for all n in F_{t}, where as, for members of F_{t} of the form $p_{1} \ldots p_{k}$ we have $Q_{u}=p_{k+u}$. Since $p_{k+u} \sim p_{k} \sim \log n$ we have

$$
\underset{n}{\lim \sup } \frac{Q_{u}(n)}{\log n}=1
$$

(d) and (e) now follow by applying lemmas 3 and 4 respectively.

PROOF. OF THEOREM 2.4. We write $G(x)=F_{t}(x)-F_{t}\left(\frac{x}{2}\right)=$ number of members n of F_{t} satisfying $\frac{x}{2}<n \leqq x$ and show that $\log G(x) \ll \log { }^{\frac{1}{2}} t$ from which the theorem follows easily. Throughout the proof we assume that x is a sufficiently large positive real number. We write

$$
\begin{equation*}
u=\left[\log ^{\frac{1}{2}} x(\log \log x)^{-1}\right]-t \tag{4.5}
\end{equation*}
$$

and note that $t+u \geqq 2^{t}+2 t$. For $n \varepsilon F_{t}, n>\frac{x}{2}$ we have $Q_{1}(n) \geqq \frac{4}{5} \alpha_{1} \log n$ by (2.3) Putting $Q_{1}=p_{\ell+1}$ and noting that $\ell+1 \geq \frac{3}{4} \frac{Q_{1}(n)}{\log Q_{1}(n)}$ by the prime number theorem we conclude that

$$
\omega(n) \geq \ell \geq \frac{\alpha_{1} \log n}{2 \log \log n} \geq \frac{\log ^{\frac{1}{2}} x}{\log \log x} \geq t+u \quad 2^{t}+2 t
$$

Each n is specified uniquely when n_{*} and the prime factors of n are given. We estimate an upperbound for $G(x)$ by estimating upper bounds for the number of choices, consistent with $n \in F_{t} \quad\left(\frac{x}{2}, x\right]$, for each of (a) n_{*} (b) the largest $t+u$ prime factors of n, namely P_{1}, \ldots, P_{t+u} (c) the prime factors of n that are less that $\alpha_{u} P_{t+u}$ and (d) the prime factors of n that lie in $\left[\alpha_{u} P_{t+u}, P_{t+u}\right)$.
(a) By lemma 3.5 and (2.3) the number of choices for n_{*} does not exceed $t(2 \log x)^{t+1}$ and hence does not exceed $(2 t \log x)^{t+1}$.
(b) $P_{i} \leqq P_{1} \leqq 2 t(\log x)^{t+1}$ for $1 \leqq i \leqq t+u$ in virtue of (1.8) so that the number of choices for P_{1}, \ldots, P_{t+u} does not exceed $(2 t \log x)^{(t+1)(t+u)}$.
(c) Each choice of Q_{1}, \ldots, Q_{u} gives rise to exactly one choice of the prime factors of n that are $<\alpha_{u} P_{t+u}$ and each choice of these prime factors gives rise to at least one choice for Q_{1}, \ldots, Q_{u} since $\alpha_{u} P_{t+u}<Q_{u}$ and all primes in $\left(1, \alpha_{u} P_{t+u}\right) \quad\left\{Q_{1}, \ldots, Q_{u}\right\}$ divide n. If $P_{1}=p_{r}$ then $r<p_{r}=P_{1} \leqq 2 t \log ^{t+1} x$, $Q_{1} \leqq p_{r+1}, \ldots$ and $Q_{u} \leqq p_{r+u}$. Hence $Q_{1} \leqq p_{r+u}<(r+u)^{2} \quad\left(3 t \log { }^{t+1} x\right)^{2}$ so that the number of choices for Q_{1}, \ldots, Q_{u} and hence for the prime factors of n in $\left(1, \alpha_{u} P_{t+u}\right)$ does not exceed $\left(3 t \log t+1_{x}\right){ }^{2 u}$.
(d) Let $M=P_{t+u}-\alpha_{u} P_{t+u}$ and note that

$$
\begin{aligned}
M=\left(1-\alpha_{u}\right) P_{t+u} & \leqq 2 t(t+u)^{-1} P_{t+u} \\
& \leqq 3 t(t+u)^{-1} \alpha_{u}^{-1} \log x \\
& <4 t \alpha_{u}^{-1} \log ^{\frac{1}{2}} x \log \log x
\end{aligned}
$$

in virtue of (1.3), (2.4) and (4.5) respectively. Hence, by remark 3 following lemma 3.6, the number of primes in $\left[\alpha_{u} P_{t+u}, P_{t+u}\right)$ does not exceed $24 t \alpha_{u}^{-1} \log g^{\frac{1}{2}} x$ and consequently the number of choices for the prime factors of n that lie in this interval does not exceed $2^{24 t \alpha_{u}-1} \log ^{\frac{1}{2}} x$.

Combining the estimates (a) through (d) we obtain $G(x) \leqq(3 t \log x)^{3(t+u)(t+1)}$ $\exp \left(24 t \alpha_{u}^{-1} \log ^{\frac{1}{2}} x \log 2\right)$ from which the desired order estimate follows in virtue of (4.5).

It would be interesting to investigate whether results of this nature are available for more general totients; e.g. totients with respect to a polynomial [3] and with respect to a set of polynomials [4], introduced by the first author.

REFERENCES

1. MASSER, D.W. and SHIU, P. On sparsely totient numbers, Pacific J. of Math. 121 (1986), 407-426.
2. HUA, L.K. Introduction to Number Theory, Springer-Verlag, Berlin-Heidelberg-New
3. CHIDAMBARASAMY, J. Totients with respect to a polynomial, Indian J. of Pure \& Applied Math. 5 (1974), 601-608.
4. , Totients and unitary totients with respect to a set of polynomials, Ibid, 10 (1979), 287-302.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

