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Electric vehicles (EVs) charging stations with a photovoltaic (PV) system for day-time charging have been studied. This paper
investigates the issues such as how to coordinate the EVs customers for coordinated charging, maximize photovoltaic utilization,
and reduce customers cost of EVs charging and operator electricity. Firstly, an ideal charging load curve was built through using
the linear programming algorithm. This optimal curve, which realized maximum photovoltaic power and minimum electricity
cost, was used as the objective curve. Secondly, a customer response model was utilized, to propose an optimization method and
strategy for charging service tariffs. Particle swarmoptimization algorithmwas used for time-of-use tariffs and peak-flat-valley time
division so that the charging load after price regulation was adjusted to best fit the objective curve, and both the EVs customers and
the operator benefit from this. Finally, the proposed model and method have been verified by two cases.

1. Introduction

As the global energy crisis and air pollution are getting
worse, large scale application of renewable power generation
and electric vehicles (EVs) becomes attractive [1–3]. Electric
vehicles and plug-in hybrid electric vehicles which have zero
pollution operation modes become an important method to
solve environmental and atmospheric pollution problems in
large and medium size cities.

The charging mode for electric vehicles and plug-in
hybrid electric vehicles mainly includes night-time charging,
day-time charging, and emergency charging. Night-time
charging is the most widely used charging mode because
it has the longest parking time during the night and uses
electric load valley. Meanwhile day-time charging is another
important method. Reference [4] pointed out that if the
plug-in hybrid EV, which can drive up to 20 km as pure
electric vehicle, is charged during the day and during the
night, the fuel economy will be improved by 71%. Reference
[5] mentioned that 40% of electric vehicles energy will be
supplied from charging during the day in Beijing by 2020.

The connection of large scale charging infrastructure will
significantly affect the stability and quality of the distribution
grid. This will depend on the penetration and the charging
behavior characteristic of the electric vehicles [6, 7]. Up till
now, the research on electric vehicle charging load control
mainly focuses on night-time charging. The main control
target is to reduce the peak power, shift peak, and fill valley
and maintain stable operation of the distribution grid. The
main method is to control the charging power and change
the charging time [8–10].With the same operating conditions
of the distribution grid, electric vehicle day-time charging
will also have the same issues such as controlling the peak
power of charging station and maintaining distribution grid
stability. A local photovoltaic power system could be an
alternativemethod besides control of the charging power and
changing time.

Nowadays the photovoltaic power generation capacity
globally installed grows explosively as the capital cost of the
photovoltaic power system reduces. And almost all of the
photovoltaic power system is connected to the distribution
grid [11]. However, photovoltaic power generation is unstable,
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which is significantly affected by the weather and season;
grid-connected photovoltaic power systems thus will cause
issues to the distribution grid such as overvoltage and
equipment overload. The methods to solve the above issues
caused by the high penetration of photovoltaic power systems
include control of the photovoltaic inverter output active
power and reactive power. However, not all of photovoltaic
energy is fed back to the grid; that is, some of it is wasted, and
this is limited by the distribution grid capacity. To improve
the photovoltaic power utilization, the battery energy storage
system can be used to balance the differences between the
photovoltaic power and load power. Compulsory measures
or time-of-use tariffs can be used to adjust load power curve
to satisfy the demand of maximum photovoltaic power in
themeantime. However, utilization of the photovoltaic power
system is poor due to the battery storage systemhaving a short
cycle life and high capital cost and a small adjustment range
of conventional load.

The power demand of EV day-time charging has a large
overlapwith photovoltaic power generation.TheEV charging
time during the day is shorter than the daily average parking
time [12], which is also variable.The public day-time charging
infrastructure using a photovoltaic power system providing
part of the energy has the following advantages:

(1) improving flexibility and economic efficiency of elec-
tric vehicles;

(2) improving local distribution grid renewable energy
penetration;

(3) reducing the effect of electric vehicle and renewable
power generation on the distribution grid.

Reference [13] notes commuter electric vehicles can be
charged in public parking lot during the day by using
photovoltaic solar panels. This reduces the dependence on
fossil fuel energy sources and helps reduce electricity supply-
demand unbalance. Reference [14] presents the effect of elec-
tric vehicle charging stations which can support the voltage
and maintain the stability of distribution photovoltaic power
systems. The plug-in electric vehicle charged by photovoltaic
powered charging station in a workplace parking garage is
studied in [4]. The economic and carbon emissions of a
photovoltaic charging station are compared between random
charging and optimal charging. In [15] the regulated and
optimized charging control is studied from EV customer’s
perspective. This reduces the effect of charging load on the
distribution grid and charging cost, which is beneficial for
both the operator and EV customers. This also provides a
sustainable commercial developmentmode and improves the
adaptability of charging infrastructure.

