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This paper examines the application of Latin Hypercube Sampling (LHS) and Antithetic Variables (AVs) to reduce the variance of
estimated performancemeasures frommicroscopic traffic simulators. LHS andAV allow for amore representative coverage of input
probability distributions through stratification, reducing the standard error of simulation outputs. Twomethods of implementation
are examined, onewhere stratification is applied to headways and routing decisions of individual vehicles and another where vehicle
counts and entry times aremore evenly sampled.The proposedmethods have wider applicability in general queuing systems. LHS is
found to outperform AV, and reductions of up to 71% in the standard error of estimates of traffic network performance relative to
independent sampling are obtained. LHS allows for a reduction in the execution time of computationally expensive microscopic
traffic simulators as fewer simulations are required to achieve a fixed level of precision with reductions of up to 84% in computing
time noted on the test cases considered. The benefits of LHS are amplified for more congested networks and as the required level
of precision increases.

1. Introduction

Simulation models have become established as invaluable
tools for managing signalized road traffic networks. A large
range of planning applications from optimizing traffic signal
timings, evaluating changes in lane configurations, and test-
ing intelligent traffic systems have been extensively explored.
Although deterministic macroscopic simulationmodels such
as TRANSYT [1], TRANSYT-7F [2], and SYNCHRO [3] were
initially used, preference is now given to microscopic sim-
ulation models such as PARAMICS [4], CORSIM [5], and
VISSIM [6]. Microscopic traffic simulators consider the state
of vehicles individually rather thanmodeling an entire stream
of traffic in aggregate as is the case with macroscopic traffic
simulators. This more detailed consideration allows for a
more comprehensive consideration of the complex effects
of vehicle interactions as well as catering for the stochastic
nature of vehicle arrivals, vehicle routing, and driver behavior
to be considered.

The disadvantage of using a microscopic traffic simulator
is the increased computing requirement due to the more

detailed modeling. The following studies serve as examples
to demonstrate the extensive model run-times which can be
experienced.

(i) Rouphail et al. [7] required over 7 hours of computing
time to evaluate the effectiveness of 625 alternative
traffic signal timing policies in CORSIM as part of an
optimization search on a moderately sized network
with 9 signalized intersections.

(ii) While optimizing traffic signal settings in Stevanovic
et al. [8], the evaluation of 7600 alternative traffic
signal timing policies in VISSIM for a network with
12 signalized intersections required 90 hours of com-
puting time even though processing was distributed
across 10 computers working in parallel.

(iii) Park and Lee [9] compared several traffic signal opti-
mization strategies on a 16-signal arterial network and
found that the length of a single VISSIM evaluation
required 84 seconds using a single computer. Dis-
tributed processingwith 8–12 computerswas required
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Table 1: Maximum estimated coefficient of variation for network average delay.

Study Traffic simulator Coefficient of variation Relative error at 95%
confidence

Stevanovic et al. [11] VISSIM 4.48% 8.79%
Yun and Park [12] CORSIM 9.58% 18.78%
Park et al. [13] CORSIM 29.55% 57.92%
Rouphail et al. [7] CORSIM 20.47% 40.12%
Chang and Kanaan [14] CORSIM 30.69% 60.15%

to reduce computing times and achieve the study
objectives.

(iv) Stevanovic et al. [10] required over a month of com-
puting time to complete traffic signal optimization
runs for a 12-signal arterial network using VISSIM as
an evaluation model.

In addition, due to the stochastic nature of themodelling,
microscopic traffic simulators can only provide estimates of
underlying network performance metrics. For the case of
network average delay, the maximum estimated coefficient of
variation (ratio of the standard deviation to the mean) from
a number of studies has been calculated and summarized in
Table 1.

Since network average delay is known to be normally
distributed [15], the relative error at 95% confidence can be
obtained by multiplying the coefficient of variation by 1.96.
Thus, if we were to perform a single execution of the traffic
simulator, obtaining an estimate of network average delay of
𝑥, the precision is such that a 95% confidence interval for
the true underlying mean could be as wide as (0.4𝑥, 1.6𝑥).
Averaging over multiple independent replications of the traf-
fic simulator is a necessity to increase precision.However, this
can be computationally expensive as noted earlier. Further-
more, the standard error of the estimator of the mean is
proportional to 1/√𝑛 where 𝑛 is the number of independent
replications of the simulator. Thus, a doubling of the number
of simulation runs will reduce the standard error by only
29%.

The large computational burden of microscopic traffic
simulation models can serve as a considerable obstacle in
practical applications. This paper considers the application
of the variance reduction techniques Latin Hypercube Sam-
pling (LHS) and Antithetic Variables (AVs) to improve the
precision of estimators from microscopic traffic simulators.
LHS and AV are applied to ensure that the limited simulation
sample provides amore representative coverage of the vehicle
generation process through stratification, thus reducing the
standard error of outputs from the traffic simulator. Increased
precision will result in improved decision making for a fixed
level of computation resources. Alternatively, the number of
multiple model runs can be reduced without losing accuracy,
thus reducing model run time. Two alternative methods
of implementing stratified sampling will be considered and
comparisons with the conventional approach of Simple Ran-
dom Sampling (SRS) will be made. Results will be based on

an evaluation of SRS, LHS, and AV on a set of test net-
works using the open-source microscopic traffic simulator
MSTRANS [15]. The sensitivity of findings to the impact
of the number of simulations performed and the level of
congestion will also be examined.

