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Abstract
Background: Mitotane (1,1-dichloro-2-[o-chlorophenyl]-2-[p-chlorophenyl]ethane),  
a cytostatic drug used for the treatment of adrenocortical carcinomas, is effective by triggering 
tumor cell apoptosis. In analogy to apoptosis of nucleated cells, eryptosis is the suicidal 
death of erythrocytes, which is typically paralleled by cell shrinkage and breakdown of cell 
membrane phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at 
the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+ concentration 
([Ca2+]i). The present study tested, whether treatment of human erythrocytes with mitotane 
is followed by eryptosis. Methods: [Ca2+]i was estimated from Fluo3 fluorescence, cell 
volume from forward scatter, phosphatidylserine exposure from annexin V binding, and 
hemolysis from hemoglobin release. Results: Exposure to mitotane (≥ 5 µg/ml ≈ 16 µM) 
significantly increased [Ca2+]i, increased annexin V binding and triggered hemolysis, but did 
not significantly modify forward scatter. The effect on annexin V binding was significantly 
blunted in the absence of extracellular Ca2+. Within 30 min Ca2+ ionophore ionomycin (1 µM) 
decreased forward scatter, an effect virtually abolished in the presence of mitotane (15 µg/ml). 
Conclusions: Mitotane increases [Ca2+]i with subsequent phosphatidylserine translocation.  
By the same token mitotane inhibits Ca2+ induced cell shrinkage. 
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Introduction

Mitotane (1,1-dichloro-2-[o-chlorophenyl]-2-[p-chlorophenyl]ethane) is the drug of 
choice for non-resectable and metastatic adrenocortical carcinoma, a rare malignancy with 
a 5-year survival of less than 50% [1-3]. The substance is effective by triggering apoptosis 
of tumor cells [4-6], an effect attributed to caspase activation [4]. Potential side effects of 
mitotane include anemia [7, 8].

Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the 
suicidal death of erythrocytes characterized by erythrocyte shrinkage and breakdown 
of phosphatidylserine (PS) asymmetry of the erythrocyte cell membrane [9]. Eryptosis is 
stimulated by increase of cytosolic Ca2+ concentration ([Ca2+]i) resulting from Ca2+ entry 
through Ca2+ permeable cation channels [9]. Increased [Ca2+]i activates Ca2+ sensitive K+ 
channels [10] resulting in K+ efflux, hyperpolarization, Cl- efflux and thus cell shrinkage due 
to cellular efflux of KCl with osmotically obliged water [9]. Increased [Ca2+]i further triggers 
phospholipid scrambling of the cell membrane with translocation of phosphatidylserine to 
the erythrocyte surface [11]. The Ca2+ sensitivity of eryptosis is augmented by ceramide [9]. 
Further stimulators of eryptosis include energy depletion [9] and caspase activation [9, 12, 
13]. Signaling governing eryptosis further includes AMP activated kinase AMPK [9], cGMP 
dependent protein kinase [9], Janus activated kinase JAK3 [14], casein kinase [15, 16], p38 
kinase [17], PAK2 kinase [18] as well as sorafenib [19] and sunitinib [20] sensitive kinases.

Eryptosis is triggered by a large number of xenobiotics [9, 20-46] and excessive eryptosis 
contributes to the pathophysiology of several diseases [9] including diabetes [9, 13, 47], 
renal insufficiency [9], hemolytic uremic syndrome [9], sepsis [9], malaria [9], sickle cell 
disease [9], Wilson’s disease [9], iron deficiency [9], malignancy [48], phosphate depletion 
[9], and metabolic syndrome [42].

The present study explored whether treatment of human erythrocytes with mitotane 
influenced [Ca2+]i, cell volume and phosphatidylserine abundance at the cell surface. As a result, 
mitotane significantly increased [Ca2+]i and significantly enhanced the phosphatidylserine 
abundance at the erythrocyte surface but did not significantly decrease erythrocyte volume.

Materials and Methods 

Erythrocytes, solutions and chemicals
Leukocyte depleted erythrocytes were kindly provided by the blood bank of the University of Tübingen. 

The study is approved by the ethics committee of the University of Tübingen (184/2003V). Erythrocytes 
were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 
32 N 2 hydroxyethylpiperazine N 2 ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl2; pH 7.4 at 37°C for 24 and 
48 h. Where indicated, erythrocytes were exposed to mitotane (Sigma-Aldrich, Germany) at the indicated 
concentrations. The substance was solved in up to 1.5 µl/ml DMSO. In Ca2+ free Ringer solution, 1 mM CaCl2 was 
substituted by 1 mM glycol bis(2 aminoethylether) N,N,N',N' tetraacetic acid (EGTA). 