The electric vehicle public charging stations with a
photovoltaic system for day-time charging were studied in
this paper. An optimized EV charging curve, which realized
maximum photovoltaic power andminimum electricity cost,
was built by using linear programming. An EV customer
price response model was built based on load shifting ratio.
Particle swarm optimization algorithm was used for time-
of-use tariffs and peak-flat-valley time division so that the

charging load curve after price regulation best fits aim curve,
and both the EV customers and operator benefit from this.

The EV charging load characteristics are from [16] and
the photovoltaic power generation data is from a 10 kW
roof PV system (annual operation) in a research institute.
EV customers’ price response model source data is from
questionnaire among EV customers in a high education
institute. The electricity price adopts general industry and
commercial peak-valley tariffs in Beijing.

The structure of this paper is as follows: Section 2 covers
EVday-time charging load characteristic, photovoltaic power
generation characteristic, and EV customers’ price response.
Section 3 introduces day-time charging optimized control
strategy flow-charts. Section 4 presents optimal charging
aim curve from linear programming algorithm. Section 5
reports peak, flat, and valley charging service tariffs using
particle swarm algorithm. Section 6 explains decisionmaking
method for base charging price which can benefit both charg-
ing station operator and EV customers. Section 7 presents the
simulation results from two different cases, which validate the
model and method. Section 8 draws conclusions from this
paper.

2. EV and Photovoltaic Characteristics

2.1. EV Day-Time Charging Load Characteristic. Reference
[15] builds the statistical probability model of EV charging
demand based on the statistical data of a traditional petrol
vehicle. Monte Carlo algorithm is used to obtain an EV fleet
charging power curve.

Probability distribution and average of daily mileage for
EV customer using day-time charging and night-time charg-
ing are identical. The probability distribution of charging
start time roughly maintains the same. However, the average
charging start time is totally different. The average charging
start time for night-time charging is evening peak time whilst
the average charging start time for day-time charging can
be reasonably predicted to be morning peak time. Figure 1
shows a probability distribution model [16] and 100 EVs day-
time charging curve and night-time charging curve by using
Monte Carlo method. The average daily mileage is 40 km.
The average start charging time is 9:00 am for day-time
charging and 6:00 pm for night-time charging. EV electricity
consumption is 0.15 kWh/km and power rating for on-board
charger 𝑃charge is 3 kW.

Where𝑃ev1 and𝑃ev2 notate night-time charging curve and
day-time charging curve for 100 EVs, respectively, 𝑃pv is a
typical 100 kW photovoltaic output power curve. It can be
seen from Figure 1 that the EV day-time charging curve has a
good agreement with photovoltaic output power.

Methods to regulate EVcharging curve include (1) control
of EV charging power, (2) control of when to charge and for
how long. Control of EV charging power would reduce the
output efficiency of the charger.This paper therefore controls
charging time whilst maintaining constant output charging
power, so that high efficiency of the charger is achieved. This
method needs to transform the EV charging energy demand
into charging time with constant power. In themeantime, the
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Figure 1: Comparison of EV charging load and photovoltaic output
power.

charging process is not continuous to regulate the charging
load.The charging process can be allocated into different time
intervals. The EV charging power 𝑃charge here is constant at
3 kW.

The day charging time (assumed from 7:00 am to
6:00 pm) is divided into 𝑛 time intervals to implement
charging time control and each time interval is 𝑇

𝑠
. An EV

charging demand is transformed into the number of unit
charging times 𝑇

𝑠
from

𝑁ev,𝑖 = [
𝑆
𝑖
𝑊

𝑇
𝑠
𝑃charge

] , (1)

where 𝑁ev,𝑖 is the number of unit charging time daily
requirements for EV number 𝑖, 𝑆

𝑖
is the daily mileage of EV

number 𝑖, and𝑊 is EV power consumption per kilometer.
The charging demands of all EVs are satisfied as long

as the number of unit charging times is fulfilled during the
whole charging time. Round ceiling is used for the number of
unit charging times for each EV.

The number of charging EVs is𝑁ev,𝑗 within time interval
𝑇
𝑠
. Adding up 𝑁ev,𝑗 in all the time intervals during the

day gives the relationship between the total number of unit
charging times and all the EVs charging demands, as shown
in

𝑛

∑

𝑗=1

𝑁ev,𝑗 =
𝑚

∑

𝑖=1

𝑁ev,𝑖 = [
𝑊𝑚𝑆

𝑃charge𝑇𝑠
] , (2)

where 𝑚 is the number of EVs and 𝑆 is EV average daily
millage.