The remainder of this paper is organized as follows. First,
a description of LHS, AV, and the related simulation variance
reduction technique Common Random Numbers (CRNs) is
given. A review of the application of variance reduction tech-
niques in microscopic traffic simulators and a closely related
set of models known as queuing systems is then provided.
An overview of MSTRANS is provided next, followed by
a description of how the stratified sampling methods have
been implemented. The test networks are then described.
The methodology for evaluating the variance reduction is
discussed next. Results from the simulation experiments are
then presented and analyzed. Finally, a summary of findings
is given in the conclusion.

2. Simulation Variance Reduction Techniques

2.1. Latin Hypercube Sampling. Stochastic simulation is used
to empirically estimate a property of a random variable 𝑌.
Often, an estimate of the mean 𝐸[𝑌] is required.𝑌 is typically
a function of a vector of other random quantities 𝑋 =

(𝑋
1
, 𝑋
2
, . . .)
𝑇; that is, 𝑌 = 𝑓(𝑋), where the joint distribution

of𝑋 is known. For the case of amicroscopic traffic simulation
model, 𝑌 is some overall measure of performance of the
traffic network such as the average delay experienced by all
vehicles traversing the network, 𝑋 are the interarrival times
of vehicles which are stochastic and based on known headway
distributions such as the exponential [16], and 𝑌 = 𝑓(𝑋) is
evaluated computationally based on the logic and parameters
of the traffic simulation model.

In order to estimate 𝐸[𝑌], 𝑛 ≥ 1 replications (simula-
tions) are performed. Let 𝑋(𝑖) = (𝑋

(𝑖)

1
, 𝑋
(𝑖)

2
, . . .) denote the

realization of the vehicle headways on the 𝑖th simulation. Let
𝑌
(𝑖)
= 𝑓(𝑋

(𝑖)
) denote the network-wide average vehicle delay

on the 𝑖th simulation. An estimate of 𝐸[𝑌] can be obtained
using (1/𝑛)∑𝑌

(𝑖).
In most simulation applications, {𝑋(𝑖) | 1 ≤ 𝑖 ≤ 𝑛} are

generated independently and this constitutes SRS. The idea
behind LHS is to select observations from {𝑋

(𝑖)
| 1 ≤

𝑖 ≤ 𝑛} so that the resulting sample is more representative of
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Figure 1: Simulated vehicle headways using LHS.

the distribution of 𝑋 [17, 18]. This is achieved by stratified
sampling of each marginal random variable in the vector. For
example, suppose that 𝑋

𝑚
denotes the headway between the

(𝑚 − 1)th and 𝑚th vehicles entering at a particular point of
the network. Furthermore, let us suppose that headways are
exponentially distributed with a mean of 10 seconds. Assum-
ing that we are performing 𝑛 = 5 simulations, executions of
the traffic simulation model with different random number
seeds may produce the following observations: 𝑋(1)

𝑚
= 8.7,

𝑋
(2)

𝑚
= 7.9, 𝑋(3)

𝑚
= 7.5, 𝑋(4)

𝑚
= 6.4, and 𝑋

(5)

𝑚
= 9.6.

These observations are a poor representation of the headway
distribution as the headway values are all smaller than the
mean. A large headway between the (𝑚 − 1)th and 𝑚th
vehicles will not be covered in any of the five simulations
generated. With LHS, the sample is obtained by partitioning
the support into five regions of equal probability and selecting
a single observation from each region. This is illustrated in
Figure 1, and the exam-ple simulated outcomes can be seen
to provide a more even coverage of the headway distribution.

This procedure is applied separately to generate the sim-
ulated outcomes for each marginal random variable in 𝑋.
The orders of simulated observations are randomized before
combining to form 𝑋

(𝑖). The approach guarantees an “even”
coverage for each univariate outcome. LHS thus produces a
“more representative” set of simulated vectors {𝑋(𝑖) | 1 ≤

𝑖 ≤ 𝑛}. Accordingly, {𝑌(𝑖) | 1 ≤ 𝑖 ≤ 𝑛} will be more
representative, and the estimate of 𝐸[𝑌] will have lower vari-
ance. Mathematically, LHS produces an unbiased estimator
of 𝐸[𝑌] with lower variance than that from SRS [17, 19]. The
extent of the variance reduction is problem specific and is
evaluated for the case of microscopic traffic simulation in this
study.

2.2. Antithetic Variables. The technique of AV [20] is closely
related to LHS. For the case 𝑛 = 2, the value of 𝑋(1)

𝑚
is

simulated at random. Suppose that the simulated outcome is
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Figure 2: Simulated vehicle headways using AV.

𝑥
(1)

𝑚
. The value of 𝑋(2)

𝑚
is then set to 𝑥(2)

𝑚
where 𝑥(2)

𝑚
satisfies

Pr(𝑋
𝑚
≤ 𝑥
(1)

𝑚
) = Pr(𝑋

𝑚
> 𝑥
(2)

𝑚
). An example of a possible

outcome for the headway distribution covered in the previous
section is illustrated in Figure 2.

