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The paper fills gaps in knowledge about Kuratowski operations which are already in the literature. The Cayley table for these
operations has been drawn up. Techniques, using only paper and pencil, to point out all semigroups and its isomorphism types
are applied. Some results apply only to topology, and one cannot bring them out, using only properties of the complement and a
closure-like operation. The arguments are by systematic study of possibilities.

1. Introduction

Let𝑋 be a topological space. Denote by 𝐴− closure of the set
𝐴 ⊆ 𝑋. Let 𝐴𝑐 be the complement of 𝐴; that is, 𝑋 \ 𝐴 =

𝐴
𝑐. The aim of this paper is to examine monoids generated

under compositions from the closure and the complement. A
widely known fact due to Kuratowski [1] states that at most 14
distinct operations can be formed from such compositions.
Mark them as follows. Kuratowski operations:

𝜎
0

(𝐴) = 𝐴 (the identity),
𝜎
1

(𝐴) = 𝐴
𝑐 (the complement),

𝜎
2

(𝐴) = 𝐴
− (the closure),

𝜎
3

(𝐴) = 𝐴
𝑐−,

𝜎
4

(𝐴) = 𝐴
−𝑐,

𝜎
5

(𝐴) = 𝐴
𝑐−𝑐 (the interior),

𝜎
6

(𝐴) = 𝐴
−𝑐−,

𝜎
7

(𝐴) = 𝐴
𝑐−𝑐−,

𝜎
8

(𝐴) = 𝐴
−𝑐−𝑐,

𝜎
9

(𝐴) = 𝐴
𝑐−𝑐−𝑐,

𝜎
10

(𝐴) = 𝐴
−𝑐−𝑐−,

𝜎
11

(𝐴) = 𝐴
𝑐−𝑐−𝑐−,

𝜎
12

(𝐴) = 𝐴
−𝑐−𝑐−𝑐,

𝜎
13

(𝐴) = 𝐴
𝑐−𝑐−𝑐−𝑐.

The following rules was found in the original paper by
Kuratowski [1, pages 183-184]. In the Engelking book [2], they
are commented by a hint on page 81. Cancellation rules:

𝐴
−𝑐−

= 𝐴
−𝑐−𝑐−𝑐−

, 𝐴
𝑐−𝑐−

= 𝐴
𝑐−𝑐−𝑐−𝑐−

. (1)

Kuratowski operations have been studied by several
authors, for example, [3] or [4]. A list of some other authors
one can find in the paper [5] by Gardner and Jackson. For the
first time these operations were systematically studied in the
dissertation by Kuratowski, whose results were published in
[1]. Tasks relating to these operations are usually resolved at
lectures or exercises with general topology.They are normally
left to students for independent resolution. For example,
determine how many different ways they convert a given set.

This note is organized as follows. Kuratowski operations
and their marking are described in the introduction. Their
properties of a much broader context than for topologies are
presented in Section 2.The Cayley table, for the monoidM of
all Kuratowski operations, has been drawn up in Section 3.
We hope that this table has not yet been published in the
literature. Having this table, one can create a computer
program that calculates all the semigroups contained in M.
However, in Sections 4–8, we present a framework (i.e.,
techniques using only paper and pencil) to point out all 118
semigroups and 56 isomorphism types of them.The list of 43
semigroups which are not monoids is presented in Section 9.
In this section, also isomorphism types are discussed in order
of the number of elements in semigroups. Finally, we present
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cancellation rules (relations) motivated by some topological
spaces.

2. Cancellation Rules

A map 𝑓 : 𝑃(𝑋) → 𝑃(𝑋) is called:

(i) increasing, if 𝐴 ⊆ 𝐵 implies 𝑓(𝐴) ⊆ 𝑓(𝐵);
(ii) decreasing, if 𝐴 ⊆ 𝐵 implies 𝑓(𝐵) ⊆ 𝑓(𝐴);
(iii) an involution, if the composition 𝑓 ∘ 𝑓 is the identity;
(iv) an idempotent, if 𝑓 ∘ 𝑓 = 𝑓.

Assume that 𝐴 󳨃→ 𝜎
0

(𝐴) is the identity, 𝐴 󳨃→ 𝜎
1

(𝐴) is
a decreasing involution, and 𝐴 󳨃→ 𝜎

2

(𝐴) is an increasing
idempotent map. Other operations 𝜎

𝑖

let be compositions of
𝜎
1

and 𝜎
2

as it was with the kuratowski operations.We get the
following cancellation rules.

Lemma 1. If 𝐵 ⊆ 𝜎
2

(𝐵), then

𝜎
2

∘ 𝜎
12

= 𝜎
6

, 𝜎
2

∘ 𝜎
13

= 𝜎
7

. (2)

Proof. For clarity of this proof, use designations 𝜎
1

(𝐴) = 𝐴
𝑐

and 𝜎
2

(𝐴) = 𝐴
−. Thus, we shall prove

𝐴
−𝑐−𝑐−𝑐−

= 𝐴
−𝑐−

, 𝐴
𝑐−𝑐−𝑐−𝑐−

= 𝐴
𝑐−𝑐−

. (3)

We start with 𝐴−𝑐−𝑐 ⊆ 𝐴−𝑐−𝑐−, substituting 𝐵 = 𝐴−𝑐−𝑐 in 𝐵 ⊆
𝐵
−. This corresponds to 𝐴−𝑐−𝑐−𝑐 ⊆ 𝐴−𝑐−𝑐𝑐 = 𝐴−𝑐−, since 𝜎

1

is
a decreasing involution. Hence 𝐴−𝑐−𝑐−𝑐− ⊆ 𝐴−𝑐−, since 𝜎

2

an
increasing idempotent.

Since 𝜎
1

is decreasing, 𝜎
2

is increasing, and 𝐵 ⊆ 𝐵−, we
have

𝐵
−𝑐

⊆ 𝐵
𝑐

⊆ 𝐵
𝑐−

. (4)

Thus𝐴−𝑐−𝑐 ⊆ 𝐴−𝑐𝑐− = 𝐴−, if we put𝐴−𝑐 = 𝐵. Again using that
𝜎
2

is increasing and 𝜎
1

is decreasing, we obtain 𝐴−𝑐−𝑐− ⊆ 𝐴−
and then 𝐴−𝑐 ⊆ 𝐴−𝑐−𝑐−𝑐. Finally, we get 𝐴−𝑐− ⊆ 𝐴−𝑐−𝑐−𝑐−.

With 𝐴𝑐 in the place of 𝐴 in the rule 𝐴−𝑐− = 𝐴−𝑐−𝑐−𝑐− we
get the second rule.

In academic textbooks of general topology, for example,
[2, Problem 1.7.1.], one can find a hint suggested to prove the
above cancellation rules. Students go like this: steps 𝐴 ⊆ 𝐴

−

and 𝐴𝑐 ⊆ 𝐴
𝑐− lead to 𝐴𝑐−𝑐 ⊆ 𝐴; the special case 𝐴−𝑐−𝑐−𝑐 ⊆

𝐴
−𝑐− (of𝐴𝑐−𝑐 ⊆ 𝐴) leads to𝐴−𝑐−𝑐−𝑐− ⊆ 𝐴−𝑐−; steps𝐴−𝑐−𝑐 ⊆ 𝐴−

and 𝐴−𝑐−𝑐− ⊆ 𝐴− lead to 𝐴−𝑐− ⊆ 𝐴−𝑐−𝑐−𝑐−; at the end, use the
last step of the proof of Lemma 1. Note that, the above proofs
do not use the axioms of topology as follows:

(i) 0 = 0−;
(ii) (𝐴 ∪ 𝐵)− = 𝐴− ∪ 𝐵−.

In the literature there are articles in which Kuratowski oper-
ations are replaced by some other mappings. For example,
Koenen [6] considered linear spaces and put 𝜎

2

(𝐴) to be
the convex hull of 𝐴. In fact, Shum [7] considered 𝜎

2

as the
closure due to the algebraic operations. Add to this, that these
operations can be applied to so-called Fréchet (V) spaces,
which were considered in the book [8, pages 3–37].

3. The Monoid M

LetM be the monoid consisting of all Kuratowski operations;
that is, there are assumed cancellation rules: 𝜎

6

= 𝜎
2

∘𝜎
12

and
𝜎
7

= 𝜎
2

∘ 𝜎
13

. Fill in the Cayley table for M, where the row
and column marked by the identity are omitted. Similarly as
in [9], the factor that labels the row comes first, and that the
factor that labels the column is second. For example, 𝜎

𝑖

∘ 𝜎
𝑘

is
in the row marked by 𝜎

𝑖

and the column marked by 𝜎
𝑘

𝜎
1

𝜎
2

𝜎
3

𝜎
4

𝜎
5

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
10

𝜎
11

𝜎
12

𝜎
13

𝜎
1

𝜎
0

𝜎
4

𝜎
5

𝜎
2

𝜎
3

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
12

𝜎
13

𝜎
10

𝜎
11

𝜎
2

𝜎
3

𝜎
2

𝜎
3

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
3

𝜎
2

𝜎
6

𝜎
7

𝜎
2

𝜎
3

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
4

𝜎
5

𝜎
4

𝜎
5

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
5

𝜎
4

𝜎
8

𝜎
9

𝜎
4

𝜎
5

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
7

𝜎
6

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
9

𝜎
8

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
11

𝜎
10

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
10

𝜎
11

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
10

𝜎
11

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
13

𝜎
12

𝜎
8

𝜎
9

𝜎
12

𝜎
13

𝜎
12

𝜎
13

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
12

𝜎
13

(5)

It turns out that the above table allows us to describe
all semigroups contained inM, using pencil-and-paper tech-
niques, only. The argument will be by a systematic study of
possibilities. Preparing the list of all semigroups consisting of
Kuratowski operations we used following principles:

(i) minimal collection of generators is written using
⟨𝐴, 𝐵, . . . , 𝑍⟩, where letters denote generators;

(ii) when a semigroup has a few minimal collections of
generators, then its name is the first collection in the
dictionary order;

(iii) all minimal collections of generators are written with
the exception of some containing 𝜎

0

;
(iv) we leave to the readers verification that our list is

complete, sometimes we add hints.