FACS analysis of annexin V binding and forward scatter 
After incubation under the respective experimental condition, 50 µl cell suspension was centrifuged (3min, 
1600rpm, 23°C). Ringer solution containing 5 mM CaCl2 was added to the erythrocytes and then stained 
with Annexin V FITC (1:200 dilution; ImmunoTools, Friesoythe, Germany) in this solution at 37°C for 20 
min under protection from light. In the following, the forward scatter (FSC) of the cells was determined, 
i.e. the scatter of the light in line with the light beam. The FSC is a function of cell volume [49]. Annexin V 
fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur (BD, Heidelberg, Germany).

Measurement of intracellular Ca2+

After incubation 50µl cell suspension was centrifuged (3min, 1600rpm, 23°C). Erythrocytes were 
loaded with Fluo 3/AM (Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 2 µM Fluo 
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3/AM. The cells were incubated at 37°C for 30 min and washed in Ringer solution containing 5 mM CaCl2. 
The Fluo 3/AM loaded erythrocytes were resuspended in 200 µl Ringer. Then, Ca2+ dependent fluorescence 
intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a 
FACS Calibur (BD, Heidelberg, Germany).

Measurement of hemolysis
For the determination of hemolysis the samples were centrifuged (3 min at 400 g, room temperature) 

after incubation, and the supernatants were harvested. As a measure of hemolysis, the hemoglobin (Hb) 
concentration of the supernatant was determined photometrically at 405 nm. The absorption of the 
supernatant of erythrocytes lysed in distilled water was defined as 100% hemolysis.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was 

made using ANOVA with Tukey’s test as post test and t test as appropriate. n denotes the number of different 
erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments are 
differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control and 
experimental conditions.

Results

The present study explored whether mitotane stimulates eryptosis, the suicidal death 
of erythrocytes. Stimulators of eryptosis include increase of cytosolic Ca2+ concentration 
([Ca2+]i). Accordingly, the effect of mitotane on [Ca2+]i has been estimated utilizing Fluo3 
fluorescence. Erythrocytes were incubated in Ringer solution without or with mitotane 
(1 – 15 µg/ml), loaded with Fluo3 AM and Fluo3 fluorescence quantified by FACS analysis. 
As shown in Fig. 1, a 24 hours exposure of human erythrocytes to mitotane resulted in 
an increase of Fluo3 fluorescence, an effect reaching statistical significance at 10 µg/ml 
mitotane concentration. Thus, mitotane treatment was followed by increase of [Ca2+]i in 
human erythrocytes. Close inspection of the histogram reveals that mitotane increases Fluo3 
fluorescence in the major portion of erythrocytes but does not modify Fluo3 fluorescence 
in a minor portion of the erythrocytes. As a result, the histogram shows two peaks of Fluo3 
fluorescence in erythrocytes following mitotane treatment. 

Fig. 1. Effect of mitotane on erythrocyte cytosolic Ca2+ concentration. A. Original histogram of Fluo3 
fluorescence in erythrocytes following exposure for 24 h to Ringer solution without (grey shadow) and with 
(black line) presence of 15 µg/ml mitotane. B. Arithmetic means ± SEM (n = 5) of the Fluo3 fluorescence 
(arbitrary units) in erythrocytes exposed for 24 h to Ringer solution without (white bar) or with mitotane 
(1 – 15 µg/ml, black bars) or the solvent DMSO (1.5 µl/ml, grey bars). ***(p<0.001) indicate significant 
difference from the absence of mitotane (ANOVA).
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An increase of [Ca2+]i has previously been shown to trigger cell membrane scrambling 
with appearance of phosphatidsylserine at the cell surface. To identify phosphatidylserine 
exposing erythrocytes, phosphatidylserine abundance at the cell surface was estimated 
utilizing FITC-labelled annexin V, which was detected in FACS analysis. As illustrated in Fig. 2, 
a 24 hours mitotane treatment increased the percentage of annexin V binding erythrocytes, 
an effect reaching statistical significance at 5 µg/ml mitotane concentration. Thus, mitotane 
treatment triggered erythrocyte cell membrane scrambling.