For 𝑛 > 2 and even, the process is repeated to generate
pairs of observations (𝑋(2𝑖−1)

𝑚
, 𝑋
(2𝑖)

𝑚
) for 1 ≤ 𝑖 ≤ 𝑛/2. As

with LHS, each marginal random variable in 𝑋 is simulated
independently. Simulation using AV will guarantee an equal
number of observations on either side of the median. AV
is similar to LHS in that the support of each marginal is
partitioned into two equiprobable regions with an equal
number of observations being simulated in each region.
However, LHS can be considered to be more general in
that instead of partitioning into two regions, stratification is
performed using 𝑛 equi-probable regions. For 𝑛 odd, AVs
can be applied by generating (𝑛 − 1)/2 paired observations as
suggested and generating an additional observation indepen-
dently.

2.3. Common Random Numbers. CRN [20] is explained by
example with reference to amicroscopic traffic simulator. For
the case of comparing two alternative signal timing plans, dif-
ferences in observed performance values are a consequence
of the impact of signal timings as well as the fluctuations in
experimental conditions (e.g., each signal timing plan may
have been subjected to drastically different vehicle arrival
patterns). If we apply similar experimental conditions for all
system configurations (i.e., identical vehicle arrival patterns),
we can then attribute the computed differences in measured
performances to the difference in the signal timing policies.
CRNcan be implemented by utilizing the same randomnum-
ber seed for themicroscopic traffic simulatorwhen evaluating
the two alternative signal timing plans. LHS and AV are not
at odds with CRN as the variance reduction techniques can
be combined. For example, assuming that 𝑛 > 1 simulations
are performed for each signal timing policy, the arrival pat-
terns for the 𝑛 simulations can be generated by LHS. These
same arrival patterns can then be applied when evaluating
both traffic signal timing plans using the microscopic traffic
simulator.
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3. Previous Applications of
Variance Reduction Techniques

3.1. Traffic Simulation. Rathi and Venigalla [21] experi-
mented with AV using an early version of CORSIM [5]. AVs
were applied to the generation of all stochastic effects, namely,
vehicle characteristics, headways, routing, and driver behav-
ioral decisions on a small three-intersection network. Reduc-
tions of up to 36% in the standard deviation of network
average travel time were obtained. Rathi [22] found the use
of CRN to provide substantial reductions in the variance of
the difference between performance measures of alternative
traffic signal timing policies. Kesur [23] demonstrated the
improvements in the solution quality obtained from state-
of-the-art traffic signal optimization algorithms when imple-
menting CRN in the evaluation of alternative signal timing
policies. CRN is currently in widespread use and is supported
by the proprietary traffic simulatorsCORSIM [5] andVISSIM
[6]. No studies on the possible implementation methods or
the effectiveness of applying LHS to the vehicle generation
process have been performed as yet.

A similar, though not directly relevant, application is the
use of LHS as an experimental design tool in microscopic
traffic simulator applications. For example, Park et al. [24]
considered the robustness of a signal timing policy for a 9-
signal network to changes in mean demand at 8 major source
nodes. Three different flow levels were considered at each
source node, namely, base, high, and low. With 8 factors and
3 levels for each factor, 38 = 6561 different demand patterns
can be tested. LHS was used to reduce the number of demand
combinations to 204 by sampling 68 base, high, and low flow
scenarios for each source node and then combining these
in random order. LHS has also been used for experimental
design when identifying significant parameters for the pur-
pose of calibrating microscopic traffic simulators [25].

3.2. Queuing Systems. Traffic networks are special cases of
queuing systems. Queuing theory deals with the analysis of
systems where customers arrive at a queue according to a
deterministic or stochastic process and are served by one or
more servers with deterministic or stochastic service times.
An isolated road intersection can be modeled as a queuing
system with exponentially distributed customer inter-arrival
times [26]. For the case of a queuing system with a single
server, Page [27] and Mitchell [28] applied AV to the gener-
ation of exponentially distributed customer inter-arrival and
service times, noting reductions of up to 41% in the standard
error of the estimated average customer waiting time when
compared to simulation by SRS. Sabuncuoglu et al. [29]
experimented with AV and LHS in turn for the same queuing
system, observing reductions of up to 16% in the standard
error of the estimator of the total time spent in the system
relative to SRS. Ross and Lin [30] advocate stratification
of the number of customer arrivals in queuing systems as
opposed to inter-arrival times and obtained a reduction in
the standard deviation of the average customer waiting time
of 29%. Streltsov and Vakili [31] have also applied LHS to a
range of queuing systems. However, their approach focuses

on event based simulation where the state of the system at
the occurrence of an event (such as a customer arrival or
departure) is considered.

4. MSTRANS Overview

Comparisons between SRS, LHS, and AV are made
using Microscopic Stochastic Traffic Network Simulator
(MSTRANS) which is a stochastic microscopic traffic simu-
lator developed by the author [15]. This model was chosen
for the following reasons.