2.2. EV Customers’ Response Model

2.2.1. Response Characteristics. There is minimum stimula-
tion difference (difference threshold) according to consumer
psychology. When the difference is lower than this threshold,
customers basically have no response or tiny response (dead
zone). When the difference is higher than this threshold,
customers start to have response and it is related to the extent
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Figure 2: EV customers’ response characteristic curve for peak-
valley shifting.

of stimulation, which is called normal response (linearity
zone). There is a saturation point, when the stimulation is
higher than this where customers do not have any further
response (saturation zone) [17, 18].

Following the definition of the load translation ratio [17],
customers’ response to charging service price is defined as
the percentage of EV customers shifting, that is, the ratio
of customers who change charging time from peak time to
valley time due to time-of-use tariffs over the original peak
time customers.

Daily charging service is divided into peak, flat, and valley
time. Time shiftingmode includes peak to valley, peak to flat,
and flat to valley. The price difference for peak-valley, peak-
flat, and flat-valley is notated as Δ𝑐

𝑝V, Δ𝑐𝑝𝑓, and Δ𝑐𝑓V, respec-
tively. Peak-valley shifting is taken as an example. Figure 2
shows EV customers’ response characteristic for peak-valley
shifting, where the 𝑥-axis is the price difference between
peak and valley time whilst the 𝑦-axis is the percentage of
customers shifting from peak to valley. 𝐴 and 𝐵 are the
turning points for dead zone and saturation zone and can be
expressed as

𝛼 =

{{{{

{{{{

{

0, 0 ≤ Δ𝑐 ≤ Δ𝑐
𝑝V,1

𝑘
𝑝V ⋅ (Δ𝑐 − Δ𝑐𝑝V,1) , Δ𝑐

𝑝V,1 ≤ Δ𝑐 ≤ Δ𝑐
𝑝V,2

𝛼
𝑝V,max, Δ𝑐 ≥ Δ𝑐

𝑝V,2,

(3)

where Δ𝑐
𝑝V,1 is the dead zone threshold, that is, price differ-

ence for peak-valley when EV customers start to respond;
Δ𝑐
𝑝V,2 is the saturation zone threshold, that is, price difference

for peak-valley time when EV customers’ response does not
increase anymore;𝛼

𝑝V,max is the saturation value of customers’
shifting percentage, that is, peak-valley EV customers respon-
sively saturation value; and 𝑘

𝑝V is the slope of linearity range
and can be expressed as

𝑘
𝑝V =

𝛼
𝑝V,max

Δ𝑐
𝑝V,2 − Δ𝑐𝑝V,1

. (4)

Figure 2 shows different decisions made by EV customers
with the same peak-valley price difference. Flat-valley and
peak-flat EV customers’ response characteristic curve is
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similar to Figure 2. Dead zone threshold, saturation zone
threshold, and customers’ shifting percentage threshold need
to be confirmed to acquire each response characteristic curve.

2.2.2. Parameter Selection Analysis. Customers have a psy-
chological price for certain products.This psychological price
is a range instead of a single value. Customers will compare
the actual price with the psychological price before making
decision whether to purchase a product or not. Likewise, EV
customers who select to charge during peak time will choose
whether to change charging time when the charge service
adopts use-of-time tariffs. If the price difference for the peak-
valley time is within the customers’ psychological price, they
will not change charging time. On the contrary, customers
will change charging time to a cheaper time if beneficial. The
dead zone and saturation zone threshold of the customers’
response characteristic in Figure 2 is decided by upper and
lower limits of all EV customers’ psychological price interval
union.

Psychological price is developed gradually from con-
sumption activity. Charging station refers to business elec-
tricity price when developing charging service price, as EVs
are not widely used yet. Business electricity price can be used
as lower limit of EV customers’ psychological price. EVs are
an alternative for petrol vehicles. Customers naturally will
compare the cost for EVs with petrol vehicles for the same
mileage. As the initial investment for EVs is high and the
driving mileage range is not as good as petrol vehicles, if EVs
charging cost is higher than petrol cars, it was not suitable
for consumers. The cost of petrol converted into electricity
price with the same mileage is taken as upper limit of the
psychological price.

A price sensitivity poll for EV users in a high institute is
designed in this paper. Above three core parameters will be
decided by the statistical results shown in Table 1.