Additional experiments explored whether the cell membrane scrambling following 
mitotane treatment was in part or fully dependent on Ca2+ entry from the extracellular space. 
Erythrocytes were exposed to 1 - 15 µg/ml mitotane for 24 hours in either the presence of 1 
mM extracellular Ca2+ or in the absence of extracellular Ca2+ with either presence or absence of 
the Ca2+ chelator EGTA (1 mM). Following mitotane treatment (15 µg/ml), Fluo3 fluorescence 
reflecting [Ca2+]i increased from 19.4 ± 0.7 to 29.5 ± 2.1 arbitrary units (n = 5) in the presence 
of extracellular Ca2+ but was in the absence of extracellular Ca2+ not significantly different 

Fig. 2. Effect of mitotane on phosphatidylserine exposure. A. Original histogram of annexin V binding of 
erythrocytes following exposure for 24 h to Ringer solution without (grey shadow) and with (black line) 
presence of 15 µg/ml mitotane. B. Arithmetic means ± SEM (n = 5) of erythrocyte annexin V binding follow-
ing incubation for 24 h to Ringer solution without (white bar) or with mitotane (1 – 15 µg/ml, black bars) 
or the solvent DMSO (1.5 µl/ml, grey bars). ***(p<0.001) indicate significant differences from the absence 
of mitotane (ANOVA).

Fig. 3. Effect of Ca2+ withdrawal and 
addition of EGTA on mitotane induced 
annexin V binding. Arithmetic means ± 
SEM (n = 6) of the percentage of annex-
in V binding erythrocytes after a 24 h 
treatment with Ringer solution without 
(white bars) or with mitotane (15 µg/ml 
black bars) in the presence of Ca2+ ( left 
bars) or absence of Ca2+ in the absence 
(middle bars) and presence (right bars) 
of 1 mM EGTA. *(p<0.05),***(p<0.001) 
indicate significant difference from 
the absence of mitotane (ANOVA), 
###(p<0.001) indicates significant dif-
ference from the respective values in the 
presence of Ca2+.
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between untreated (20.0 ± 0.9 arbitrary units, n = 5) and mitotane (15 µg/ml) treated (24.3 
± 0.2 arbitrary units (n = 5) erythrocytes. As illustrated in Fig. 3, removal of extracellular 

Fig. 4. Effect of K+ channel inhibitor 
clotrimazole, of antioxidant N-acetyl-
cysteine and of pancaspase inhibitor 
zVAD on mitotane induced annexin V 
binding. Arithmetic means ± SEM (n = 
6) of the percentage of annexin V bind-
ing erythrocytes after a 24 h treatment 
with Ringer solution without (white 
bars) or with 15 µg/ml mitotane (black 
bars) in the absence (A) or presence 
of 1 mM N-acetyl-cysteine (B), of 5 µM 
clotrimazole (C), or of 10 µM zVAD (D), 
respectively.***(p<0.001) indicate sig-
nificant difference from the absence of 
mitotane (ANOVA). 

Fig. 5. Effect of mitotane on erythrocyte forward scatter. A. Original histogram of forward scatter of erythro-
cytes following exposure for 24 h to Ringer solution without (grey shadow) and with (black line) presence 
of 15 µg/ml mitotane. B. Arithmetic means ± SEM (n = 5) of the normalized erythrocyte forward scatter 
(FSC) following exposure for 24 h to Ringer solution without (white bar) or with mitotane (1 – 15 µg/ml, 
black bars) or the solvent DMSO (1.5 µl/ml, grey bars). C. Original histogram of forward scatter of erythro-
cytes following exposure for 48 h to Ringer solution without (grey shadow) and with (black line) presence 
of 15 µg/ml mitotane. D. Arithmetic means ± SEM (n = 5) of the normalized erythrocyte forward scatter 
(FSC) following exposure for 48 h to Ringer solution without (white bar) or with mitotane (1 – 15 µg/ml, 
black bars) or the solvent DMSO (1.5 µl/ml, grey bars). ***(p<0.001) indicate significant difference from the 
absence of mitotane (ANOVA).
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Ca2+ significantly blunted the effect of mitotane on annexin V binding irrespective of the 
presence or absence of EGTA. However, even in the nominal absence of extracellular Ca2+ 

the percentage annexin V binding erythrocytes was still significantly increased by mitotane 
treatment (Fig. 3). Accordingly, the effect of mitotane on cell membrane scambling was in 
part but not fully dependent on the presence of extracellular Ca2+. 