(i) MSTRANS is open-source with a full code listing
available at [32] or directly from the author. Modifi-
cations to the vehicle generation algorithms to imple-
ment LHS and AV could thus be made directly.

(ii) Several validation exercises have been performed, and
MSTRANS has been found to give results comparable
to CORSIM [5], in terms of both the mean and stan-
dard error of estimators of network performance in
aggregate, as well as on individual links [15].

(iii) The model has been extensively used in several appli-
cations related to optimization of traffic signal timings
[23, 33–35].

(iv) MSTRANS has a rapid execution speed relative to
the commercially available microscopic traffic simu-
lators, allowing for the large number of model execu-
tions required to achieve the study objectives [15].

Networks in MSTRANS are represented schematically
using graphs with nodes representing vehicle entry points or
intersections and links representing the road.Themodel logic
and parameters are based on findings from the literature on
driver behavior and vehicle characteristics.Themodel applies
a fixed increment time step to advance the simulation. Vehicle
status and kinematics are updated each second, along with
the traffic signal indications. New vehicles are generated at
the network boundary nodes with exponentially distributed
headways. Vehicle routing through the network is generated
stochastically based on specified expected turning propor-
tions. Linear acceleration and constant deceleration models
are applied to lead vehicles.The behavior of following vehicles
is based on the Gipps microscopic car-following model [36].
Left-turning vehicles receiving unprotected green utilize a
gap-acceptance model where the probability of accepting a
gap increases with the gap size according to a logistic func-
tion. Stopping decisions on amber signals are alsomade using
a logistic model. Response delays are modeled and lane
changes are governed by pragmatic rules. The delay measure
produced is control delay which is the difference between
actual and uninterrupted travel times. The number of stops
is computed using the approach of Rakha et al. [37] which
accountings for partial stops and is appropriate in both
undersaturated and oversaturated conditions.

An initialization period is completed before results are
recorded. Network performance measures are obtained by
averaging over all vehicles that complete their trips through
the network during the analysis period. However, to account
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for the delay and stops to be experienced by residual queues
remaining at the end of the analysis period, the run length
is extended until all remaining vehicles have cleared the
network.

A thorough account of the functional details of themodel
and a review of the literature justifying the logic and param-
eters are given in [15].

5. Implementation of Stratified Sampling

Applications of LHS and AV in queuing systems have been
covered in the literature review. Of the studies mentioned,
[27–29] implement stratification to the customer inter-arrival
times, while [30] applies stratification to the number of
customer arrivals. Extending these ideas to the realm of
microscopic traffic simulators, twomethods of implementing
stratification are considered. We refer to implementations of
LHS or AV using the first method as LHS1 and AV1, respec-
tively. Implementations of LHS or AV under the second
method are referred to as LHS2 and AV2, respectively.

5.1. Method 1. Under this implementation, stratification is
applied to the generation of vehicle inter-arrival times. In
addition, stratification is applied to generate the sequence of
turning decisions for each vehicle.

5.1.1. Vehicle Interarrival Times. Let 𝑛 be number of replica-
tions of the traffic simulator, 𝑇 duration of simulation period
(including duration of initialization period) (seconds), 𝜇

𝑘

average headway between vehicles entering at boundary node
𝑘 (seconds), 𝑋(𝑖)

𝑘
(𝑗) headway between the (𝑗 − 1)th and

𝑗th vehicles entering at boundary node 𝑘 in simulation 𝑖

(seconds), and 𝐼(𝑖)
𝑘
(𝑗) indicator as to whether the entry of the

(𝑗 − 1)th vehicle at boundary node 𝑘 in simulation 𝑖 occurs
before the end of the simulation period

𝐼
(𝑖)

𝑘
(𝑗)

=

{
{

{
{

{

1, if 𝑗 = 1 or (𝑗 > 1 and
𝑗−1

∑

𝑙=1

𝑋
(𝑖)

𝑘
(𝑙) < 𝑇) ,

0, otherwise.

(1)

For each boundary node 𝑘 and vehicle arrival 𝑗,
∑
𝑛

𝑖=1
𝐼
(𝑖)

𝑘
(𝑗) vehicle inter-arrival times are generated by strat-

ification of the exponential distribution with mean 𝜇
𝑘
as per

the procedures described in Section 2. Note that∑𝑛
𝑖=1

𝐼
(𝑖)

𝑘
(𝑗) ≤

𝑛 headways are generated as some simulations may have
fewer than 𝑗 vehicles entering at node 𝑘 during the finite
simulation period. For each boundary node 𝑘, the previous
process begins with 𝑗 = 1 and is repeated for increasing 𝑗
until∑𝑛

𝑖=1
𝐼
(𝑖)

𝑘
(𝑗) = 0.