The customers’ response characteristic parameter for
peak-valley, peak-flat, and flat-valley based on Table 1 is 𝑘

𝑝V =

𝑘
𝑝𝑓

= 𝑘
𝑓V = 1; Δ𝑐

𝑝V,2 = Δ𝑐
𝑝𝑓,2

= Δ𝑐
𝑓V,2 = 1; Δ𝑐

𝑝V,1 = Δ𝑐
𝑝𝑓,1

=

Δ𝑐
𝑓V,1 = 0; 𝛼

𝑝V,max = 𝛼
𝑓V,max = 100%.

2.3. Photovoltaic Forecast. Photovoltaic power generation
forecast is from measured data of a 10 kW power system in
a research institute. Photovoltaic power generation on a clear
day is selected as typical data. This data can be enlarged pro-
portionally to different power ratings. An enlarged 100 kW
photovoltaic power system is shown in Figure 1.

Photovoltaic power is converted into the number of
charging EVs for charging load time control as follows:

𝑁pv,𝑗 = [

𝑃pv,𝑗

𝑃charge
] , (5)

where 𝑃pv,𝑗 is the photovoltaic output power in time interval
𝑗and 𝑁pv,𝑗 is the corresponding number of charging EVs in
time interval 𝑗.

2.4. Electricity Price. Beijing general industrial and commer-
cial use-of-time electricity tariffs are used to calculate the cost

for electricity purchase besides photovoltaic power.The price
for peak, flat, and valley time is notated as 𝑡

𝑝
, 𝑡
𝑓
, and 𝑡V, as

shown in Table 2.

3. Charging Service Optimization Strategy

Use-of-time charging tariffs are used by a charging sta-
tion operator to regulate EV customers charging behavior.
Overall, EVs charging load would move towards the target
of maximum photovoltaic power utilization and minimum
electricity cost for the charging station operator. The charg-
ing cost of EV customers after charging station operator
regulation is lower than previous random charging, so that
both charging station operator and EV customers benefit
from this. The process of use-of-time tariffs includes two
aspects: daily optimal charging load objective curve and daily
charging service price.

Firstly, the charging station operator needs to estimate
the daily photovoltaic maximum power output curve before
charging starts. On the basis of the probability of EV
customers’ daily driving mileage and the probability distri-
bution of charging start time, daily natural charging curve
is estimated. The natural charging curve is referred to as a
charging process which starts when it becomes continuous.
Based on the constraints of the distribution network capacity,
the objective of optimized charging load curve is maximum
utilization of photovoltaic power and minimum electricity
cost.

Secondly, with the EV customers charging behavior price
model, the charging price difference for each time interval is
optimized based on an optimal charging load objective curve.
The actual charging load after price regulation is enforced
to best fit optimal charging load objective curve. Charging
station operator will divide the profit by predetermined ratio
between EV customers and themselves. Charging base price
is determined by daily electricity cost and ratio of profit.
Use-of-time tariffs are achieved with the charging base price
and price difference for each time. EV customers can book
the charging time length and when to charge according to
charging price and vehicle charging demand. The operator
will control the correspondent charging post according to
customers booking information.

The following sections in this paper are based on the
following assumptions.

(1) The power rating for the on-board charger is constant
at 3 kW.

(2) Each vehicle has an independent parking lot and
charging post.

(3) The total charging loadmaintains the same before and
after charging service price regulation.

(4) Use-of-time tariffs are divided into peak, flat, and
valley charging service price, similar to electricity
tariffs.
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Table 1: Poll statistical table.

Question Result

Usage (multichoice) Commute (49.0%), Business (13.1%), Pregnant women and children (24.8%), Food and entertainment (31.7%),
others (12.4%)

Price difference for
peak-valley (CNY/kWh) 0 (0%); 0.25 (39.4%); 0.5 (50%); 0.75 (71%); 1 (100%)

4. EV Day-Time Charging Load
Objective Curve

4.1. Objective Function. In each interval, the difference
between optimal charging load objective 𝑁∗ev,𝑗 and photo-
voltaic output power estimation is

𝑑
𝑗
= 𝑁
∗

ev,𝑗 − 𝑁pv,𝑗 (𝑗 = 1, 2, . . . , 𝑛) , (6)

where𝑁pv,𝑗 is the number of charging EVs corresponding to
photovoltaic power generation in time interval 𝑗;𝑁∗ev,𝑗 is the
optimal number of charging EVs in time interval 𝑗, which
also satisfy the constraint condition of (2).The total numbers
of EVs charging in all time intervals daily equal EV overall
numbers of unit time charging demands.

