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With the proliferation of smartphones and the usage of the smartphone apps, privacy preservation has become an important issue.
The existing privacy preservation approaches for smartphones usually have less efficiency due to the absent consideration of the
active defense policies and temporal correlations between contexts related to users. In this paper, through modeling the temporal
correlations among contexts, we formalize the privacy preservation problem to an optimization problem and prove its correctness
and the optimality through theoretical analysis. To further speed up the running time, we transform the original optimization
problem to an approximate optimal problem, a linear programming problem. By resolving the linear programming problem, an
efficient context-aware privacy preserving algorithm (CAPP) is designed, which adopts active defense policy and decides how
to release the current context of a user to maximize the level of quality of service (QoS) of context-aware apps with privacy
preservation. The conducted extensive simulations on real dataset demonstrate the improved performance of CAPP over other
traditional approaches.

1. Introduction

Nowadays, smartphones have been greatly proliferated and
smartphone applications (apps) have been widely developed.
Specifically, context-aware apps greatly facilitate people as
context-aware personalized services related to people’ con-
texts have been provided. In fact, a variety of sensors (e.g.,
GPS, microphone, accelerometers, magnetometer, light, and
proximity) embedded in smartphones have the capability to
measure the surroundings and the status related to the smart-
phone owner and then provide related data to context-aware
apps.These sensory data can be exploited to infer the context
or the status about a user. For example, the location informa-
tion of a user can be reported by GPS data, the transportation
state (e.g., walking, running, or standing) can be evaluated by
the accelerometers, and the voice and scene can be recorded
by microphone and camera, respectively. Furthermore, the

inferred context can be further analyzed by context-aware
apps for providing context-aware personalized services.
There exist a variety of context-aware apps, of which GeoRe-
minder can notify a user when she/he enters particular loca-
tions, HealthMonitor can record the amount of exercise of a
user in each day, and PhoneWise can smartlymute the phone.

While people’s experience and convenience are enhanced
by context-aware apps, they raise serious privacy issues [1–
3]. Specifically, those untrusted context-aware apps may infer
the sensitive context related information about a user and
then disclose it to a third party for commercial or malicious
intent, thus disclosing user’s privacy [4]. In fact, due to the
convenient services and functionalities provided by context-
aware apps, most users would not refuse to allow these apps
to access these related sensory data. Therefore, an increasing
demand arises for reducing the risk of context-privacy disclo-
sure while providing the context related services.
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However, context-privacy preservation for smartphones
is not an easy task because there exist high temporal corre-
lations among human contexts and behaviors in daily life,
and these temporal correlations can be used by adversaries
to infer the hidden sensitive information. In fact, temporal
correlations among human contexts can be modeled well
with a Markov chain [5, 6]. By using the knowledge of
the temporal correlations between contexts and the current
context that a user dwells in, the probability that the user
being in any context in the past or in future can be inferred.
Thus, the naive approach, in which all the sensitive contexts
are simply hidden or suppressed while leaving the others
released, would fail to protect user sensitive context due to the
absent consideration of the temporal correlations between
user contexts.

To cope with the temporal correlations between contexts,
Götz et al. [7] proposed MaskIt, in which not only sensi-
tive contexts but also some nonsensitive contexts may be
suppressed to decrease the temporal correlations between
contexts. Evidently, sincemore contexts are hidden inMaskIt,
the level of quality of services (QoS) provided by context-
aware smartphone apps degrades. In fact, the hiding-sensitive
policy adopts passive defense, which unavoidably discloses
some knowledge to adversaries. For example, an adversary
is sure that the released contexts are always real no matter
whether the hiding ones are sensitive or not. Recently, a
few active defense policies are proposed [8–10]. FakeMask,
proposed in [8], first introduces a deception policy with
the consideration of decreasing the temporal correlations
between contexts. In FakeMask, the released contexts may be
not real but still have somemeaning (i.e., from the history, the
user may have a probability being in that context at that time)
to confuse the adversaries. With such a deception policy,
the released number of real contexts increases greatly and
then leads to a better service quality for users. However, in
FakeMask, the brute-force search for the optimal solution
consumes huge computation resources, thus restricting its
applications on smartphones. Therefore, it is necessary and
important to propose an efficient lightweight privacy preser-
vation approach with the temporal correlations between user
contexts taken into consideration.