5.1.2. Vehicle Turning Decisions. For each vehicle generated, a
route through the network is assigned.The route is comprised
of a sequence of turning decisions at each intersection. Strat-
ification is applied to ensure a more representative coverage
of routes through the network. The manner in which this is

1 23 6

78

4 5

Figure 3: Two-intersection network.

achieved is demonstrated by example using the two-inter-
section network in Figure 3. Let us assume that the expected
proportion of left turning, through, and right turning traffic
on each approach to an intersection is 1/4, 1/2, and 1/4,
respectively. For a vehicle entering at a particular node, the
sequence of possible turning decisions is completely deter-
mined if the exit node is known. Let𝐷

𝑘
denote the exit node

for a vehicle arriving at boundary node 𝑘.
We will consider routing decisions for vehicles entering

at node 3. If we enumerate the set of turning decisions in the
order, left, through, and right, starting with the first turning
decision and iterating for all remaining turning decisions, the
distribution of𝐷

3
will be given by

Pr (𝐷
3
= 𝑑) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4

, for𝑑 = 4,

1

2

×

1

4

=

1

8

, for 𝑑 = 5,

1

2

×

1

2

=

1

4

, for 𝑑 = 6,

1

2

×

1

4

=

1

8

, for𝑑 = 7,

1

4

, for 𝑑 = 8.

(2)

According to the inverse transform method [20], an
observation from𝐷

3
can be obtained by simulating a uniform

random number 𝑈 in the interval (0, 1) and evaluating the
function 𝑔

3
(𝑈) which is graphed in Figure 4.

LHS and AV can be implemented by applying the stratifi-
cation to simulate 𝑈 and then evaluating the function 𝑔

3
(𝑈).

For the case of LHSwith 𝑛 = 8, wewill thenhave the following
trips for the 𝑗th vehicle entering at node 3:

(i) two trips exiting via node 4;

(ii) one trip exiting via node 5;

(iii) two trips exiting via node 6;

(iv) one trip exiting via node 7;

(v) two trips exiting via node 8.
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Figure 4: Functionused to simulate route of vehicle entering at node
3.

If only 𝑛 = 4 simulations are performed, LHS stratifica-
tion will ensure that we have

(i) one trip exiting via node 4;
(ii) two trips through to intersection 2, and of these trips,

one trip is equally likely to be a left turn and exit
via node 5 or a through movement and exit via node
6, while the remaining trip is equally likely to be a
throughmovement and exit via node 6 or a right turn
and exit via node 7;

(iii) one trip exiting via node 8.

5.2. Method 2. In this alternative implementation, stratifica-
tion is applied to vehicle counts as opposed to vehicle head-
ways. In addition to vehicle counts, stratification is applied
to the generation of vehicle entry times by considering the
distribution of entry times conditional on the simulated
count.

5.2.1. Vehicle Counts. Assuming exponentially distributed
headways, we have from theory on the Poisson process that
the number of vehicles entering at boundary node 𝑘 during
the simulation period will have a Poisson(𝑇/𝜇

𝑘
) distribution

[20]. Thus, if we simulate vehicle counts rather than vehicle
headways, we can apply stratification to the number of vehi-
cles entering the network. However, rather than applying
stratification to the number of vehicles entering at boundary
node 𝑘, a more detailed stratification is performed. This is
explained using the two-intersection network from the pre-
vious section as an example. From theory on the Poisson
process, we have that the number of vehicles entering at node
3 and exiting at node 𝑑 during the simulation period will be
distributed Poisson((𝑇/𝜇

3
) × Pr(𝐷

3
= 𝑑)) and independent

for each 𝑑 [20]. Thus, rather than simulating all vehicles
entering at node 3 and then assigning routes to individual
vehicles, we can rather simulate the count of vehicles entering
at source node 3 separately for each possible exit node 𝑑
using independent Poisson random variables. Stratification
of each Poisson random variable can be performed as per
the procedures described in Section 2. Thus, rather than
merely ensuring a representative coverage of the distribution
of the number of vehicle entering at each boundary node,

the procedure described will ensure a representative sample
for the distribution of the number of vehicles traversing each
possible route through the network.

5.2.2. Vehicle Entry Times. From theory on the Poisson pro-
cess [20], it can be shown that once the vehicle count has
been simulated, the entry times of individual vehicles can be
simulated independently from a uniform distribution over
the interval (0, 𝑇). These entry times need to be sorted into
increasing order, to obtain the entry times of successive
vehicles. Using this result, stratification is applied to the gen-
eration of the vehicle entry times as follows.

Let 𝜂(𝑖)
𝑘,𝑙
be number of vehicles entering at node 𝑘 and exit-

ing at node 𝑙 in simulation 𝑖, 𝜂
𝑘,𝑙
maximumnumber of vehicles

entering at node 𝑘 and exiting at node 𝑙 over the 𝑛 simulations
= max{𝜂(𝑖)

𝑘,𝑙
| 1 ≤ 𝑖 ≤ 𝑛}, 𝑋(𝑖)

𝑘,𝑙
(𝑗) entry time of the 𝑗th vehicle

entering at node 𝑘 and exiting at node 𝑙 in simulation 𝑖, and
𝐼
(𝑖)

𝑘,𝑙
(𝑗) indicator as to whether at least 𝑗 vehicles enter at node

𝑘 and exiting at node 𝑙 in simulation 𝑖 where

𝐼
(𝑖)

𝑘,𝑙
(𝑗) = {

1, if 𝑗 ≤ 𝜂
(𝑖)