In search for additional mechanisms triggering cell membrane scrambling following 
mitotane treatment of erythrocytes, mitotane was applied in the presence and absence of 
K+ channel blocker clotrimazole, of caspase inhibitor zVAD and of antioxidant N-acetyl-
cystein. As illustrated in Fig. 4, mitotane treatment increased the percentage of annexin V 
binding cells to a similar extent in the absence and presence of N-acetyl-cysteine (1 mM), 
clotrimazole (5 µM) or of zVAD (10 µM). The percentage of annexin V binding cells following 
treatment with mitotane even tended to be higher in the prescence than in the absence of 
zVAD (Fig. 4), a difference, however, not reaching statistical significance. Clotrimazole has 
previously been shown to inhibit lead induced eryptosis [50] and N-acetyl-cysteine has 
previously been shown to inhibit Bay 11-7082 and parthenolide induced eryptosis [28]. 
Additional experiments were performed to test whether zVAD (10 µM) was effective in 
another type of eryptosis. To this end erythrocytes were exposed for 48 hours to Ringer or 
eryptosis inducing kinase inhibitor sunitinib [20] with or without the additional presence of 
zVAD. As a result, sunitinib (20 µM) increased the percentage annexin V binding cells from 
1.5 ± 0.2 to 37.5 ± 3.4 % (n = 6) in the absence and from 1.3 ± 0.3 to 21.7 ± 4.3 % (n = 6) in 
the presence of zVAD (10 µM). Thus, zVAD blunted the sunitinib induced eryptosis.

An increase of [Ca2+]i is further expected to activate Ca2+ sensitive K+ channels leading to 
cellular efflux of KCl together with osmotically obliged water and thus to cell shrinkage. In 
order to estimate erythrocyte volume, forward scatter was determined in FACS analysis. As 
illustrated in Fig. 5, mitotane treatment tended to decrease forward scatter within 24 hours 
and significantly decreased forward scatter within 48 hours. 

The lack of erythrocyte shrinkage despite the increase of [Ca2+]i may have resulted from 
an inhibitory effect of mitotane on the Ca2+ sensitive K+ channels and/or the Cl- channels 
required for the parallel Cl- efflux. If mitotane was inhibiting those channels, then mitotane 
treatment would interfere with the erythrocyte shrinkage following increase of [Ca2+]i 
upon treatment of erythrocytes with the Ca2+ ionophore ionomycin. Thus, forward scatter 
was determined prior to and 30 minutes following treatment with 1 µM ionomycin in the 
presence and absence of mitotane. Ionomycin increased the Fluo3 fluorescence reflecting 
[Ca2+]i from 20.4 ± 0.2_ to 75.6 ± 6.4 arbitrary units (n = 5) in the absence of mitotane and 
from 25.1 ± 2.7 to 110.3 ± 6.6 arbitrary units (n = 5) in the presence of mitotane (15 µg/ml). 

Fig. 6. Effect of Ca2+ ionophore ionomy-
cin on forward scatter in the absence 
and presence of mitotane. Arithmetic 
means ± SEM (n = 4) of the normalized 
erythrocyte forward scatter (FSC) after 
a 1 hour treatment with Ringer solution 
without (white bars) or with 15 µg/ml 
mitotane (black bars) in the absence 
(left bars) or in the presence of 1µM 
ionomycin (right bars). ***(p<0.001) 
indicate significant difference from 
the absence of ionomycin (ANOVA), 
###(p<0.001) indicates significant dif-
ference from the respective values in 
the absence of mitotane.
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As shown in Fig. 6 ionomycin treatment was followed by a sharp decrease of forward scatter 
in the absence, but not in the presence of mitotane (15 µg/ml).

The inability of mitotane treated erythrocytes to decrease their volume upon increase of 
[Ca2+]i may enhance their susceptibility to hemolysis. As illustrated in Fig. 7, the percentage 
of hemolysed erythrocytes was low following treatment of erythrocytes for 2.5 hours with 5 
µg/ml mitotane but increased to almost the same value following a 2.5 hours treatment with 
10 µg/ml mitotane. Following a 24 hours exposure to mitotane the percentage of hemolysed 
erythrocytes amounted to (n = 5 each) 0.5 ± 0.2 % (absence of mitotane), 0.4 ± 0.2 % (at 1 
µg/ml mitotane), 20.0 ± 2.6% (at 5 µg/ml mitotane), 56.7 ± 2.5 % (at 10 µg/ml mitotane) 
and 62.8 ± 2.8 % (at 15 µg/ml mitotane). The hemolysis reached statistical significance at 5 
µg/ml mitotane concentration.

Discussion

The present study reveals that mitotane triggers cell membrane scrambling of 
erythrocytes. Mitotane treatment of erythrocytes drawn from healthy volunteers is followed by 
breakdown of phosphatidylserine asymmetry of the cell membrane, a hallmark of eryptosis. 
The concentrations required to stimulate eryptosis are in the range of the reported therapeutic 
threshold concentrations of 14 - 20 µg/ml and still below toxic mitotane concentrations 
exceeding 30 µg/ml [51]. 