In this paper, we first model the temporal correlations
between user contexts with a heterogeneous Markov model
and then formalize the context-privacy problem for smart-
phones to an optimization problem followed with correct-
ness proof. Then, in order to speed up the running time,
we further transform the original optimization problem to
a near optimal problem, a linear programming problem.
Moreover, by resolving the linear programming problem,
we design an efficient context-aware privacy preserving
algorithm (CAPP), which adopts active defense policy, and
can decide how to release the current context of a user to
maximize the level of quality of service (QoS) of context-
aware apps with privacy preservation. Finally, we conduct
extensive simulations to evaluate the algorithm performance,
and the simulation results demonstrate the effectiveness and
efficiency of the proposed algorithm. In summary, the main
contributions of this paper are threefold. First, we formal-
ize the context-privacy problem with the consideration of

existence of temporal correlations between user contexts to
an efficient optimization problem and prove its correctness
and the optimality. Second, to speed up the running time
further, we transform the original optimization problem
to an approximate optimal problem, a linear programming
problem. By resolving the linear programming problem, an
efficient context-aware privacy preserving algorithm (CAPP)
is designed, which adopts active defense policy and decides
how to release the current context of the user tomaximize the
level of quality of service (QoS) of context-aware apps with
privacy preservation. Finally, we conduct extensive evalua-
tions on real smartphone context traces to demonstrate the
effectiveness and efficiency of the proposed CAPP compared
with the traditional approaches.

The rest of the paper is organized as follows. Section 2
introduces the related works. Section 3 presents the models
and preliminaries, followed by the problem formulation and
the proposed privacy preserving algorithm in Section 4.
Section 5 illustrates the performance evaluation. Finally,
Section 6 concludes the paper.

2. Related Works

With the rapidly growing popularity of smartphones as well
as popularmobile social applications, various kinds ofmobile
smartphone apps are developed to provide context-aware
services for users. Meanwhile, individual privacy issues on
smartphones are increasingly receiving attentions due to the
risk of disclosure of user’s privacy sensitive information.
Various approaches have been proposed to protect users’
sensitive information in location-based services (LBSs) and
participatory sensing applications [11]. In fact, most previous
privacy protection techniques focus on the static scenarios
[12–19], in which the instant sensitive location information
is protected without consideration of temporal correlations
among locations.

The hiding or deception policies are first used in location
privacy preserving approaches in [14, 16], in which the
current location information of a person may be hidden or a
fake location is released to replace the real one if the current
location information is sensitive and should not be accessed
by untrusted apps. Among the techniques, spatial cloaking
and anonymization are widely adopted [20–22], in which
the identity of a user who issues a query specifying his/her
location is hidden by replacing that user’s exact location with
a broader region containing at least 𝑘 users. However, these
techniques do not protect privacy against adversaries who
have the knowledge of the temporal correlations between
contexts. Moreover, the anonymity-based approaches do not
readily imply privacy sometimes. For example, if all the 𝑘
users are in the same sensitive region, an adversary would
know the fact.

There have been several popular works of privacy pro-
tection against adversaries who are aware of the temporal
correlations between contexts [7–9, 23, 24]. The work in [23]
considers that an adversary can adopt a linear interpolation
to infer the supposedly hidden locations from prior-released
locations of a user, in which some zones containing multiple
sensitive locations are created in order to increase uncertainty
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that the user dwells at one of the sensitive locations. Due
to the suppression of sensitive locations and the uncertainty
of zones, this approach greatly reduces privacy disclosure
compared with the simple hiding-sensitive policy.

MaskIt [7] is the first approach to preserve privacy
against the adversaries who know the temporal correlations
between the contexts of user. In MaskIt, a user’s contexts
and their temporal correlations are modeled with a time-
heterogeneous Markov chain, which can be also observed
by an adversary. By hiding most sensitive contexts and
partial nonsensitive ones, MaskIt can increase the difficulty
of inferring the hidden sensitive context by adversaries and
thus could achieve a better privacy and utility tradeoff. As
aforementioned, the number of suppressed contexts is much
greater than that in the simple hiding-sensitive approach,
leading to a degraded utility and functionality.

The work in [24] considers the interaction between a
user and an adversary as well as the temporal correlations
between contexts. Unlike MaskIt, in [24], a user controls
the granularity of the released contexts, and an adversary
has limited capability which means the adversary can only
obtain a subset of the user’s contexts as the goal of attacking
and then actively adjusts his/her future strategies based
on the attacking results. In this approach, the interactive
competition between the user and the adversary is formalized
as a stochastic game, and its Nash Equilibrium point is then
obtained. Since the released contexts are some granularity
of the truth, the adversary can only gain partial contexts,
thus decreasing the privacy disclosure to some degree. On
the other hand, since the deception policy is not applied,
the obtained contexts by the adversary are still approximately
consistent with the truth, which also could be used by the
adversary to infer the real sensitive contexts.