𝑘,𝑙
,

0, otherwise.
(3)

First, the number of vehicles entering at node 𝑘 and exit-
ing at node 𝑙, 𝜂(𝑖)

𝑘,𝑙
is simulated for all 𝑖 by stratification as

described in Section 5.2.1. Thereafter, for each vehicle 𝑗 ∈

{1, 2, . . . , 𝜂
𝑘,𝑙
},∑𝑛
𝑖=1

𝐼
(𝑖)

𝑘,𝑙
(𝑗) arrival times are simulated by strat-

ification of the 𝑈(0, 𝑇) distribution using the procedures
described Section 2.The generated arrival times {𝑋(𝑖)

𝑘,𝑙
(𝑗) | 1 ≤

𝑗 ≤ 𝜂
(𝑖)

𝑘,𝑙
} along the route are then sorted in increasing order

for each simulation 𝑖.

6. Test Networks

SRS, LHS, and AV are compared based on simulation results
for a 9-signal arterial network and a 14-signal grid net-
work. The arterial network is Canal Street in New Orleans,
Louisiana [38]. The grid network is based on a data set for
downtown Ann Arbor, Michigan [39]. The structure and
spacing’s for each network are given in Figure 5.

Two through lanes, exclusive turning lanes, and a free
flow speed of 37mph (60 km/h) have been assumed for
each link. The average total flows into the arterial and grid
networks are 8191 and 6546 vehicles/hour, respectively. A
breakdown of the average flows by boundary node and the
expected turning proportions at each approach is given in
Gartner et al. [38] for the arterial network and Kesur [15] for
the grid network. The flow rates as given constitute under-
saturated conditions. The average flows are increased by 50%
for the arterial network and 60% for the grid network to
construct oversaturated conditions. The following four test
networks are thus considered:

(i) arterial undersaturated;
(ii) arterial oversaturated;
(iii) grid undersaturated;
(iv) grid oversaturated.
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Figure 5: Test networks.

A 15-minute initialization period is utilized followed by
a 15-minute analysis period in each case. The implemented
fixed-time traffic signal timing scheme for each network
was that obtained from the delay minimizing optimization
algorithm of Kesur [23]. Amodel calibration exercise was not
performed and the default MSTRANSmodel parameters [15]
which have been set based on findings on the literature have
been used.The test networks and model parameters were felt
to be generic enough to achieve the study objective which is
an evaluation of the effectiveness of the proposed variance
reduction techniques.

7. Evaluation of Variance Reduction

The improvements in precision of mean estimates of network
averages for delay, number of stops, and speed are quan-
tified by comparing the variance of these quantities under
SRS, LHS, and AV. The estimators are compared for 𝑛 ∈

{2, 4, 10, 20, 50, 100}. A range of different values of 𝑛 are tested
as the required number of replications of the microscopic

traffic simulator is problem specific. For example, in traffic
signal optimization, 𝑛 ∈ {1, 2} has been found to be optimal
as it allows for a large number of signal timing combinations
to be tested [15, 33]. A model calibration exercise would also
make use of a small value of 𝑛 [25]. However, for a planning
or evaluation application, it is not uncommon to perform up
to 100 replications.

Under SRS, the variance of the estimator of network aver-
age delay obtained by averaging results from 𝑛 independent
replications of MSTRANS is given by

Var (𝐸[𝑌]SRS) =
1

𝑛

Var (𝑌) , (4)

where 𝑌 is the network average delay. The quantity Var(𝑌)
was estimated by performing 𝑁 = 1000 evaluations of each
test network in MSTRANS with a different random number
seed each time and using the sample variance as an unbiased
estimator.
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Table 2: Coefficient of variation of estimators of network performance under SRS, LHS1 and LHS2, and AV1 and AV2.

Network 𝑛

Coefficient of variation of estimator
for network average delay

Relative reduction in coefficient of variation of estimator for network
average delay

SRS LHS1 LHS2 AV1 AV2 LHS1
versus AV1

LHS2
versus AV2

LHS2
versus LHS1

AV2
versus AV1

LHS1
versus SRS

LHS2
versus SRS

Arterial
undersaturated

2 5.0% 4.2% 4.0% 4.3% 4.0% 1% 1% 6% 6% 16% 21%
4 3.5% 2.6% 2.6% 2.8% 2.7% 8% 6% 0% 2% 27% 27%
10 2.2% 1.5% 1.4% 1.9% 1.7% 18% 18% 11% 12% 31% 39%
20 1.6% 1.0% 0.9% 1.3% 1.2% 24% 20% 5% 10% 38% 41%
50 1.0% 0.6% 0.6% 0.8% 0.8% 22% 27% 11% 5% 37% 44%
100 0.7% 0.4% 0.4% 0.6% 0.5% 30% 26% 7% 12% 39% 44%

Arterial
oversaturated

2 6.9% 5.0% 4.8% 4.7% 3.4% −8% −41% 4% 27% 26% 29%
4 4.8% 2.7% 2.1% 3.3% 2.4% 16% 11% 22% 27% 43% 56%
10 3.1% 1.4% 1.1% 2.1% 1.5% 36% 28% 20% 29% 56% 65%
20 2.2% 0.8% 0.7% 1.5% 1.0% 43% 30% 16% 31% 62% 68%
50 1.4% 0.5% 0.4% 0.9% 0.7% 46% 37% 15% 28% 65% 70%
100 1.0% 0.3% 0.3% 0.6% 0.5% 51% 42% 11% 24% 68% 71%