Energy absorbed from the grid and photovoltaic discard
in each time interval thus can be expressed as

𝑢
𝑗
=

(

𝑑
𝑗


+ 𝑑
𝑗
)

2
(𝑗 = 1, 2, . . . , 𝑛) ,

V
𝑗
=

(

𝑑
𝑗


− 𝑑
𝑗
)

2
(𝑗 = 1, 2, . . . , 𝑛) ,

(7)

where 𝑢
𝑗
is the energy from grid in time interval 𝑗 and V

𝑗
is

the photovoltaic discard energy in time interval 𝑗.The energy
from grid and photovoltaic discard energy cannot be positive
at the same time in time interval 𝑗, which is true for practical
situation:

𝑢
𝑗
V
𝑗
= 0 (𝑗 = 1, 2, . . . , 𝑛) . (8)

To reduce customer charging price and operator electric-
ity cost and reduce the effect of photovoltaic power system
on the distribution grid, photovoltaic power will be used
in priority in every time interval. If EV charging demand
is higher than photovoltaic energy in certain time interval,
this extra charging load will be tried to shift to grid valley
time. Optimized objective should include the following two
aspects: minimizing daily photovoltaic discard energy and
purchasing electricity at valley time. The expressions of
objective function and constraints are shown as follows:

min
𝑁ref,𝑗

𝑧
1
=

𝑛

∑

𝑗=1

𝛼
𝑗
V
𝑗 (9)

s.t.

min
𝑁ref,𝑗

𝑧
2
=

𝑛

∑

𝑗=1

𝑇
𝑠
𝑃charge𝑡𝑗𝛽𝑗𝑢𝑗, (10)

𝑛

∑

𝑗=1

𝑁
∗

ev,𝑗 =
𝑚

∑

𝑖=1

𝑁ev,𝑖, (11)

0 ≤ 𝑁
∗

ev,𝑗 ≤ 𝑚 (𝑗 = 1, 2, . . . , 𝑛) , (12)

𝑁
∗

ev,𝑗+1 − 𝑁
∗

ev,𝑗


𝑁
∗

ev,𝑗+1
≤ 𝑒% (𝑗 = 1, 2, . . . , 𝑛) , (13)

where 𝛼
𝑗
and 𝛽

𝑗
are weight coefficient, which is 1 in this

paper; 𝑧
1
is the photovoltaic discard energy in a day; 𝑧

2
is

electricity cost in a day; 𝑡
𝑗
is electricity use-of-time tariffs in

time interval 𝑗, and its value is shown in Table 2, and 𝑒 is
charging load peak fluctuation ratio.

In constraint conditions, (11) means that the total num-
bers of EVs charging equal EV overall numbers of unit time
charging demands in a day for optimal charging objective.
Equation (12) indicates that the number of unit power
modules obtained from optimal charging objective should be
higher or equal to zero and lower or equal to number of EVs in
time interval 𝑗. Equation (13)means that the optimal charging
load should satisfy the requirement of the load fluctuation
ratio for the distribution grid; that is, the difference for load
in time interval 𝑗 and (𝑗 − 1) should be lower than a certain
percentage of loads in time interval 𝑗. 50% is selected in this
paper.

4.2. Optimization Method. The above objective functions
are multiobjective functions and have to change into single
objective functions before solving. Based on the relationship
between the total charging load and total photovoltaic power
generation in (8), the objective functions will be divided
into three situations and discussed, respectively, so that
multiobjective functions can be changed into single objective
functions.

(1) If the total charging load is higher than the total pho-
tovoltaic power, objective functions and constraints
can be simplified as

min
𝑢
𝑗

𝑧
2
=

{

{

{

𝑛

∑

𝑗=1

𝑇
𝑠
𝑃charge𝑡𝑗𝛽𝑗𝑢𝑗

}

}

}

(14)
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Table 2: Beijing general industrial and commercial use-of-time
electricity tariffs.

Time division Price (CNY)
𝑡
𝑝

10:00–15:00, 18:00–21:00 1.0853
𝑡
𝑓

7:00–10:00, 15:00–18:00, 21:00–23:00 0.6725
𝑡V 23:00–7:00 0.2833

s.t.
𝑛

∑

𝑗=1

(𝑢
𝑗
− V
𝑗
) = sum𝑁 −

𝑛

∑

𝑗=1

𝑁pv,𝑗,

𝑁pv,𝑗 − 𝑚 ≤ (−𝑢
𝑗
+ V
𝑗
) ≤ 𝑁pv,𝑗 (𝑗 = 1, 2, . . . , 𝑛) ,

−𝑒% ≤

(𝑢
𝑗
− V
𝑗
) + 𝑁pv,𝑗 − (𝑢𝑗−1 − V

𝑗−1
) − 𝑁pv,𝑗−1

(𝑢
𝑗
− V
𝑗
) + 𝑁pv,𝑗−1

≤ 𝑒%

(𝑗 = 1, 2, . . . , 𝑛) ,

𝑢
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛) ,

V
𝑗
= 0 (𝑗 = 1, 2, . . . , 𝑛) .