A number of privacy preservation techniques have been
proposed by using access control techniques [25–27], in
which the smartphone resources are controlled by the user-
defined access control policies. BlurSense, presented in [25],
is an efficient tool that implements a context-aware reference
monitor to control all the access on the resources. By using
BlurSense, a smartphone user is provided with an interface
to define flexible access control policies for all the embedded
sensors, which are monitored and controlled by reference
monitors for achieving a fine-grained access control.

Besides the aforementioned mechanisms, a variety of
privacy preservation schemes have been introduced in other
application scenarios like data collection [11, 28, 29], medical
care [30], influence maximization [31, 32], collaborative
decision-making [33], and others [18, 34–36].

To the best of our knowledge, our approach is the first
work to provide an efficient optimal approach in which the
deception policy is introduced with privacy preservation on
smartphones while considering the temporal correlations
between user contexts. In the proposed approach, a Markov
chain is used to model the contexts of a user and the
temporal correlations between user contexts. Then, with the
Markovmodel, the context-privacy problem for smartphones
is formalized to an optimization problem and its correctness
and the optimality are proved. To further speed up the
computation, a linear programming problem is obtained to
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Figure 1: A mobile phone context sensing system [7, 8].

look for an efficient feasible solution. By resolving the linear
programming problem, a near optimal context-aware privacy
preserving algorithm (CAPP) is proposed, which is designed
to accelerate the computation through local optimization at
any time with user-defined privacy preservation.

3. Models and Preliminaries

3.1. Models and Assumptions

3.1.1. SystemModel. We illustrate a smartphone context sens-
ing system in Figure 1, where the privacy preserving system
protects a user’s privacy context from those untrusted smart-
phone apps. In Figure 1, the raw sensory data are first collected
by smartphone sensors and filtered by the privacy preserving
system, which in turn transmits the processed sensory data
to those untrusted context-aware apps. Thus, the privacy
preserving system served as a middleware in the system, and
then the untrusted context-aware apps could not access the
raw sensory data and could only obtain the released sensory
data from the privacy preserving system. In the process of
handling the sensory data, the privacy preserving system
infers the related context from the collected sensory data
by using the model about the temporal correlations between
user context and then releases the filtered sensory data with
privacy preservation. Based on the released sensory data from
the privacy preserving system, the context about the user
could be reasoned and the context-aware services are accord-
ingly provided to the user by the context-aware apps with the
capability of obeying the user’s privacy protection policy.

User’s context can be inferred from sensory data. That is,
at any time the privacy preserving system can obtain user’s
context according to the collected sensory data. So, in the
following we use context to represent the related sensory
data for ease of illustration. In this paper, we adopt periodic
discrete time as in [7, 8, 24]. At any discrete time period 𝑡,
a user’s context 𝑐𝑡 can be inferred and then handled by the
privacy preserving system, and then the result context 𝑜𝑡 is
released to the context-aware apps with privacy preservation.
To preserve user’s privacy, the output 𝑜𝑡 from the privacy
preserving system falls in two different forms, real or fake.
The real (𝑜𝑡 = 𝑐𝑡) means the raw sensory data related to
the real context 𝑐𝑡 is released to the context-aware apps. On
the contrary, a fake context means the context 𝑜𝑡 inferred
from the released sensory data is not the original context 𝑐𝑡 at
time 𝑡. Based on the user’s predefined privacy parameter, the
privacy preserving systemmakes a decision to release the real
sensory data or a fake one with the goal that the expectation
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of the released real contexts is maximized while guaranteeing
the privacy preservation.

Unlike the “release or suppress” paradigm in [7], the
privacy preserving system in this paper introduces the
“release or deceive” paradigm in [8] to increase the number
of releasing real contexts while guaranteeing user’s privacy.
Compared with the traditional schemes, such as MaskIt [7]
and FakeMask [8], our novel approach is optimal under the
above system model through theoretical analysis and could
substantially improve the number of released real contexts
while preserving privacy.