Grid
undersaturated

2 2.2% 2.0% 1.9% 2.1% 2.0% 6% 5% 5% 5% 9% 13%
4 1.6% 1.3% 1.3% 1.3% 1.4% −1% 4% 1% −4% 14% 15%
10 1.0% 0.8% 0.8% 0.9% 0.8% 12% 8% 0% 4% 21% 21%
20 0.7% 0.6% 0.5% 0.6% 0.6% 3% 9% 7% 0% 16% 22%
50 0.4% 0.3% 0.3% 0.4% 0.4% 9% 9% 1% 1% 23% 24%
100 0.3% 0.3% 0.2% 0.3% 0.3% 4% 13% 9% −1% 20% 27%

Grid
oversaturated

2 9.6% 8.2% 7.3% 7.9% 6.2% −5% −17% 11% 20% 14% 24%
4 6.8% 5.0% 4.3% 5.2% 4.5% 4% 6% 15% 14% 26% 37%
10 4.3% 2.6% 2.1% 3.5% 2.9% 26% 26% 17% 18% 40% 50%
20 3.0% 1.7% 1.4% 2.4% 1.9% 30% 26% 15% 20% 44% 53%
50 1.9% 1.0% 0.9% 1.6% 1.3% 36% 29% 12% 20% 48% 54%
100 1.4% 0.7% 0.6% 1.1% 0.9% 39% 31% 7% 17% 51% 55%

Analytical expressions for the variance of estimators
obtained using AV and LHS do not exist. Instead, the repli-
cated sampling technique is used [18]. This involves produc-
ing 𝑁 = 1000 independent super samples for each stratified
sampling method 𝑘 ∈ {LHS1, LHS2,AV1,AV2} and 𝑛. Let
𝑌
(𝑖,𝑗)

𝑘
(𝑛) denote network average delay in the 𝑖th simulation

out of 𝑛 on the 𝑗th independent super sample using strat-
ified sampling method 𝑘. We have that 𝑌(𝑗)

𝑘
(𝑛) = (1/𝑛)

∑
𝑛

𝑖=1
𝑌
(𝑖,𝑗)

𝑘
(𝑛) is the 𝑗th independent estimate of network aver-

age delay using stratified sampling method 𝑘 with 𝑛 simula-
tions. An unbiased estimator for the variance of the estimator
of network average delay using stratified sampling method 𝑘
with 𝑛 replications of MSTRANS is given by

Var (𝐸[𝑌]𝑘) =
1

𝑁 − 1

𝑁

∑

𝑗=1

(𝑌
(𝑗)

𝑘
(𝑛) −

1

𝑁

𝑁

∑

𝑗=1

𝑌
(𝑗)

𝑘
(𝑛))

2

.

(5)

When quoting results, rather than providing figures for
the variance, we provide the coefficient of variation. This
allows for easier comparison as this measure is unit-free.

Although the previous discussion only covers network aver-
age delay, the variance of estimates for the network average
number of stops and speed is obtained in a similar way.

8. Results

8.1. Improvements in Precision. Thecoefficient of variation for
estimates of network average delay is given in Table 2 for each
test network, sampling method, and value of 𝑛. The relative
reductions in the coefficient of variation using different
stratified sampling methods are also provided.

From Table 2, we note that the stratified sampling tech-
niques reduce the variability of network average delay relative
to SRS in all instances. From columns 8 and 9, we find that
LHS offers larger variance reductions relative to AV in all
cases expect for when 𝑛 = 2 in oversaturated flow conditions.
We thus recommend stratification using LHS instead of AV
as it produces larger variance reductions in general. Larger
variance reductions under LHS are expected as the method
allows for stratification of each univariate outcome to a
greater extent. AV has the potential to outperform LHS when
𝑛 = 2 as it imposes a larger negative correlation between the
two observations of each univariate outcome.
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Table 3: Estimated values of 𝑝 under LHS1 and LHS2.

Estimated values of 𝑝
Network LHS1 LHS2

Delay Number of stops Speed Delay Number of stops Speed
Arterial undersaturated 0.260 0.374 0.250 0.308 0.419 0.295
Arterial oversaturated 0.565 0.582 0.563 0.662 0.673 0.647
Grid undersaturated 0.128 0.216 0.108 0.156 0.328 0.137
Grid oversaturated 0.348 0.245 0.358 0.426 0.336 0.436

Columns 10 and 11 demonstrate that stratification using
Method 2 generally provides a larger variance reduction than
that obtained by Method 1. This can be explained by the fact
that Method 2 applies stratification to a greater extent than
Method 1. While both methods apply stratification to the
distribution of vehicle entry times directly, Method 2 applies
stratification to the distribution of vehicle counts to a greater
degree in that partitioning is applied directly to the count
of vehicles traversing each route through the network. With
Method 1 this stratification is only applied indirectly through
the following effects.