4. Semigroups with 𝜎1

Observe that each semigroup which contains 𝜎
0

is a monoid.
Since𝜎

1

∘ 𝜎
1

= 𝜎
0

, a semigroupwhich contains𝜎
1

is amonoid,
too.

Theorem 2. There are three monoids containing 𝜎
1

:

(1) ⟨𝜎
1

⟩ = {𝜎
0

, 𝜎
1

};
(2) M = ⟨𝜎

1

, 𝜎
𝑖

⟩ = {𝜎
0

, 𝜎
1

, . . . , 𝜎
13

}, where 𝑖 ∈ {2, 3, 4, 5};
(3) letM

1

= ⟨𝜎
1

, 𝜎
6

⟩. If 𝑗 ∈ {6, 7, . . . , 13}, then

M
1

= ⟨𝜎
1

, 𝜎
𝑗

⟩ = {𝜎
0

, 𝜎
1

} ∪ {𝜎
6

, 𝜎
7

, . . . , 𝜎
13

} . (6)

Proof. The equality ⟨𝜎
1

⟩ = {𝜎
0

, 𝜎
1

} is obvious.
Since 𝜎

2

= 𝜎
3

∘ 𝜎
1

= 𝜎
1

∘ 𝜎
4

= 𝜎
1

∘ 𝜎
5

∘ 𝜎
1

, we have
⟨𝜎
1

, 𝜎
2

⟩ = ⟨𝜎
1

, 𝜎
3

⟩ = ⟨𝜎
1

, 𝜎
4

⟩ = ⟨𝜎
1

, 𝜎
5

⟩ = M.
If 𝑗 ∈ {6, 7, . . . , 13}, then any composition 𝜎

𝑗

∘ 𝜎
𝑖

or 𝜎
𝑘

∘ 𝜎
𝑗

belongs to M
1

, and so ⟨𝜎
1

, 𝜎
𝑗

⟩ ⊆ M
1

. We have 𝜎
7

= 𝜎
6

∘ 𝜎
1

,
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𝜎
8

= 𝜎
1

∘ 𝜎
6

, 𝜎
9

= 𝜎
1

∘ 𝜎
7

, 𝜎
10

= 𝜎
6

∘ 𝜎
6

, 𝜎
11

= 𝜎
6

∘ 𝜎
7

,
𝜎
12

= 𝜎
8

∘ 𝜎
6

, and 𝜎
13

= 𝜎
8

∘ 𝜎
7

, and so M
1

= ⟨𝜎
1

, 𝜎
6

⟩ =

{𝜎
0

, 𝜎
1

} ∪ {𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
Since 𝜎

6

= 𝜎
7

∘ 𝜎
1

= 𝜎
1

∘ 𝜎
8

= 𝜎
1

∘ 𝜎
9

∘ 𝜎
1

= 𝜎
10

∘ 𝜎
1

∘ 𝜎
10

=

𝜎
11

∘ 𝜎
11

∘ 𝜎
1

= 𝜎
1

∘ 𝜎
12

∘ 𝜎
12

and 𝜎
6

= 𝜎
1

∘ 𝜎
13

∘ 𝜎
1

∘ 𝜎
13

∘ 𝜎
1

,
we have ⟨𝜎

1

, 𝜎
𝑗

⟩ = M
1

for 𝑗 ∈ {6, 7, . . . , 13}.

Consider the permutation

(
𝜎
0

𝜎
1

𝜎
2

𝜎
3

𝜎
4

𝜎
5

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
10

𝜎
11

𝜎
12

𝜎
13

𝜎
0

𝜎
1

𝜎
5

𝜎
4

𝜎
3

𝜎
2

𝜎
9

𝜎
8

𝜎
7

𝜎
6

𝜎
13

𝜎
12

𝜎
11

𝜎
10

) .

(7)

It determines an automorphism A : M → M.

Theorem 3. The identity and A are the only automorphisms
ofM.

Proof. Delete rows and columns marked by 𝜎
1

in the Cayley
table for M. Then, check that the operation 𝜎

3

is in the row
or the column marked by 𝜎

3

only. Also, the operation 𝜎
4

is
in the row or the column marked by 𝜎

4

only. Therefore the
semigroup

⟨𝜎
3

, 𝜎
4

⟩ = {𝜎
2

, 𝜎
3

, . . . , 𝜎
13

} (8)

has a unique minimal set of generators {𝜎
3

, 𝜎
4

}. The reader is
left to check this with the Cayley table forM.

Suppose G is an automorphism of M. By Theorem 2, G
transforms the set {𝜎

2

, 𝜎
3

, 𝜎
4

, 𝜎
5

} onto itself. However 𝜎
2

and
𝜎
5

are idempotents, but 𝜎
3

and 𝜎
4

are not idempotents. So,
there are two possibilities: G(𝜎

3

) = 𝜎
3

and G(𝜎
4

) = 𝜎
4

, which
implies that G is the identity; G(𝜎

3

) = 𝜎
4

and G(𝜎
4

) = 𝜎
3

,
which implies G = A. The reader is left to check this with the
Cayley table forM. We offer hints: 𝜎

2

= 𝜎
3

∘ 𝜎
4

, 𝜎
5

= 𝜎
4

∘ 𝜎
3

,
𝜎
6

= 𝜎
3

∘ 𝜎
2

, 𝜎
7

= 𝜎
3

∘ 𝜎
3

, 𝜎
8

= 𝜎
4

∘ 𝜎
4

, 𝜎
9

= 𝜎
4

∘ 𝜎
5

,
𝜎
10

= 𝜎
6

∘ 𝜎
6

, 𝜎
11

= 𝜎
6

∘ 𝜎
7

, 𝜎
12

= 𝜎
8

∘ 𝜎
6

, and 𝜎
13

= 𝜎
8

∘ 𝜎
7

,
to verify the details of this proof.

5. The Monoid of All Idempotents

The set {𝜎
0

, 𝜎
2

, 𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

} consists of all squares inM.
These squares are idempotents and lie on the main diagonal
in the Cayley table forM. They constitute a monoid and

{𝜎
0

, 𝜎
2

, 𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

} = ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩ . (9)

The permutation

(
𝜎
0

𝜎
2

𝜎
5

𝜎
7

𝜎
8

𝜎
10

𝜎
13

𝜎
0

𝜎
2

𝜎
5

𝜎
8

𝜎
7

𝜎
10

𝜎
13

) (10)

determines the bijection I : ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩ → ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩, such
that

I (𝛼 ∘ 𝛽) = I (𝛽) ∘ I (𝛼) , (11)

for any 𝛼, 𝛽 ∈ ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩. To verify this, apply equalities
𝜎
2

∘ 𝜎
5

= 𝜎
7

, 𝜎
5

∘ 𝜎
2

= 𝜎
8

, 𝜎
2

∘ 𝜎
5

∘ 𝜎
2

= 𝜎
10

, and
𝜎
5

∘ 𝜎
2

∘ 𝜎
5

= 𝜎
13

. Any bijection I : 𝐺 → 𝐻, having property
I(𝛼∘𝛽) = I(𝛽)∘I(𝛼), transposesCayley tables for semigroups𝐺

and𝐻. Several semigroups contained inM have this property.
We leave the reader to verify this.

We shall classify all semigroups contained in the semi-
group ⟨𝜎

2

, 𝜎
5

⟩. Every such semigroup can be extended to
a monoid by attaching 𝜎

0

to it. This gives a complete
classification of all semigroups in ⟨𝜎

0

, 𝜎
2

, 𝜎
5

⟩.
The semigroup ⟨𝜎

2

, 𝜎
5

⟩ contains six groups with exactly
one element.

Semigroups ⟨𝜎
2

, 𝜎
10

⟩ = {𝜎
2

, 𝜎
10

} and ⟨𝜎
5

, 𝜎
13

⟩ = {𝜎
5

, 𝜎
13

}

aremonoids. Both consist of exactly two elements and are not
groups, so they are isomorphic.

Semigroups ⟨𝜎
7

, 𝜎
10

⟩ and ⟨𝜎
8

, 𝜎
13

⟩ are isomorphic, in par-
ticular A[⟨𝜎

7

, 𝜎
10

⟩] = ⟨𝜎
8

, 𝜎
13

⟩. Also, semigroups ⟨𝜎
7

, 𝜎
13

⟩

and ⟨𝜎
8

, 𝜎
10

⟩ are isomorphic by A. Every of these four semi-
groups has exactly two elements. None of them is a monoid.
They form two types of nonisomorphic semigroups, because
the bijections {(𝜎

7

, 𝜎
10

), (𝜎
10

, 𝜎
8

)} and {(𝜎
7

, 𝜎
8

), (𝜎
10

, 𝜎
10

)} are
not isomorphisms.

Semigroups ⟨𝜎
2

, 𝜎
7

⟩ = {𝜎
2

, 𝜎
7

, 𝜎
10

} and ⟨𝜎
5

, 𝜎
8

⟩ =

{𝜎
5

, 𝜎
8

, 𝜎
13

} are isomorphic. Also, semigroups ⟨𝜎
2

, 𝜎
8

⟩ =

{𝜎
2

, 𝜎
8

, 𝜎
10

} and ⟨𝜎
5

, 𝜎
7

⟩ = {𝜎
5

, 𝜎
7

, 𝜎
13

} are isomorphic. In
fact, A[⟨𝜎

2

, 𝜎
7

⟩] = ⟨𝜎
5

, 𝜎
8

⟩ and A[⟨𝜎
2

, 𝜎
8

⟩] = ⟨𝜎
5

, 𝜎
7

⟩.
None of these semigroups is a monoid. They form two types
of nonisomorphic semigroups. Indeed, any isomorphism
between ⟨𝜎

2

, 𝜎
7

⟩ and ⟨𝜎
2

, 𝜎
8

⟩ must be the identity on the
monoid ⟨𝜎

2

, 𝜎
10

⟩. Therefore would have to be the restriction
of I. But I restricted to ⟨𝜎

7

, 𝜎
10

⟩ is not an isomorphism.
Semigroups ⟨𝜎

2

, 𝜎
13

⟩ = ⟨𝜎
2

, 𝜎
7

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}

and ⟨𝜎
5

, 𝜎
10

⟩ = ⟨𝜎
5

, 𝜎
7

, 𝜎
8

⟩ = {𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

} are not
monoids. They are isomorphic by A.