(15)

(2) If the total charging load is lower than the total photo-
voltaic power, objective functions and constraints can
be simplified as

min
V
𝑗

𝑧
1
=

{

{

{

𝑛

∑

𝑗=1

𝛼
𝑗
V
𝑗

}

}

}

(16)

s.t.
𝑛

∑

𝑗=1

(𝑢
𝑗
− V
𝑗
) = sum𝑁 −

𝑛

∑

𝑗=1

𝑁pv,𝑗,

𝑁pv,𝑗 − 𝑚 ≤ (−𝑢
𝑗
+ V
𝑗
) ≤ 𝑁pv,𝑗 (𝑗 = 1, 2, . . . , 𝑛) ,

−𝑒% ≤

(𝑢
𝑗
− V
𝑗
) + 𝑁pv,𝑗 − (𝑢𝑗−1 − V

𝑗−1
) − 𝑁pv,𝑗−1

(𝑢
𝑗
− V
𝑗
) + 𝑁pv,𝑗

≤ 𝑒%

(𝑗 = 1, 2, . . . , 𝑛) ,

𝑢
𝑗
= 0 (𝑗 = 1, 2, . . . , 𝑛) ,

V
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛) .

(17)

(3) If the total charging load equals the total photovoltaic
power, optimization is not necessary and the result is

𝑁
∗

ev,𝑗 = 𝑁pv,𝑗 (𝑗 = 1, 2, . . . , 𝑛) . (18)

Linear algorithm or Lagrange optimization algorithm
is generally used for the above optimization problems [19,
20]. The linear algorithm is used here in this paper for the
following cases.

5. Charging Service Price Optimization

The optimal charging load objective curve was acquired in
Section 4; the optimization objective is the actual charging
load after the charging service regulation best fits the optimal
charging load objective curve. The charging service price
optimization function is built and shown as follows.

5.1. Objective Function. TheEV customers day-time charging
has been divided into 𝑛 time intervals; peak-flat-valley time
interval vector identified for the peak-valley use-of-time
tariffs is defined as lab = [lab

1
, lab
2
, . . . , lab

𝑛
]. Time interval 𝑗

is the peak time of the charging service when lab
𝑗
= 3. Time

interval 𝑗 is the flat time of the charging servicewhen lab
𝑗
= 2.

Time interval 𝑖 is the valley time of the charging service when
lab
𝑖
= 1.
According to EV customers’ price response model, EV

customers will respond as to whether to shift charge time
under the condition of peak-valley use-of-time tariffs. The
load at peak and flat time will be allocated to flat and valley
time. The actual charging load after peak-valley charging
service price regulation can be approximated by curve-fitting
and is expressed as

𝑁


ev,𝑗 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑁ev,𝑗 −
⌈(𝑘
𝑝𝑓
⋅ Δ𝑐
𝑝𝑓
⋅ 𝐿
𝑝,all)⌉

𝑇
𝑝

−

⌈(𝑘
𝑝V ⋅ Δ𝑐𝑝V ⋅ 𝐿𝑝,all)⌉

𝑇
𝑝

, lab
𝑗
= 3

𝑁ev,𝑗 +
⌈(𝑘
𝑝𝑓
⋅ Δ𝑐
𝑝𝑓
⋅ 𝐿
𝑝,all)⌉

𝑇
𝑓

−

⌈(𝑘
𝑓V ⋅ Δ𝑐𝑓V ⋅ 𝐿𝑓,all)⌉

𝑇
𝑓

, lab
𝑗
= 2

𝑁ev,𝑗 +
⌈(𝑘
𝑝V ⋅ Δ𝑐𝑝V ⋅ 𝐿𝑝,all)⌉

𝑇V

+

⌈(𝑘
𝑓V ⋅ Δ𝑐𝑓V ⋅ 𝐿𝑓,all)⌉

𝑇V
, lab

𝑗
= 1

0, lab
𝑗
= 0,

(19)

where𝑁ev,𝑗 is the number of charging vehicles before use-of-
time tariffs in time interval 𝑗;𝑁ev,𝑗 is the number of charging
vehicles after use-of-time tariffs in time interval 𝑗; 𝐿

𝑝,all and
𝐿
𝑓,all notate the total number of charging vehicles at peak

time and flat time, respectively, under the condition that the
charging service is divided into peak, flat, and valley; Δ𝑐