(i) The stratification of routing decisions of individual
vehicles ensures a more even coverage of routes
through the network in aggregate.

(ii) Vehicle counts and vehicle headways at each bound-
ary node are related; that is, simulated vehicle count =
[average of headway of all simulated vehicles]−1. The
stratification of the headway distribution of individ-
ual vehicles implies a more representative sampling
of the average headway and as a consequence a more
representative coverage of the vehicle count.

However, the scope for application of Method 1 is more
general in that it can be applied to headway distributions
other than the exponential. Although the exponential head-
way distribution is themost widely used [16], theGamma and
Lognormal distributions have been recommended for higher
levels of traffic flow [40, 41].

From Columns 12 and 13, we find that the improvements
in precision of estimators obtained using simulation with
LHS as opposed to SRS increase as more simulations are per-
formed. For instance, the relative reduction in the standard
error of network average delay using LHS2 for the arterial
network in oversaturated conditions starts at 29% for 𝑛 = 2

and increases to 71% for 𝑛 = 100. This can be explained
by the fact that LHS applies a more detailed stratification of
eachmarginal random variable for larger 𝑛. Furthermore, the
benefits of employing LHS are larger in oversaturated flow
conditions.

Although the impacts of stratified sampling on the net-
work averages for the number of stops and speed are not
provided, the overall findings and conclusions are similar.

0 1 2 3 4 5
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Figure 6: Approximately linear relationship.

8.2. Reduction in Model Runtime. The variance of estimators
for sampling method 𝑘 ∈ {LHS1, LHS2} has been examined
and the following approximate relationship was observed:

Var (𝐸[𝑌]𝑘) ≅
Var (𝑌)
𝑛
𝑝+1

. (6)

In order tomore easily demonstrate this fact and to obtain
an estimate of 𝑝, we can convert (6) into a linear relationship
by taking logs

log (Var (𝐸[𝑌]𝑘)) ≅ log [Var (𝑌)] − (𝑝 + 1) log (𝑛) . (7)

The quantities log(Var(𝐸[𝑌]
𝑘
)) and log(𝑛) are plotted

against each other for the case of network average delay under
LHS1 in Figure 6, and the relationship can be observed to be
close to linear.

A similar result was observed for LHS2 and when con-
sidering performance measures other than network average
delay. Least-squares estimates of 𝑝 are given in Table 3.

From (4) and (6), we have that the number of simulations
required under stratified sampling to obtain estimators with
the same precision as those obtained using SRS with 𝑛 simu-
lations is given by 𝑛1/(𝑝+1). These are tabulated in Table 4.

FromTable 4, we find that for the arterial network in over-
saturated conditions, the estimator for network average delay
obtained by averaging the results of 100 simulations with SRS
has the same precision as that obtained by averaging just 16
simulations if LHS2 was applied instead. Since computing
time increases linearly with the number of simulations, LHS
provides an 84% runtime reduction in this instance.
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Table 4: Comparison of sample sizes under SRS and LHS for the same level of precision.

Network SRS sample size
Equivalent sample size under LHS1
to achieve identical precision to SRS

Equivalent sample size under LHS2
to achieve identical precision to SRS

Delay Number of
stops Speed Delay Number of

stops Speed

Arterial
undersaturated

2 2 2 2 2 2 2
4 3 3 3 3 3 3
10 6 5 6 6 5 6
20 11 9 11 10 8 10
50 22 17 23 20 16 20
100 39 29 40 34 26 35

Arterial oversaturated

2 2 2 2 2 2 2
4 2 2 2 2 2 2
10 4 4 4 4 4 4
20 7 7 7 6 6 6
50 12 12 12 11 10 11
100 19 18 19 16 16 16

Grid undersaturated

2 2 2 2 2 2 2
4 3 3 3 3 3 3
10 8 7 8 7 6 8
20 14 12 15 13 10 14
50 32 25 34 29 19 31
100 59 44 64 54 32 57

Grid oversaturated

2 2 2 2 2 2 2
4 3 3 3 3 3 3
10 6 6 5 5 6 5
20 9 11 9 8 9 8
50 18 23 18 16 19 15
100 30 40 30 25 31 25

9. Conclusion

The application of LHS and AV to reduce the variance of out-
put measures from microscopic traffic simulators has been
explored and found to provide considerable benefits. Two
methods of implementing stratified sampling are presented,
one which offers greater variance reduction and another that
has more general applicability. LHS is found to outperform
AV in general. For the same level of computational resources,
reductions of up to 71% in the standard error of the equivalent
estimates of traffic network performance under SRS are
obtained using LHS. Alternatively, in the most extreme case,
the same level of precision can be maintained by using LHS
with only 16% of the original computational resource level.
The improvements in precision and reductions in runtime
can allow for better decision making and increased scope of
use of microscopic traffic simulators. Circumstances which
place the largest burden on computing time are requirements
for high levels of precision or the evaluation of congested
networks. However, it is in these difficult situations where
LHS is the most effective. The overhead and complexity of
implementing LHS is minimal, and it is recommended for

inclusion in current commercial microscopic traffic simula-
tors.
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