The semigroup ⟨𝜎
2

, 𝜎
5

⟩ contains exactly one semigroup
with four elements ⟨𝜎

7

, 𝜎
8

⟩ = ⟨𝜎
10

, 𝜎
13

⟩ = {𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}

which is not a monoid.
Note that ⟨𝜎

2

, 𝜎
5

⟩ contains twenty different semigroups
with nine non-isomorphism types. These are six isomorphic
groups with exactly one element ⟨𝜎

2

⟩ ≅ ⟨𝜎
5

⟩ ≅ ⟨𝜎
7

⟩ ≅

⟨𝜎
8

⟩ ≅ ⟨𝜎
10

⟩ ≅ ⟨𝜎
13

⟩, two isomorphic monoids with exactly
two elements ⟨𝜎

2

, 𝜎
10

⟩ ≅ ⟨𝜎
5

, 𝜎
13

⟩, two pairs of isomorphic
semigroups with exactly two elements ⟨𝜎

7

, 𝜎
10

⟩ ≅ ⟨𝜎
8

, 𝜎
13

⟩

and ⟨𝜎
7

, 𝜎
13

⟩ ≅ ⟨𝜎
8

, 𝜎
10

⟩, two pairs of isomorphic semigroups
with exactly three elements ⟨𝜎

2

, 𝜎
7

⟩ ≅ ⟨𝜎
5

, 𝜎
8

⟩ and ⟨𝜎
2

, 𝜎
8

⟩ ≅

⟨𝜎
5

, 𝜎
7

⟩, a semigroup with exactly four elements ⟨𝜎
7

, 𝜎
8

⟩,
and two isomorphic semigroups with exactly five elements
⟨𝜎
2

, 𝜎
13

⟩ ≅ ⟨𝜎
5

, 𝜎
10

⟩ and also ⟨𝜎
2

, 𝜎
5

⟩. Thus, ⟨𝜎
2

, 𝜎
5

⟩ contains
twenty different semigroups with nine isomorphism types.
But ⟨𝜎

0

, 𝜎
2

, 𝜎
5

⟩ contains forty-one different semigroups with
seventeen isomorphism types. Indeed, adding 𝜎

0

to semi-
groups contained in ⟨𝜎

2

, 𝜎
5

⟩, which are not monoids, we
get twenty monoids with eight non-isomorphism types.
Adding 𝜎

0

to a group contained in ⟨𝜎
2

, 𝜎
5

⟩ we get a monoid
isomorphic to ⟨𝜎

2

, 𝜎
10

⟩.

6. The Semigroup Consisting of {𝜎
6
,𝜎
7
, . . . ,𝜎

13
}

Using the Cayley table forM, check that
A [{𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}] = {𝜎
6

, 𝜎
7

, . . . , 𝜎
13

} . (12)
Similarly, check that the semigroup ⟨𝜎

6

, 𝜎
9

⟩ = {𝜎
6

, 𝜎
7

, . . . ,

𝜎
13

} can be represented as ⟨𝜎
6

, 𝜎
13

⟩, ⟨𝜎
7

, 𝜎
12

⟩, ⟨𝜎
8

, 𝜎
11

⟩,
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⟨𝜎
9

, 𝜎
10

⟩, or ⟨𝜎
11

, 𝜎
12

⟩. Also ⟨𝜎
6

, 𝜎
9

⟩ = ⟨𝜎
6

, 𝜎
7

, 𝜎
8

⟩ =

⟨𝜎
7

, 𝜎
8

, 𝜎
9

⟩ = ⟨𝜎
10

, 𝜎
11

, 𝜎
13

⟩ = ⟨𝜎
10

, 𝜎
12

, 𝜎
13

⟩. These rep-
resentations exhaust all minimal collections of the Kura-
towski operations which generate ⟨𝜎

6

, 𝜎
9

⟩. Other semigroups
included in ⟨𝜎

6

, 𝜎
9

⟩ have one or two minimal collection
of generators. One generator has groups ⟨𝜎

6

⟩ = {𝜎
6

, 𝜎
10

},
⟨𝜎
9

⟩ = {𝜎
9

, 𝜎
13

}, ⟨𝜎
11

⟩ = {𝜎
7

, 𝜎
11

}, and ⟨𝜎
12

⟩ = {𝜎
8

, 𝜎
12

}.
Each of them has exactly two elements, so they are isomor-
phic. Semigroups ⟨𝜎

7

, 𝜎
10

⟩, ⟨𝜎
7

, 𝜎
13

⟩, ⟨𝜎
8

, 𝜎
10

⟩, ⟨𝜎
8

, 𝜎
13

⟩, and
⟨𝜎
7

, 𝜎
8

⟩ are discussed in the previous section. Contained in
⟨𝜎
6

, 𝜎
9

⟩ and not previously discussed semigroups are ⟨𝜎
6

, 𝜎
7

⟩,
⟨𝜎
6

, 𝜎
8

⟩,⟨𝜎
7

, 𝜎
9

⟩, and ⟨𝜎
8

, 𝜎
9

⟩. We leave the reader to verify
that the following are all possible pairs of Kuratowski oper-
ations which constitute a minimal collection of generators
for semigroups contained in ⟨𝜎

6

, 𝜎
9

⟩, but different from the
whole. One has

(i) ⟨𝜎
6

, 𝜎
7

⟩ = ⟨𝜎
6

, 𝜎
11

⟩ = ⟨𝜎
10

, 𝜎
11

⟩ = {𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

};
(ii) ⟨𝜎

6

, 𝜎
8

⟩ = ⟨𝜎
6

, 𝜎
12

⟩ = ⟨𝜎
10

, 𝜎
12

⟩ = {𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

};
(iii) ⟨𝜎

7

, 𝜎
9

⟩ = ⟨𝜎
9

, 𝜎
11

⟩ = ⟨𝜎
11

, 𝜎
13

⟩ = {𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

};
(iv) ⟨𝜎

8

, 𝜎
9

⟩ = ⟨𝜎
9

, 𝜎
12

⟩ = ⟨𝜎
12

, 𝜎
13

⟩ = {𝜎
8

, 𝜎
9

, 𝜎
12

, 𝜎
13

}.

Proposition 4. Semigroups ⟨𝜎
6

, 𝜎
7

⟩ and ⟨𝜎
8

, 𝜎
9

⟩ are isomor-
phic, and also semigroups ⟨𝜎

6

, 𝜎
8

⟩ and ⟨𝜎
7

, 𝜎
9

⟩ are isomorphic,
but semigroups ⟨𝜎

6

, 𝜎
7

⟩, ⟨𝜎
6

, 𝜎
8

⟩ are not isomorphic.

Proof. Isomorphisms are defined by A. Suppose 𝐽 : ⟨𝜎
6

,

𝜎
7

⟩ → ⟨𝜎
6

, 𝜎
8

⟩ is an isomorphism. Thus 𝐽[⟨𝜎
7

, 𝜎
10

⟩] =

⟨𝜎
8

, 𝜎
10

⟩. Given 𝐽(𝜎
7

) = 𝜎
8

, we get 𝜎
10

= 𝐽(𝜎
10

) = 𝐽(𝜎
7

∘

𝜎
10

) ̸= 𝜎
8

∘ 𝜎
10

= 𝜎
8

. But 𝐽(𝜎
7

) = 𝜎
10

implies 𝜎
10

= 𝐽(𝜎
7

) =

𝐽(𝜎
10

∘ 𝜎
7

) ̸= 𝜎
8

∘ 𝜎
10

= 𝜎
8

. Both possibilities lead to a
contradiction.

So, ⟨𝜎
6

, 𝜎
9

⟩ contains eighteen different semigroups with
eight non-isomorphism types. Indeed, these are four iso-
morphic groups with exactly one element ⟨𝜎

7

⟩ ≅ ⟨𝜎
8

⟩ ≅

⟨𝜎
10

⟩ ≅ ⟨𝜎
13

⟩, four isomorphic groups with exactly two
elements ⟨𝜎

6

⟩ ≅ ⟨𝜎
9

⟩ ≅ ⟨𝜎
11

⟩ ≅ ⟨𝜎
12

⟩, two pairs of
isomorphic semigroups with exactly two elements ⟨𝜎

7

, 𝜎
10

⟩ ≅

⟨𝜎
8

, 𝜎
13

⟩ and ⟨𝜎
7

, 𝜎
13

⟩ ≅ ⟨𝜎
8

, 𝜎
10

⟩, and five semigroups
with exactly four elements ⟨𝜎

6

, 𝜎
7

⟩ ≅ ⟨𝜎
8

, 𝜎
9

⟩, ⟨𝜎
6

, 𝜎
8

⟩ ≅

⟨𝜎
7

, 𝜎
9

⟩, ⟨𝜎
7

, 𝜎
8

⟩, and also ⟨𝜎
6

, 𝜎
9

⟩.

7. Remaining Semigroups in ⟨𝜎3, 𝜎4⟩

We have yet to discuss semigroups included in ⟨𝜎
3

, 𝜎
4

⟩, not
included in ⟨𝜎

2

, 𝜎
5

⟩ and containing at least one of Kuratowski
operation 𝜎

2

, 𝜎
3

, 𝜎
4

, or 𝜎
5

. It will be discussed up to the
isomorphism A. Obviously, ⟨𝜎

2

⟩ = {𝜎
2

} and ⟨𝜎
5

⟩ = {𝜎
5

} are
groups.