𝑝V,
Δ𝑐
𝑝𝑓
, and Δ𝑐

𝑓V are the price difference for peak-valley, peak-
flat, and flat-valley, respectively. 𝑘

𝑝V, 𝑘𝑝𝑓, and 𝑘𝑓V are the slope
of customers’ response characteristic for peak-valley, peak-
flat, and flat-valley, respectively. 𝑇

𝑝
, 𝑇
𝑓
, and 𝑇V are the length

of time for peak, flat, and valley, respectively.
Based on the above assumptions and EV customers’

price response characteristic, the actual charging load curve
is guided to best fit the optimal charging load curve. The
objective function expression is

min
𝑛

∑

𝑗=1

(𝑁


ev,𝑗 − 𝑁
∗

ev,𝑗)
2

(20)
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s.t.

0 ≤ Δ𝑐
𝑝V ≤ 1, (21)

0 ≤ Δ𝑐
𝑝𝑓

≤ 1, (22)

0 ≤ Δ𝑐
𝑓V ≤ 1, (23)

Δ𝑐
𝑓V = Δ𝑐

𝑝V − Δ𝑐𝑝𝑓, (24)

lab
𝑗
∈ {1, 2, 3} , (𝑗 = 1, 2, . . . , 𝑛) , (25)

where𝑁ev,𝑗 is the number of charging vehicles in time interval
𝑗 after charging service price regulation; Δ𝑐

𝑝V, Δ𝑐𝑝𝑓, and Δ𝑐𝑓V
are the price difference for peak-valley, peak-flat, and flat-
valley, respectively.

Equations (21), (22), and (23) signify the price differences
constrained within the acceptance of EV customers, which
are acquired by the poll from Table 1. Equation (24) is
constraints for the price differences. Equation (25) restrains
that the charging service only has peak, flat, and valley tariffs.

5.2. Optimization Methodology. Combining (19) with (20),
the control variable is the price difference of peak-valleyΔ𝑐

𝑝V,
flat-valleyΔ𝑐

𝑓V, peak-flatΔ𝑐𝑝𝑓, and the charging service peak-
valley time division scalar lab = [lab

1
, lab
2
, . . . , lab

𝑛
].

Dr. Eberhart and Dr. Kennedy proposed particle swarm
optimization in 1995, which is an evolved computing technol-
ogy based on iterations. Particle swarm optimization has the
following advantages: simple structure, being easy to apply,
and having good performance on function optimization and
neural network weight estimation [21, 22].This paper utilized
particle swarm optimization to solve the above optimization
problems and acquire optimized charging service price.

6. Base Price Calculation

The charging service use-of-time tariffs peak-valley time
division and price differences are achieved by optimization.
Besides, the operator needs to calculate the base price for
the charging service, that is, valley price. Overall charging
service use-of-time tariff 𝑐

𝑗
is obtained using the base price

plus price difference for each time interval. The base price
should consider the satisfaction of both the EV customers
and the operator. The EV customers charging cost and
the operator electricity expenses after charge service price
regulation would be reduced. The reduction of electricity
expenses will be divided by 1 : 1 to the EV customers and the
operator so that both of them are satisfied.The base charging
service price is calculated by

𝑛

∑

𝑗=1

(𝑡
𝑗
𝑁ev,𝑗 − 𝑐𝑗𝑁



ev,𝑗) 𝑃charge𝑇𝑠 = 0.5Δ𝑃grid, (26)

where 𝑡
𝑗
is the electricity price in time interval 𝑗, 𝑐

𝑗
is

the charging service price in time interval 𝑗, and Δ𝑃grid is
the reduction of electricity cost after charging service price
regulation.
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Figure 3: Optimized charging load curve comparison for case 1.

Table 3: Optimized charging load comparison for case 1.

Original Optimized
PV discard energy (kWh) 111 0
Operator electricity cost (CNY) 118.99 28.25

7. Case Analysis

Multiple objective functions have been changed into single
objective functions in Section 4. Two cases are simulated and
the results are compared.

7.1. Case 1. The charging station is assumed to provide
day-time charging service for 100 EVs and the photovoltaic
capacity is 100 kW. The EV charging load, photovoltaic
output power curve, and peak-valley tariffs were shown in
Section 2.The total charging energy is higher than the photo-
voltaic energy according to (2). The optimized charging load
objective function, therefore, is (14). Linear programming
algorithm is used in this paper to solve the objective function
and the obtained optimal charging load curve is shown in
Figure 3.