The breakdown of phosphatidylserine asymmetry of the erythrocyte cell membrane 
following mitotane treatment was presumably in part due to an increase of cytosolic Ca2+ 
concentration ([Ca2+]i). The phosphatidylserine abundance at the surface of mitotane treated 
erythrocytes was significantly blunted in the absence of extracellular Ca2+. An increase of  
[Ca2+]i is well known to stimulate cell membrane scrambling with phosphatidylserine 
translocation from the inner leaflet of the cell membrane to the outer leaflet of the cell 
membrane [9]. The channels mediating Ca2+ entry are Ca2+ permeable non selective cation 
channels involving the transient receptor potential channel TRPC6 [9]. The Ca2+ permeable 
erythrocyte cation channels are stimulated by oxidative stress [9]. The lacking inhibitory 
effect of antioxidant N-acetyl-cystein suggests, however, that mitotane does not activate the 
channels by inducing oxidatitve stress. 

Notably, a minor portion of erythrocytes appears to maintain the Fluo3 fluorescence 
following mitotane treatment, a result pointing to heterogeneity in mitotane sensitivity 
of the erythrocyte population. Earlier experiments revealed that sensitivity to triggers of 
eryptosis may be affected by erythrocyte age [27].

The mitotane sensitivity of [Ca2+]i and the blunted effect of mitotane on annexin V 
binding in the absence of extracellular Ca2+ clearly indicate that mitotane is at least partially 

Fig. 7. Effect of short mitotane 
exposure on annexin V binding 
and hemolysis. Arithmetic means 
± SEM (n = 5) of the percentage of 
annexin V binding (black bars) or 
hemolysed (grey bars) erythro-
cytes following incubation for 2.5 
hours to Ringer solution without 
(Co = control) or with mitotane 
(5 – 10 µg/ml) or the solvent 
DMSO (1.5 µl/ml, right bars). 
***(p<0.001) indicate significant 
differences from the absence of 
mitotane (ANOVA). 
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effective by triggering Ca2+ entry. The search for further mechanisms involved were not 
successful. Mitotane induced eryptosis was not significantly modified by K+ channel blocker 
clotrimazole, antioxidant N-acetyl-cysteine and caspase inhibitor zVAD. Thus, the effect of 
mitotane does apparently not require activation of K+ channels, oxidative stress or activation 
of caspases. In theory, mitotane could influence some of the kinases participating in the 
regulation of eryptosis, such as AMPK [9], G kinase [9], JAK3 [14], casein kinase [15, 16], p38 
kinase [17], PAK2 kinase [18] or sorafenib [19] and sunitinib [20] sensitive kinases. In any 
case, the effect of mitotane on cell membrane scrambling is in large part due to Ca2+ entry. 

An increase of [Ca2+]i was expected to activate Ca2+ sensitive K+ channels [10, 52] leading 
to cell membrane hyperpolarization. The increased electrical driving force was expected 
to drive Cl- efflux with cellular efflux of KCl and osmotically obliged water thus resulting in 
erythrocyte shrinkage [9]. However, despite the increase of [Ca2+]i, mitotane treatment was 
not followed by appreciable cell shrinkage. Moreover, mitotane abrogated the cell shrinkage 
following increase of [Ca2+]i with Ca2+ ionophore ionomycin. Presumably, mitotane inhibits 
the Ca2+ sensitive K+ channels and/or the Cl- channels in the erythrocyte cell membane. Entry 
of Na+ through the unselective cation channels and simultaneous inhibition of Ca2+ sensitive 
K+ channels may foster cell swelling, which could eventually result in disruption of the 
erythrocyte membrane and thus hemolysis. 

The stimulation of cell membrane scrambling by mitotane may lead to anemia. 
Phosphatidylserine exposing erythrocytes are rapidly removed from circulating blood [9]. 
If the clearance of phosphatidylserine exposing erythrocytes is not matched by formation of 
new erythrocytes, anemia develops [9]. Knowledge about the effect of mitotane on anemia 
is scarce [7, 8]. It must be kept in mind, that the drug is used in malignancy [1-3], a disorder 
causing anemia [53]. Thus, during mitotane treatment the eryptotic effects of mitotane may 
be outweighed by the effects of decreasing tumor mass.

Phosphatidylserine exposing erythrocytes may further bind to endothelial CXCL16/
SR PSO [54] and adhere to the vascular wall thus compromizing microcirculation [54-
59]. Phosphatidylserine exposure further fosters blood clotting and thus predisposes to 
development of thrombosis [55, 60, 61].

In conclusion, exposure of human erythrocytes to mitotane triggers Ca2+ entry with 
subsequent stimulation of cell membrane scrambling. Mitotane does, however, not decrease 
cell volume. 
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