7.1. Extensions of ⟨𝜎2⟩ and ⟨𝜎5⟩ with Elements of ⟨𝜎6,𝜎9⟩.
Monoids ⟨𝜎

2

, 𝜎
6

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
10

} and ⟨𝜎
2

, 𝜎
10

⟩ = {𝜎
2

, 𝜎
10

} have
different numbers of elements. Also, ⟨𝜎

2

, 𝜎
6

⟩ is isomorphic to
⟨𝜎
0

, 𝜎
6

⟩. Nonisomorphic semigroups ⟨𝜎
2

, 𝜎
7

⟩ and ⟨𝜎
2

, 𝜎
8

⟩ are
discussed above. The following three semigroups:

(i) ⟨𝜎
2

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
6

, 𝜎
7

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

},

(ii) ⟨𝜎
2

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
6

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

},
(iii) ⟨𝜎

2

, 𝜎
13

⟩ = ⟨𝜎
2

, 𝜎
7

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}

are not monoids. They are not isomorphic. Indeed, any
isomorphism between these semigroups would lead an iso-
morphism between ⟨𝜎

6

, 𝜎
7

⟩, ⟨𝜎
6

, 𝜎
8

⟩, or ⟨𝜎
7

, 𝜎
8

⟩. This is
impossible, by Proposition 4 and because ⟨𝜎

7

, 𝜎
8

⟩ consists of
idempotents, but 𝜎

6

is not an idempotent. The nine-element
semigroup on the set {𝜎

2

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

} is represented as
⟨𝜎
2

, 𝜎
9

⟩. So, we have added four new semigroups, which are
not isomorphic with the semigroups previously discussed.
These are ⟨𝜎

2

, 𝜎
11

⟩, ⟨𝜎
2

, 𝜎
12

⟩, ⟨𝜎
2

, 𝜎
13

⟩, and ⟨𝜎
2

, 𝜎
9

⟩.
Using A, we have described eight semigroups—each

one isomorphic to a semigroup previously discussed—which
contains 𝜎

5

and elements (at least one) of ⟨𝜎
6

, 𝜎
9

⟩. Collec-
tions of generators: ⟨𝜎

2

, 𝜎
6

, 𝜎
13

⟩, ⟨𝜎
2

, 𝜎
7

, 𝜎
12

⟩, ⟨𝜎
2

, 𝜎
8

, 𝜎
11

⟩,
⟨𝜎
2

, 𝜎
11

, 𝜎
12

⟩, ⟨𝜎
2

, 𝜎
11

, 𝜎
13

⟩, and ⟨𝜎
2

, 𝜎
12

, 𝜎
13

⟩ are minimal
in ⟨𝜎

2

, 𝜎
9

⟩. Also, collections of generators: ⟨𝜎
5

, 𝜎
7

, 𝜎
12

⟩,
⟨𝜎
5

, 𝜎
8

, 𝜎
11

⟩, ⟨𝜎
5

, 𝜎
9

, 𝜎
10

⟩, ⟨𝜎
5

, 𝜎
10

, 𝜎
11

⟩, ⟨𝜎
5

, 𝜎
10

, 𝜎
12

⟩, and
⟨𝜎
5

, 𝜎
11

, 𝜎
12

⟩ are minimal in ⟨𝜎
5

, 𝜎
6

⟩.

7.2. Extensions of ⟨𝜎3⟩ and ⟨𝜎4⟩ by Elements from the Semi-
group ⟨𝜎6,𝜎9⟩. Semigroups ⟨𝜎

3

⟩ = {𝜎
3

, 𝜎
7

, 𝜎
11

} and ⟨𝜎
4

⟩ =

{𝜎
4

, 𝜎
8

, 𝜎
12

} are isomorphic by A. They are not monoids. The
semigroup ⟨𝜎

3

⟩ can be extended using elements of ⟨𝜎
6

, 𝜎
9

⟩,
in three following ways:

(i) ⟨𝜎
3

, 𝜎
6

⟩ = ⟨𝜎
3

, 𝜎
10

⟩ = {𝜎
3

, 𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

};
(ii) ⟨𝜎

3

, 𝜎
8

⟩ = ⟨𝜎
3

, 𝜎
12

⟩ = {𝜎
3

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

};
(iii) ⟨𝜎

3

, 𝜎
9

⟩ = ⟨𝜎
3

, 𝜎
13

⟩ = {𝜎
3

, 𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

}.

Semigroups ⟨𝜎
3

, 𝜎
6

⟩ and ⟨𝜎
3

, 𝜎
9

⟩ are not isomorphic. Indeed,
suppose 𝐽 : ⟨𝜎

3

, 𝜎
6

⟩ → ⟨𝜎
3

, 𝜎
9

⟩ is an isomorphism.Thus, 𝐽 is
the identity on ⟨𝜎

3

⟩, 𝐽(𝜎
6

) = 𝜎
9

, and 𝐽(𝜎
10

) = 𝜎
13

. This gives
a contradiction, since 𝜎

3

∘ 𝜎
6

= 𝜎
10

and 𝜎
3

∘ 𝜎
9

= 𝜎
7

.
Neither ⟨𝜎

3

, 𝜎
6

⟩ nor ⟨𝜎
3

, 𝜎
9

⟩ has a minimal collection of
generators with three elements, so they give new isomor-
phism types. Also, ⟨𝜎

2

, 𝜎
9

⟩ is not isomorphic to ⟨𝜎
3

, 𝜎
8

⟩,
since ⟨𝜎

2

, 𝜎
9

⟩ has a unique pair of generators and ⟨𝜎
3

, 𝜎
8

⟩ =

⟨𝜎
3

, 𝜎
12

⟩.
Using A, we get—isomorphic to previously discussed

ones—semigroups ⟨𝜎
4

, 𝜎
9

⟩ = ⟨𝜎
4

, 𝜎
13

⟩ = {𝜎
4

, 𝜎
8

, 𝜎
9

𝜎
12

, 𝜎
13

},
⟨𝜎
4

, 𝜎
6

⟩ = ⟨𝜎
4

, 𝜎
10

⟩ = {𝜎
4

, 𝜎
6

, 𝜎
8

𝜎
10

, 𝜎
12

}, and ⟨𝜎
4

, 𝜎
7

⟩ =

⟨𝜎
4

, 𝜎
11

⟩ = {𝜎
4

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}. There exist minimal collec-
tions of generators, such as follows:

⟨𝜎
3

, 𝜎
8

⟩ = ⟨𝜎
3

, 𝜎
6

, 𝜎
9

⟩ = ⟨𝜎
3

, 𝜎
6

, 𝜎
13

⟩

= ⟨𝜎
3

, 𝜎
9

, 𝜎
10

⟩ = ⟨𝜎
3

, 𝜎
10

, 𝜎
13

⟩ ,

⟨𝜎
4

, 𝜎
7

⟩ = ⟨𝜎
4

, 𝜎
6

, 𝜎
9

⟩ = ⟨𝜎
4

, 𝜎
9

, 𝜎
10

⟩

= ⟨𝜎
4

, 𝜎
6

, 𝜎
13

⟩ = ⟨𝜎
4

, 𝜎
10

, 𝜎
13

⟩ .

(13)

7.3. More Generators from the Set {𝜎2,𝜎3,𝜎4,𝜎5}. Now
we check that ⟨𝜎

2

, 𝜎
3

⟩ = {𝜎
2

, 𝜎
3

, 𝜎
6

, 𝜎
7

, 𝜎
10

𝜎
11

} and
⟨𝜎
4

, 𝜎
5

⟩ = {𝜎
4

, 𝜎
5

, 𝜎
8

, 𝜎
9

, 𝜎
12

𝜎
13

} = A[⟨𝜎
2

, 𝜎
3

⟩] and
also ⟨𝜎

2

, 𝜎
4

⟩ = {𝜎
2

, 𝜎
4

, 𝜎
6

, 𝜎
8

, 𝜎
10

𝜎
12

} and ⟨𝜎
3

, 𝜎
5

⟩ =

{𝜎
3

, 𝜎
5

, 𝜎
7

, 𝜎
9

, 𝜎
11

𝜎
13

} = A[⟨𝜎
2

, 𝜎
4

⟩] are two pairs of iso-
morphic semigroupswhich give two new isomorphism types.
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Each of these semigroups has six element, so in M there
are five six-element semigroups of three isomorphism types,
since ⟨𝜎

2

, 𝜎
5

⟩ has 6 elements which are idempotents.
In ⟨𝜎
3

, 𝜎
4

⟩ there are seven semigroups which have three
generators and have not two generators. These are

(1) ⟨𝜎
2

, 𝜎
3

, 𝜎
8

⟩ = ⟨𝜎
2

, 𝜎
3

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
3

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
3

,

𝜎
13

⟩;

(2) ⟨𝜎
4

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
4

, 𝜎
5

, 𝜎
7

⟩ = ⟨𝜎
4

, 𝜎
5

, 𝜎
10

⟩ = ⟨𝜎
4

, 𝜎
5

,

𝜎
11

⟩;

(3) ⟨𝜎
2

, 𝜎
4

, 𝜎
7

⟩ = ⟨𝜎
2

, 𝜎
4

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
4

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
4

,

𝜎
13

⟩;

(4) ⟨𝜎
3

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
3

, 𝜎
5

, 𝜎
8

⟩ = ⟨𝜎
3

, 𝜎
5

, 𝜎
10

⟩ = ⟨𝜎
3

, 𝜎
5

,

𝜎
12

⟩;

(5) ⟨𝜎
2

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
2

, 𝜎
5

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
5

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
5

,

𝜎
12

⟩;

(6) ⟨𝜎
2

, 𝜎
3

, 𝜎
5

⟩;

(7) ⟨𝜎
2

, 𝜎
4

, 𝜎
5

⟩.

8. Semigroups which Are Contained in ⟨𝜎3,𝜎4⟩

Groups ⟨𝜎
2

⟩ ≅ ⟨𝜎
5

⟩ ≅ ⟨𝜎
7

⟩ ≅ ⟨𝜎
8

⟩ ≅ ⟨𝜎
10

⟩ ≅ ⟨𝜎
13

⟩ have one
element and are isomorphic.