In Figure 3, 𝑁ev is the number of charging EVs along
the day before price regulation. 𝑁pv is the number of
charging EVs correspondent to 100 kW photovoltaic power
estimation. 𝑁∗ev is the optimized ideal number of charging
EVs along the day. The photovoltaic discard energy is zero
after linear programming optimization, and the electricity
cost is 28.25 CNY. It can be seen from Figure 3 that linear
programming optimization maximizes photovoltaic energy
utilization.The charging time is arranged to valley time when
the charging load is higher than the photovoltaic power.
The results for the original and optimized charging load are
compared in Table 3.

The optimal charging load curve is used as the guidance
objective for charging load price. EV charging service price
strategy is by obtained by combining (19) and (20), with the
particle swarm optimizationmethod. Between 7:00 and 18:00
during the day, the results of optimization are as follows:
charging service peak time is 7:00∼ 12:00, flat time is 14:00∼
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Figure 4: Charging load curve comparison after regulation for case
1.

Table 4: Before and after charging service price regulation compar-
ison for case 1.

Before
regulation

After
regulation

PV discard energy (kWh) 111 22.8
EVs customer cost (CNY) 540.96 506.23
Operator electricity cost (CNY) 118.99 84.26
Peak load power (kW) 96 82.8

15:00, and valley time is 12:00∼14:00 and 15:00∼18:00. The
price difference between peak and valley time is 0.2 CNY,
between peak and flat time 0.1 CNY, and between flat and
valley time 0.1 CNY. Curve-fitting for the EVs charging load
after price regulation is shown in Figure 4.𝑁ev represents the
number of charging EVs along the day after regulation.

The valley charging service price is 0.74 CNY from (26),
so the flat price is 0.84CNY and the peak price is 0.94CNY.
The total cost of EV customers and operator before and after
charging service price regulation is presented in Table 4.

7.2. Case 2. In order to simulate the situation that total
charging load is lower than the photovoltaic output power, the
maximum photovoltaic output power is enlarged to 120 kW.
The number of EVs is still 𝑁ev and the electricity price
remains the same. The total charging energy is lower than
the photovoltaic energy according to (2), and the optimized
charging load objective function therefore is presented in
(16). Linear programming algorithm is used in this paper
to solve the objective function and the obtained optimal
charging load curve is shown in Figure 5.

In Figure 5,𝑁ev is the number of charging EVs along the
day before price regulation. 𝑁pv2 is the number of charging
EVs corresponding to 120 kWphotovoltaic power estimation.
𝑁
∗

ev is the optimized ideal number of charging EVs along the
day. The photovoltaic discard energy is 69 kWh after linear
programming optimization, and the electricity cost is 0 CNY.
The results for the original and optimized charging load are
compared in Table 5.
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Figure 5: Optimized charging load curve comparison for case 2.

Table 5: Optimized charging load comparison for case 2.

Original Optimized
PV discard energy (kWh) 180 69
Operator electricity cost (CNY) 82.08 0

Table 6: Before and after charging service price regulation compar-
ison for case 2.

Before
regulation

After
regulation

PV discard energy (kWh) 180 89.7
EVs customer cost (CNY) 540.96 505.92
Operator electricity cost (CNY) 82.08 47.04
Peak load power (kW) 96 79.50

The optimal charging load curve is used as the guidance
objective for charging load price. EV charging service price
strategy is obtained combining (19) and (20), with the particle
swarm optimization method. Between 7:00 and 18:00 during
the day, the results of optimization are as follows: charging
service peak time is 7:00∼11:00, flat time is 11:00∼13:00, and
valley time is 13:00∼18:00. The price difference between peak
and valley time is 0.3 CNY, between peak and flat time
0.1 CNY, and between flat and valley time 0.2 CNY. Curve-
fitting for the EV charging load after price regulation is shown
in Figure 6.𝑁ev represents the number of charging EVs along
the day after regulation.

The valley charging service price is 0.7 CNY from (26),
so the flat price is 0.9 CNY and the peak price is 1.0 CNY.
The total cost of EV customers and operator before and after
charging service price regulation is presented in Table 6.

8. Conclusions

This paper proposed an effective price response model for
electric vehicle customers and optimized charging service
tariffs, which serves electric vehicle day-time charging station
integrated with a photovoltaic power system. A reasonable
use-of-time tariff for charging service was recommended. EV
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Figure 6: Charging load curve comparison after regulation for case
2.

customers’ charging behavior would be regulated by charging
service use-of-time tariffs to improve the electric vehicle
charging load curve. Maximum photovoltaic utilization and
minimum electricity cost have been achieved. This method
has been used in two cases and proved that it can reduce the
customers charging price and the operator electricity cost, so
that both the customers and the operator benefit from this.
Furthermore, the demand on grid capacity is reduced, which
improves the versatility of charging station infrastructure.
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