Groups ⟨𝜎
6

⟩ ≅ ⟨𝜎
9

⟩ ≅ ⟨𝜎
11

⟩ ≅ ⟨𝜎
12

⟩, monoids ⟨𝜎
2

, 𝜎
10

⟩ ≅

⟨𝜎
5

, 𝜎
13

⟩, and also semigroups ⟨𝜎
7

, 𝜎
10

⟩ ≅ ⟨𝜎
8

, 𝜎
13

⟩ and
⟨𝜎
7

, 𝜎
13

⟩ ≅ ⟨𝜎
8

, 𝜎
10

⟩ have two elements and Cayley tables as
follows:

𝐴 𝐵

𝐴 𝐵 𝐴

𝐵 𝐴 𝐵

𝐴 𝐵

𝐴 𝐴 𝐵

𝐵 𝐵 𝐴

𝐴 𝐵

𝐴 𝐴 𝐵

𝐵 𝐴 𝐵

𝐴 𝐵

𝐴 𝐴 𝐴

𝐵 𝐵 𝐵

(14)

Monoids ⟨𝜎
2

, 𝜎
6

⟩ ≅ ⟨𝜎
5

, 𝜎
9

⟩, and also semigroups
⟨𝜎
2

, 𝜎
7

⟩ ≅ ⟨𝜎
5

, 𝜎
8

⟩, ⟨𝜎
2

, 𝜎
8

⟩ ≅ ⟨𝜎
5

, 𝜎
7

⟩, and ⟨𝜎
3

⟩ ≅ ⟨𝜎
4

⟩ have
three elements and Cayley tables as follows:

𝐴 𝐵 𝐶

𝐴 𝐴 𝐵 𝐶

𝐵 𝐵 𝐶 𝐵

𝐶 𝐶 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐴 𝐵 𝐶

𝐵 𝐶 𝐵 𝐶

𝐶 𝐶 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐴 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐶 𝐶 𝐶 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶 𝐵

𝐵 𝐶 𝐵 𝐶

𝐶 𝐵 𝐶 𝐵

(15)

Semigroups ⟨𝜎
6

, 𝜎
7

⟩ ≅ ⟨𝜎
8

, 𝜎
9

⟩, ⟨𝜎
6

, 𝜎
8

⟩ ≅ ⟨𝜎
7

, 𝜎
9

⟩, and
⟨𝜎
7

, 𝜎
8

⟩ have four elements and Cayley tables as follows:

𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐷 𝐴 𝐵

𝐵 𝐴 𝐵 𝐶 𝐷

𝐶 𝐴 𝐵 𝐶 𝐷

𝐷 𝐶 𝐷 𝐴 𝐵

𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐴 𝐴 𝐶

𝐵 𝐷 𝐵 𝐵 𝐷

𝐶 𝐴 𝐶 𝐶 𝐴

𝐷 𝐵 𝐷 𝐷 𝐵

𝐴 𝐵 𝐶 𝐷

𝐴 𝐴 𝐶 𝐶 𝐴

𝐵 𝐷 𝐵 𝐵 𝐷

𝐶 𝐴 𝐶 𝐶 𝐴

𝐷 𝐷 𝐵 𝐵 𝐷

(16)

Semigroups ⟨𝜎
2

, 𝜎
11

⟩ ≅ ⟨𝜎
5

, 𝜎
12

⟩, ⟨𝜎
2

, 𝜎
12

⟩ ≅ ⟨𝜎
5

, 𝜎
11

⟩,
⟨𝜎
2

, 𝜎
13

⟩ ≅ ⟨𝜎
5

, 𝜎
10

⟩, ⟨𝜎
3

, 𝜎
6

⟩ ≅ ⟨𝜎
4

, 𝜎
9

⟩, and ⟨𝜎
3

, 𝜎
9

⟩ ≅

⟨𝜎
4

, 𝜎
6

⟩ have five elements. Semigroups ⟨𝜎
2

, 𝜎
3

⟩ ≅ ⟨𝜎
4

, 𝜎
5

⟩,
⟨𝜎
2

, 𝜎
4

⟩ ≅ ⟨𝜎
3

, 𝜎
5

⟩, and ⟨𝜎
2

, 𝜎
5

⟩ have six elements. Construc-
tion of Cayley tables for these semigroups, as well as other
semigroups, we leave it to the readers. One can prepare such
tables removing from the Cayley table for M some columns
and rows. Then change Kuratowski operations onto letters
of the alphabet. For example, ⟨𝜎

0

, 𝜎
2

, 𝜎
5

⟩ has the following
Cayley table:

0 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

0 0 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

𝐴 𝐴 𝐴 𝐶 𝐶 𝐸 𝐸 𝐶

𝐵 𝐵 𝐷 𝐵 𝐹 𝐷 𝐷 𝐹

𝐶 𝐶 𝐸 𝐶 𝐶 𝐸 𝐸 𝐶

𝐷 𝐷 𝐷 𝐹 𝐹 𝐷 𝐷 𝐹

𝐸 𝐸 𝐸 𝐶 𝐶 𝐸 𝐸 𝐶

𝐹 𝐹 𝐷 𝐹 𝐹 𝐷 𝐷 𝐹

(17)

Preparing theCayley table for ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩weput𝜎
0

= 0, 𝜎
2

=

𝐴, 𝜎
5

= 𝐵, 𝜎
7

= 𝐶, 𝜎
8

= 𝐷, 𝜎
10

= 𝐸, and 𝜎
13

= 𝐹. This table
immediately shows that semigroups ⟨𝜎

2

, 𝜎
5

⟩ and ⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩

have exactly two automorphisms. These are identities and
restrictions of A.

Semigroup ⟨𝜎
6

, 𝜎
9

⟩ has eight elements. Semigroups
⟨𝜎
2

, 𝜎
9

⟩ ≅ ⟨𝜎
5

, 𝜎
6

⟩ and ⟨𝜎
3

, 𝜎
8

⟩ ≅ ⟨𝜎
4

, 𝜎
7

⟩ have nine ele-
ments. Semigroups ⟨𝜎

2

, 𝜎
3

, 𝜎
8

⟩ ≅ ⟨𝜎
4

, 𝜎
5

, 𝜎
7

⟩, ⟨𝜎
2

, 𝜎
4

, 𝜎
7

⟩ ≅

⟨𝜎
3

, 𝜎
5

, 𝜎
8

⟩, and ⟨𝜎
2

, 𝜎
5

, 𝜎
6

⟩ have ten elements. Semigroups
⟨𝜎
2

, 𝜎
3

, 𝜎
5

⟩ ≅ ⟨𝜎
2

, 𝜎
4

, 𝜎
5

⟩ have eleven elements. In the end,
the semigroup ⟨𝜎

3

, 𝜎
4

⟩ has twelve elements.
Thus, the semigroup ⟨𝜎

3

, 𝜎
4

⟩ includes fifty-seven semi-
groups, amongwhich there are ten groups, fourteenmonoids,
and also forty-three semigroups which are not monoids.
These semigroups consist of twenty-eight types of noniso-
morphic semigroups, two non-isomorphism types of groups,
two non-isomorphism types of monoids which are not
groups, and twenty four non-isomorphism types of semi-
groups which are not monoids.

9. Viewing Semigroups Contained in M

9.1. Descriptive Data on Semigroups which Are Contained in
M. There are one hundred eighteen, that is, 118 = 2 ⋅ 57 +
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4, semigroups which are contained in M. These are fifty-
seven semigroups contained in ⟨𝜎

3

, 𝜎
4

⟩, fifty-seven monoids
formed by adding 𝜎

0

to a semigroup contained in ⟨𝜎
3

, 𝜎
4

⟩,
groups ⟨𝜎

0

⟩, ⟨𝜎
1

⟩, and monoids ⟨𝜎
1

, 𝜎
6

⟩ = M
1

and ⟨𝜎
1

, 𝜎
2

⟩ =

M.
There are fifty-six types of nonisomorphic semigroups

in M. These are twenty-eight non-isomorphism types of
semigroups contained in ⟨𝜎

3

, 𝜎
4

⟩, twenty-six types of non-
isomorphic monoids formed by adding 𝜎

0

to a semigroup
contained in ⟨𝜎

3

, 𝜎
4

⟩, and alsoM
1

andM. Indeed, adding 𝜎
0

to a semigroup which is not a monoid we obtain a monoid.
In this way, we get twenty-four types of nonisomorphic
monoids. Adding 𝜎

0

to a monoid contained in ⟨𝜎
3

, 𝜎
4

⟩ we
get two new non-isomorphism types ofmonoids. But, adding
𝜎
0

to a group contained in ⟨𝜎
3

, 𝜎
4

⟩ we get no new type of
monoid, since we get a monoid isomorphic to ⟨𝜎

2

, 𝜎
10

⟩ or
⟨𝜎
2

, 𝜎
6

⟩. The other two types areM
1

andM.

9.2. Semigroups which Are Not Monoids. Below we have
reproduced, using the smallest number of generators and
the dictionary order, a list of all 43 semigroups, which are
included in theM as follows:

(1) ⟨𝜎
2

, 𝜎
3

⟩ = {𝜎
2

, 𝜎
3

, 𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

}.
(2) ⟨𝜎

2

, 𝜎
3

, 𝜎
5

⟩ = {𝜎
2

, 𝜎
3

, 𝜎
5

, 𝜎
6

, . . . , 𝜎
13

}.
(3) ⟨𝜎

2

, 𝜎
3

, 𝜎
8

⟩ = ⟨𝜎
2

, 𝜎
3

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
3

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
3

,

𝜎
13

⟩ = {𝜎
2

, 𝜎
3

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
(4) ⟨𝜎

2

, 𝜎
4

⟩ = {𝜎
2

, 𝜎
4

, 𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

}.
(5) ⟨𝜎

2

, 𝜎
4

, 𝜎
5

⟩ = {𝜎
2

, 𝜎
4

, 𝜎
5

, . . . , 𝜎
13

}.
(6) ⟨𝜎

2

, 𝜎
4

, 𝜎
7

⟩ = ⟨𝜎
2

, 𝜎
4

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
4

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
4

,

𝜎
13

⟩ = {𝜎
2

, 𝜎
4

, 𝜎
6

, 𝜎
7

. . . , 𝜎
13

}.
(7) ⟨𝜎

2

, 𝜎
5

⟩ = {𝜎
2

, 𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}.
(8) ⟨𝜎

2

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
2

, 𝜎
5

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
5

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
5

,

𝜎
12

⟩ = {𝜎
2

, 𝜎
5

, 𝜎
6

, . . . , 𝜎
13

}.
(9) ⟨𝜎

2

, 𝜎
7

⟩ = {𝜎
2

, 𝜎
7

, 𝜎
10

}.
(10) ⟨𝜎

2

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
8

, 𝜎
10

}.
(11) ⟨𝜎

2

, 𝜎
9

⟩ = ⟨𝜎
2

, 𝜎
6

, 𝜎
13

⟩ = ⟨𝜎
2

, 𝜎
7

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
8

,

𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
11

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
11

, 𝜎
13

⟩ = ⟨𝜎
2

, 𝜎
12

,

𝜎
13

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
(12) ⟨𝜎

2

, 𝜎
11

⟩ = ⟨𝜎
2

, 𝜎
6

, 𝜎
7

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

}.
(13) ⟨𝜎

2

, 𝜎
12

⟩ = ⟨𝜎
2

, 𝜎
6

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

}.
(14) ⟨𝜎

2

, 𝜎
13

⟩ = ⟨𝜎
2

, 𝜎
7

, 𝜎
8

⟩ = {𝜎
2

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}.
(15) ⟨𝜎

3

⟩ = {𝜎
3

, 𝜎
7

, 𝜎
11

}.
(16) ⟨𝜎

3

, 𝜎
4

⟩ = {𝜎
2

, 𝜎
3

, . . . , 𝜎
13

}.
(17) ⟨𝜎

3

, 𝜎
5

⟩ = {𝜎
3

, 𝜎
5

, 𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

}.
(18) ⟨𝜎

3

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
3

, 𝜎
5

, 𝜎
8

⟩ = ⟨𝜎
3

, 𝜎
5

, 𝜎
10

⟩ = ⟨𝜎
3

, 𝜎
5

,

𝜎
12

⟩ = {𝜎
3

, 𝜎
5

, 𝜎
6

, . . . , 𝜎
13

}.
(19) ⟨𝜎

3

, 𝜎
6

⟩ = ⟨𝜎
3

, 𝜎
10

⟩ = {𝜎
3

, 𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

}.
(20) ⟨𝜎

3

, 𝜎
8

⟩ = ⟨𝜎
3

, 𝜎
12

⟩ = {𝜎
3

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
(21) ⟨𝜎

3

, 𝜎
9

⟩ = ⟨𝜎
3

, 𝜎
13

⟩ = {𝜎
3

, 𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

}.
(22) ⟨𝜎

4

⟩ = {𝜎
4

, 𝜎
8

, 𝜎
12

}.

(23) ⟨𝜎
4

, 𝜎
5

⟩ = {𝜎
4

, 𝜎
5

, 𝜎
8

, 𝜎
9

, 𝜎
12

, 𝜎
13

}.
(24) ⟨𝜎

4

, 𝜎
5

, 𝜎
6

⟩ = ⟨𝜎
4

, 𝜎
5

, 𝜎
7

⟩ = ⟨𝜎
4

, 𝜎
5

, 𝜎
10

⟩ = ⟨𝜎
4

, 𝜎
5

,

𝜎
11

⟩ = {𝜎
4

, 𝜎
5

, . . . , 𝜎
13

}.
(25) ⟨𝜎

4

, 𝜎
6

⟩ = ⟨𝜎
4

, 𝜎
10

⟩ = {𝜎
4

, 𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

}.
(26) ⟨𝜎

4

, 𝜎
7

⟩ = ⟨𝜎
4

, 𝜎
11

⟩ = {𝜎
4

, 𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
(27) ⟨𝜎

4

, 𝜎
9

⟩ = ⟨𝜎
4

, 𝜎
13

⟩ = {𝜎
4

, 𝜎
8

, 𝜎
9

, 𝜎
12

, 𝜎
13

}.
(28) ⟨𝜎

5

, 𝜎
6

⟩ = ⟨𝜎
5

, 𝜎
7

, 𝜎
12

⟩ = ⟨𝜎
5

, 𝜎
8

, 𝜎
11

⟩ = ⟨𝜎
5

, 𝜎
9

,

𝜎
10

⟩ = ⟨𝜎
5

, 𝜎
10

, 𝜎
11

⟩ = ⟨𝜎
5

, 𝜎
10

, 𝜎
12

⟩ = ⟨𝜎
5

, 𝜎
11

,

𝜎
12

⟩ = {𝜎
5

, 𝜎
6

, . . . , 𝜎
13

}.
(29) ⟨𝜎

5

, 𝜎
7

⟩ = {𝜎
5

, 𝜎
7

, 𝜎
13

}.
(30) ⟨𝜎

5

, 𝜎
8

⟩ = {𝜎
5

, 𝜎
8

, 𝜎
13

}.
(31) ⟨𝜎

5

, 𝜎
10

⟩ = ⟨𝜎
5

, 𝜎
7

, 𝜎
8

⟩ = {𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}.
(32) ⟨𝜎

5

, 𝜎
11

⟩ = ⟨𝜎
5

, 𝜎
7

, 𝜎
9

⟩ = {𝜎
5

, 𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

}.
(33) ⟨𝜎

5

, 𝜎
12

⟩ = ⟨𝜎
5

, 𝜎
8

, 𝜎
9

⟩ = {𝜎
5

, 𝜎
8

, 𝜎
9

, 𝜎
12

, 𝜎
13

}.
(34) ⟨𝜎

6

, 𝜎
7

⟩ = ⟨𝜎
6

, 𝜎
11

⟩ = ⟨𝜎
10

, 𝜎
11

⟩ = {𝜎
6

, 𝜎
7

, 𝜎
10

, 𝜎
11

}.
(35) ⟨𝜎

6

, 𝜎
8

⟩ = ⟨𝜎
6

, 𝜎
12

⟩ = ⟨𝜎
10

, 𝜎
12

⟩ = {𝜎
6

, 𝜎
8

, 𝜎
10

, 𝜎
12

}.
(36) ⟨𝜎

6

, 𝜎
9

⟩ = ⟨𝜎
6

, 𝜎
13

⟩ = ⟨𝜎
7

, 𝜎
12

⟩ = ⟨𝜎
8

, 𝜎
11

⟩ = ⟨𝜎
9

,

𝜎
10

⟩ = ⟨𝜎
11

, 𝜎
12

⟩ = ⟨𝜎
6

, 𝜎
7

, 𝜎
8

⟩ = ⟨𝜎
7

, 𝜎
8

, 𝜎
9

⟩ =
⟨𝜎
10

, 𝜎
11

, 𝜎
13

⟩ = ⟨𝜎
10

, 𝜎
12

, 𝜎
13

⟩ = {𝜎
6

, 𝜎
7

, . . . , 𝜎
13

}.
(37) ⟨𝜎

7

, 𝜎
8

⟩ = {𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

}.
(38) ⟨𝜎

7

, 𝜎
9

⟩ = {𝜎
7

, 𝜎
9

, 𝜎
11

, 𝜎
13

}.
(39) ⟨𝜎

7

, 𝜎
10

⟩ = {𝜎
7

, 𝜎
10

}.
(40) ⟨𝜎

7

, 𝜎
13

⟩ = {𝜎
7

, 𝜎
13

}.
(41) ⟨𝜎

8

, 𝜎
9

⟩ = {𝜎
8

, 𝜎
9

, 𝜎
12

, 𝜎
13

}.
(42) ⟨𝜎

8

, 𝜎
10

⟩ = {𝜎
8

, 𝜎
10

}.
(43) ⟨𝜎

8

, 𝜎
13

⟩ = {𝜎
8

, 𝜎
13

}.

9.3. Isomorphism Types of Semigroups Contained in M. Sys-
tematize the list of all isomorphism types of semigroups
contained in themonoidM. Isomorphisms, which are restric-
tions of the isomorphism A, will be regarded as self-evident,
and therefore they will not be commented on.

(i) The monoid M contains 12 groups with 2 isomor-
phism types. These are 7 one-element groups and 5
two-element groups.

(ii) ThemonoidM contains 8 two-element monoids with
2 isomorphism types. These are 𝜎

0

added to 6 one-
element groups and ⟨𝜎

2

, 𝜎
10

⟩ ≅ ⟨𝜎
5

, 𝜎
13

⟩. Also, it
contains 4 two-element semigroups, not monoids,
with 2 isomorphism types. These are ⟨𝜎

7

, 𝜎
10

⟩ ≅

⟨𝜎
8

, 𝜎
13

⟩ and ⟨𝜎
8

, 𝜎
10

⟩ ≅ ⟨𝜎
7

, 𝜎
13

⟩.
(iii) The monoid M contains 12 three-element monoids

with 5 isomorphism types. These are 𝜎
0

added
to 4 two-element groups and also ⟨𝜎

0

, 𝜎
2

, 𝜎
10

⟩ ≅

⟨𝜎
0

, 𝜎
5

, 𝜎
13

⟩, ⟨𝜎
0

, 𝜎
7

, 𝜎
10

⟩ ≅ ⟨𝜎
0

, 𝜎
8

, 𝜎
13

⟩,
⟨𝜎
0

, 𝜎
8

, 𝜎
10

⟩ ≅ ⟨𝜎
0

, 𝜎
7

, 𝜎
13

⟩, and ⟨𝜎
2

, 𝜎
6

⟩ ≅ ⟨𝜎
5

, 𝜎
9

⟩.
(iv) The monoidM contains 6 three-element semigroups,

not monoids, with 3 isomorphism types. These are
⟨𝜎
2

, 𝜎
7

⟩ ≅ ⟨𝜎
5

, 𝜎
8

⟩, ⟨𝜎
2

, 𝜎
8

⟩ ≅ ⟨𝜎
5

, 𝜎
7

⟩, and ⟨𝜎
3

⟩ ≅

⟨𝜎
4

⟩.
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(v) The monoid M contains 8 four-element monoids,
each contains 𝜎

0

, with 4 isomorphism types. These
are semigroups from two preceding items that can be
substantially extended by 𝜎

0

.
(vi) The monoid M contains 5 four-element semigroups,

not monoids, with 3 isomorphism types. These are
⟨𝜎
6

, 𝜎
7

⟩ ≅ ⟨𝜎
8

, 𝜎
9

⟩, ⟨𝜎
6

, 𝜎
8

⟩ ≅ ⟨𝜎
7

, 𝜎
9

⟩ and ⟨𝜎
7

, 𝜎
8

⟩.
These semigroups extended by 𝜎

0

yield 5 monoids, all
which consist of five elements, with 3 isomorphism
types.

(vii) ThemonoidM contains 10 five-element semigroups—
not monoids, with 5 isomorphism types. These are
⟨𝜎
2

, 𝜎
11

⟩ ≅ ⟨𝜎
5

, 𝜎
12

⟩, ⟨𝜎
2

, 𝜎
12

⟩ ≅ ⟨𝜎
5

, 𝜎
11

⟩, ⟨𝜎
2

, 𝜎
13

⟩ ≅

⟨𝜎
5

, 𝜎
10

⟩, ⟨𝜎
3

, 𝜎
6

⟩ ≅ ⟨𝜎
4

, 𝜎
9

⟩, and ⟨𝜎
3

, 𝜎
9

⟩ ≅ ⟨𝜎
4

, 𝜎
6

⟩.
These semigroups extended by𝜎

0

yield 10monoids, all
of which consist of six elements, with 5 isomorphism
types. We get 10 new isomorphism types, since the
semigroups are distinguished by semigroups ⟨𝜎

3

⟩

and ⟨𝜎
4

⟩, and by nonisomorphic semigroups ⟨𝜎
6

, 𝜎
7

⟩,
⟨𝜎
6

, 𝜎
8

⟩, and ⟨𝜎
7

, 𝜎
8

⟩.
(viii) The monoid M contains 5 six-element semigroups,

not monoids, with 3 isomorphism types. These are
⟨𝜎
2

, 𝜎
3

⟩ ≅ ⟨𝜎
4

, 𝜎
5

⟩, ⟨𝜎
2

, 𝜎
4

⟩ ≅ ⟨𝜎
3

, 𝜎
5

⟩, and ⟨𝜎
2

, 𝜎
5

⟩.
These semigroups extended by 𝜎

0

yield 5 monoids,
all of which consist of seven elements, with 3 isomor-
phism types. We get 6 new isomorphism types, since
the semigroups are distinguished by non isomorphic
semigroups ⟨𝜎

6

, 𝜎
7

⟩, ⟨𝜎
6

, 𝜎
8

⟩, and ⟨𝜎
7

, 𝜎
8

⟩.
(ix) ThemonoidM contains no seven-element semigroup,

not a monoid, no eight-element monoid and the
only semigroup ⟨𝜎

6

, 𝜎
9

⟩ with exactly eight elements
and the only monoid ⟨𝜎

0

, 𝜎
6

, 𝜎
9

⟩ with exactly nine
elements.

(x) The monoid M contains 4 nine-element semigroups,
not monoids, with 2 isomorphism types. These are
⟨𝜎
2

, 𝜎
9

⟩ ≅ ⟨𝜎
5

, 𝜎
6

⟩ and ⟨𝜎
3

, 𝜎
8

⟩ ≅ ⟨𝜎
4

, 𝜎
7

⟩. The
semigroup ⟨𝜎

2

, 𝜎
9

⟩ does not contain a semigroup
isomorphic to ⟨𝜎

3

⟩, hence it is not isomorphic to
⟨𝜎
3

, 𝜎
8

⟩. These semigroups extended by 𝜎
0

yield 4
monoids, all of which consist of ten elements, with 2
isomorphism types.

(xi) The monoid M contains 6 ten-element semigroups,
not monoids, with 4 isomorphism types.
These are ⟨𝜎

1

, 𝜎
6

⟩, ⟨𝜎
2

, 𝜎
3

, 𝜎
8

⟩ ≅ ⟨𝜎
4

, 𝜎
5

, 𝜎
6

⟩,
⟨𝜎
2

, 𝜎
4

, 𝜎
7

⟩ ≅ ⟨𝜎
3

, 𝜎
5

, 𝜎
6

⟩, and ⟨𝜎
2

, 𝜎
5

, 𝜎
6

⟩. These
semigroups (except ⟨𝜎

1

, 𝜎
6

⟩) extended by 𝜎
0

yield 5
monoids, all of which consist of ten elements, with
3 isomorphism types. We get 6 new isomorphism
types, since the semigroups are distinguished by
not isomorphic semigroups ⟨𝜎

2

, 𝜎
3

⟩, ⟨𝜎
2

, 𝜎
4

⟩, and
⟨𝜎
2

, 𝜎
5

⟩.
(xii) The monoid M contains 2 isomorphic semigroups,

not monoids, which consist of 11 elements, that is,
⟨𝜎
2

, 𝜎
3

, 𝜎
5

⟩ ≅ ⟨𝜎
2

, 𝜎
4

, 𝜎
5

⟩.These semigroups extended
by 𝜎
0

yield 2 isomorphic monoids, which consist
of 12 elements. The monoid M contains no larger
semigroup with the exception of itself.

10. Cancellation Rules Motivated by Some
Topological Properties

10.1. Some Consequences of the Axiom 0 = 0−. So far, we used
only the following relations (above named cancellation rules):
𝜎
2

∘ 𝜎
2

= 𝜎
2

, 𝜎
1

∘ 𝜎
1

= 𝜎
0

, 𝜎
2

∘ 𝜎
12

= 𝜎
6

, and 𝜎
2

∘ 𝜎
13

= 𝜎
7

.
When one assumes𝑋 ̸= 0 = 0

−, then

𝑋 = 𝜎
0

(𝑋) = 𝜎
2

(𝑋) = 𝜎
5

(𝑋) = 𝜎
7

(𝑋)

= 𝜎
8

(𝑋) = 𝜎
10

(𝑋) = 𝜎
13

(𝑋) ,

0 = 𝜎
1

(𝑋) = 𝜎
3

(𝑋) = 𝜎
4

(𝑋) = 𝜎
6

(𝑋)

= 𝜎
9

(𝑋) = 𝜎
11

(𝑋) = 𝜎
12

(𝑋) .

(18)

Using the substitution 𝐴 󳨃→ 𝐴
𝑐, one obtains equiv-

alent relations between operations from the set {𝜎
1

, 𝜎
3

,

𝜎
4

, 𝜎
6

, 𝜎
9

, 𝜎
11

, 𝜎
12

}, and conversely. Therefore, cancellation
rules are topologically reasonable only between the opera-
tions from the monoid as follows:

⟨𝜎
0

, 𝜎
2

, 𝜎
5

⟩ = {𝜎
0

, 𝜎
2

, 𝜎
5

, 𝜎
7

, 𝜎
8

, 𝜎
10

, 𝜎
13

} . (19)

Chapman, see [3], considered properties of subsets with
respect to such relations. Below, we are going to identify
relations that are determined by some topological spaces;
compare [10, 11].

10.2. The Relation 𝜎0 = 𝜎2. If a topological space 𝑋 is
discrete, then there exist two Kuratowski operation, only.
These are 𝜎

0

and 𝜎
1

. So, themonoid of Kuratowski operations
reduced to the group ⟨𝜎

1

⟩.
The relation 𝜎

0

= 𝜎
2

is equivalent to any relation 𝜎
0

=

𝜎
𝑖

, where 𝑖 ∈ {5, 7, 8, 10, 13}. Any such relation implies that
every subset of 𝑋 has to be closed and open; that is, 𝑋 has
to be discrete. However, one can check these using (only) the
facts that 𝜎

1

is an involution and 𝜎
2

is an idempotent and the
cancellation rules, that is, the Cayley table forM. So, 𝜎

0

= 𝜎
2

follows

𝜎
0

= 𝜎
2

= 𝜎
5

= 𝜎
7

= 𝜎
8

= 𝜎
10

= 𝜎
13

. (20)

10.3. The Relation 𝜎2 = 𝜎5. Topologically, 𝜎2 = 𝜎
5

means
that 𝑋 must be discrete. This is so because 𝐴𝑐−𝑐 ⊆ 𝐴 ⊆ 𝐴

−

for any 𝐴 ⊆ 𝑋.

10.4. The Relation 𝜎2 = 𝜎7. Topologically, the relation 𝜎2 =
𝜎
7

implies 𝜎
0

= 𝜎
2

. But it requires the use of topology axioms
0 = 0
− and 𝐶− ∪ 𝐵− = (𝐶 ∪ 𝐵)− for each 𝐶 and 𝐵.

Lemma 5. For any topological space 𝜎
2

= 𝜎
7

implies 𝜎
2

= 𝜎
8

.

Proof. If 𝜎
2

= 𝜎
7

, then 𝐴 ̸= 0 ⇒ 𝐴
𝑐−𝑐

̸= 0, for any 𝐴 ⊆ 𝑋.
Indeed, if 𝐴𝑐−𝑐 = 0, then 𝜎

7

(𝐴) = 0
−

= 0. Since 𝐴 ̸= 0, then
𝜎
2

(𝐴) ̸= 0. Hence 𝜎
2

(𝐴) ̸= 𝜎
7

(𝐴), a contradiction.
The axiom 𝐶

−

∪ 𝐵
−

= (𝐶 ∪ 𝐵)
− implies that always

(𝐴
−

∩ 𝐴
−𝑐−

)
𝑐−𝑐

= 0. (21)

Thus, the additional assumption 𝜎
2

= 𝜎
7

follows that always
𝐴
−

∩ 𝐴
−𝑐−

= 0. Therefore, always 𝐴−𝑐− = 𝐴−𝑐, but this means
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that any closed set has to be open; in other words, 𝜎
2

= 𝜎
8

.

Proposition 6. For any topological space 𝜎
2

= 𝜎
7

implies 𝜎
0

=

𝜎
2

.

Proof. But the relation 𝜎
2

= 𝜎
7

is equivalent with 𝜎
5

= 𝜎
8

. By
Lemma 5, we get 𝜎

2

= 𝜎
5

. Finally 𝜎
0

= 𝜎
2

.

The relation 𝜎
2

= 𝜎
7

has interpretation without the axiom
0 = 0
−. Indeed, suppose𝑋 = {𝑎, 𝑏}. Put

𝜎
2

(0) = {𝑎} = 𝜎
2

({𝑎}) , 𝑋 = 𝜎
2

(𝑋) = 𝜎
2

({𝑏}) . (22)

Then, check that 𝜎
2

= 𝜎
7

and

𝜎
8

(0) = 𝜎
5

({𝑎}) = 𝜎
4

({𝑏}) = 𝜎
1

(𝑋) = 0; (23)

in other words, 𝜎
2

= 𝜎
7

and 𝜎
2

̸= 𝜎
8

. However, 𝜎
2

= 𝜎
7

is
equivalent to 𝜎

5

= 𝜎
8

.
This relation implies 𝜎

2

= 𝜎
7

= 𝜎
10

, 𝜎
5

= 𝜎
8

= 𝜎
13

,
𝜎
3

= 𝜎
6

= 𝜎
11

, and 𝜎
4

= 𝜎
9

= 𝜎
12

. For this interpretation,
the monoidM/(𝜎

2

= 𝜎
7

), consisting of Kuratowski operation
over a such 𝑋, has six elements, only. In M/(𝜎

2

= 𝜎
7

), there
are relations covered by the following proposition, only.

Proposition 7. For any monoid with the Cayley table as for
M, the relation 𝜎

2

= 𝜎
7

implies

(i) 𝜎
2

= 𝜎
7

= 𝜎
10

= 𝜎
7

∘ 𝜎
2

;
(ii) 𝜎
5

= 𝜎
1

∘𝜎
2

∘𝜎
1

= 𝜎
1

∘𝜎
7

∘𝜎
1

= 𝜎
8

= 𝜎
5

∘𝜎
2

= 𝜎
5

∘𝜎
7

=

𝜎
13

;
(iii) 𝜎

3

= 𝜎
2

∘ 𝜎
1

= 𝜎
7

∘ 𝜎
1

= 𝜎
6

= 𝜎
10

∘ 𝜎
1

= 𝜎
11

;
(iv) 𝜎
4

= 𝜎
1

∘ 𝜎
2

= 𝜎
1

∘ 𝜎
7

= 𝜎
9

= 𝜎
1

∘ 𝜎
10

= 𝜎
12

.

Thus, the Cayley table does not contain the complete
information resulting from the axioms of topology.

10.5. The Relation 𝜎2 = 𝜎8. Topologically, the relation 𝜎2 =
𝜎
8

means that any closed set is open, too.Thus, if𝑋 = {𝑎, 𝑏, 𝑐}

is a topological space with the open sets 𝑋, 0, {𝑎, 𝑏}, and {𝑐},
thenM/(𝜎

2

= 𝜎
8

) is the monoid of all Kuratowski operations
over 𝑋. Relations 𝜎

2

= 𝜎
8

and 𝜎
5

= 𝜎
7

are equivalent. They
imply relations: 𝜎

2

= 𝜎
8

= 𝜎
10

, 𝜎
5

= 𝜎
7

= 𝜎
13

, 𝜎
3

= 𝜎
9

= 𝜎
11

,
and 𝜎

4

= 𝜎
6

= 𝜎
12

. The permutation

(
𝜎
0

𝜎
1

𝜎
2

𝜎
3

𝜎
4

𝜎
5

𝜎
0

𝜎
1

𝜎
5

𝜎
4

𝜎
3

𝜎
2

) (24)

determines the isomorphism between monoidsM/(𝜎
2

= 𝜎
7

)

andM/(𝜎
2

= 𝜎
8

).

10.6. The Relations 𝜎2 = 𝜎10 and 𝜎2 = 𝜎13. Topologically,
the relation 𝜎

2

= 𝜎
8

means that any nonempty closed set has
nonempty interior. For each 𝐴, the closed set 𝐴− ∩ 𝐴−𝑐− has
empty interior, so the relation 𝜎

2

= 𝜎
10

implies that 𝐴−𝑐 is
closed. Hence, any open set has to be closed, so it implies
𝜎
2

= 𝜎
8

. The relation 𝜎
2

= 𝜎
13

follows that each closed set
has to be open, so it implies 𝜎

2

= 𝜎
8

, too.

10.7.The Relation 𝜎7 = 𝜎8. Using the Cayley table forM, one
can check that the relations 𝜎

7

= 𝜎
8

and 𝜎
10

= 𝜎
13

are
equivalent. Each of them gives 𝜎

7

= 𝜎
8

= 𝜎
10

= 𝜎
13

and
𝜎
6

= 𝜎
9

= 𝜎
11

= 𝜎
12

. If 𝑋 = {𝑎, 𝑏} is a topological space with
the open sets𝑋, 0, and {𝑎}, thenM/(𝜎

7

= 𝜎
8

) is themonoid of
all Kuratowski operations over𝑋 and consists of 8 elements.

10.8. The Relation 𝜎7 = 𝜎10. Using the Cayley table for M,
one can check that the relations 𝜎

7

= 𝜎
10

, 𝜎
8

= 𝜎
13

, 𝜎
6

= 𝜎
11

,
and 𝜎

9

= 𝜎
12

are equivalent. If 𝑋 is a sequence converging to
the point 𝑔 and 𝑔 ∈ 𝑋, thenM/(𝜎

7

= 𝜎
10

) is the monoid of all
Kuratowski operations over𝑋 and consists of 10 elements.

10.9. The Relation 𝜎7 = 𝜎13. Using the Cayley table forM,
one can check that the relations 𝜎

7

= 𝜎
13

and 𝜎
8

= 𝜎
10

are
equivalent. Also 𝜎

6

= 𝜎
12

and 𝜎
9

= 𝜎
11

. These relations give
the monoid with the following Cayley table, where the row
and column marked by the identity are omitted:

𝜎
1

𝜎
2

𝜎
3

𝜎
4

𝜎
5

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
1

𝜎
0

𝜎
4

𝜎
5

𝜎
2

𝜎
3

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
2

𝜎
3

𝜎
2

𝜎
3

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
3

𝜎
2

𝜎
6

𝜎
7

𝜎
2

𝜎
3

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
4

𝜎
5

𝜎
4

𝜎
5

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
5

𝜎
4

𝜎
8

𝜎
9

𝜎
4

𝜎
5

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
7

𝜎
6

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
6

𝜎
7

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
9

𝜎
8

𝜎
6

𝜎
7

𝜎
8

𝜎
9

𝜎
8

𝜎
9

𝜎
6

𝜎
7

(25)

If a space𝑋 is extremally disconnected, then the closures
of open sets are open; compare [2, page 452]. It follows that
𝜎
6

= 𝜎
12

. The space 𝑋 = {𝑎, 𝑏} with the open sets 𝑋, 0,
and {𝑎} is extremally disconnected. But it contains a one-
element open and dense set {𝑎}, and it follows that 𝜎

7

= 𝜎
8

.
Similar is for the space 𝛽𝑁; see [2, pages 228 and 453] to
find the definition and properties of 𝛽𝑁. There are Hausdorff
extremally disconnected spaces which are dense in itself. For
example, the Stone space of the complete Boolean algebra of
all regular closed subsets of the unit interval, compare [12].
For such spaces 𝜎

7

̸= 𝜎
8

and 𝜎
7

= 𝜎
13

. To see this, suppose a
Hausdorff 𝑋 is extremally disconnected and dense in itself.
Let 𝑋 = 𝑈 ∪ 𝑉 ∪ 𝑊, where sets 𝑈, 𝑉, and𝑊 are closed and
open. Consider a set 𝐴 = 𝐴𝑐−𝑐 ∪ 𝐵 ∪ 𝐶, such that

(i) 𝐶𝑐−𝑐 = 0 and 𝐶− = 𝑊;
(ii) 0 ̸= 𝐵 ⊆ 𝑉 and 𝐵−𝑐−𝑐 = 0;
(iii) 𝑈 = 𝐴𝑐−𝑐− ̸= 𝐴

𝑐−𝑐.
Then check that

(i) 𝜎
0

(𝐴) = 𝐴 and 𝜎
1

(𝐴) = 𝑋 \ (𝐴
𝑐−𝑐

∪ 𝐵 ∪ 𝐶);
(ii) 𝜎
2

(𝐴) = 𝑈 ∪ 𝐵
−

∪𝑊 and 𝜎
3

(𝐴) = 𝑋 \ 𝐴
𝑐−𝑐;

(iii) 𝜎
4

(𝐴) = 𝑉 \ 𝐵
− and 𝜎

5

(𝐴) = 𝐴
𝑐−𝑐;

(iv) 𝜎
6

(𝐴) = 𝜎
12

(𝐴) = 𝑉 and 𝜎
7

(𝐴) = 𝜎
13

(𝐴) = 𝑈;
(v) 𝜎
8

(𝐴) = 𝜎
10

(𝐴) = 𝑈 ∪ 𝑊 and 𝜎
9

(𝐴) = 𝜎
11

(𝐴) =

𝑉 ∪ 𝑊.
Hence we have that 𝜎

7

̸= 𝜎
8

. Note that, if𝑊 = 0, then 𝜎
7

(𝐴) =

𝜎
8

(𝐴). This is the case of subsets of 𝛽𝑁.
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