3.1.2. Context Model and Markov Chain. As aforementioned,
the periodic discrete time is adopted, so we try to model a
user’s contexts over a period of discrete time (e.g., a day, a
week). All the possible contexts of a user in a period of time
are represented by a finite set 𝐶 = {𝑐1, . . . , 𝑐𝑁}, in which
𝑁 represents the number of discrete times in one period of
time. As in [7, 24], we adopt a time-heterogenous Markov
chain to capture the temporal correlations between contexts
of a user. A time-heterogenous Markov process is denoted by
𝑍 = {𝑍1, 𝑍2, . . .}, in which 𝑍𝑡 represents the context of the
user at discrete time 𝑡. Due to the cyclic nature of time, we
infer that 𝑍𝑁+𝑚 = Z𝑚 for any integer 𝑚. The independence
property of the time-heterogenousMarkov process states that

𝑃 {𝑍𝑡+1 = 𝑗 | 𝑍1, . . . , 𝑍𝑡 = 𝑖}
= 𝑃 {𝑍𝑡+1 = 𝑗 | 𝑍𝑡 = 𝑖} ,

(1)

where 𝑃{𝑍𝑡+1 = 𝑗 | 𝑍𝑡 = 𝑖} is the probability that the process
enters state 𝑗 at time 𝑡 + 1 with the condition that the process
was in state 𝑖 at time 𝑡, also denoted by 𝑃𝑡𝑖,𝑗.
3.1.3. Adversary Model. To make our approach more robust,
we assume adversaries could obtain the knowledge of the
Markov chain, in which the temporal correlations between
the contexts of a user through observing the output sequence
of the sensory data are modeled. By using the Markov chain
𝑍 and the distribution of the initial contexts of a user, an
adversary could conclude the prior belief about the user being
in any context 𝑐 at time 𝑡, denoted by probability 𝑃{𝑍𝑡 =𝑐}. Furthermore, through the observation of the previously
released contexts of the user, the adversary can apply the
Bayesian reasoning to obtain their posterior belief about the
user being in a context. That is, the posterior belief, denoted
by𝑃{𝑍𝑡 = 𝑐 | �⃗�}, can be inferred by conditioning the observed
output sequence �⃗� from the privacy preserving system. The
goal of an adversary is to increase the posterior belief about
the user being in a sensitive context and try to break the
user’s privacy protection policy. Note that the posterior belief
is usually greater than the corresponding prior belief due to
the fact that more knowledge about the posterior belief is
obtained.

3.2. Preliminaries about Context Reasoning

3.2.1. Hidden Markov Chain. Let 𝑍 = {𝑍1, 𝑍2, . . .} be a
Markov chain with transition probabilities 𝑃𝑡𝑖,𝑗, where 𝑃𝑡𝑖,𝑗 is

the probability that the process enters context 𝑗 at time 𝑡 + 1
with the condition that the process was in context 𝑖 at time 𝑡.
Suppose that a novel context is emitted each time theMarkov
chain enters a context, and there exists a finite set of emitted
contexts. Specifically, if the Markov chain enters context 𝑖 at
time 𝑡, then, independently of previous contexts and emitted
contexts, the present context emitted is 𝑜 with probability
𝑝(𝑜 | 𝑖, 𝑡) with ∑𝑜 𝑝(𝑜 | 𝑖, 𝑡) = 1, where 𝑜 is the emitted
context observed by adversaries. Thus, the output contexts
also construct a process {𝑂1, 𝑂2, . . .}, where𝑂𝑡 represents the
emitted context variable at time 𝑡. Formally, we have 𝑝(𝑜 |
𝑖, 𝑡) = 𝑃{𝑂𝑡 = 𝑜 | 𝑍𝑡 = 𝑖}. Since the inside process 𝑍 is
hidden from the observers and can only be reasoned through
the emitted context, the process 𝑍 is called a hidden Markov
chain.

3.2.2. Reasoning on Hidden Markov Chain. Consider a hid-
den Markov chain 𝑍, with each random variable 𝑍𝑡 taking a
value in the set of contexts𝐶 at time 𝑡. As aforementioned, the
hidden Markov chain can model the temporal correlations
between contexts of a user and can also be obtained by
adversaries through the output contexts. In the following,
we illustrate how the adversaries infer the hidden context
from the output context sequence. Note that the actual
released contents are sensory data, which can be inferred by
adversaries to obtain the related context. Supposing that an
adversary knows the hidden Markov chain 𝑍 and the initial
probability 𝑃0𝑗 , where 𝑃0𝑗 is the probability that the user is in
context 𝑗 at the beginning time, the adversary could apply
the Bayesian reasoning to obtain the prior belief that the user
enters any context at any time.

Proposition 1. The prior belief of an adversary (who knows a
user’s hidden Markov chain 𝑍 and the initial probability 𝑃0𝑗 )
about the user being in context 𝑘 at time 𝑡 is equal to

𝑃 {𝑍𝑡 = 𝑖} = ∑
𝑖0

⋅ ⋅ ⋅∑
𝑖𝑡−1

𝑃0𝑖0 ⋅ 𝑃1𝑖0,𝑖1 ⋅ ⋅ ⋅ 𝑃𝑡𝑖𝑡−1,𝑖𝑡 , (2)

where 𝑖0, 𝑖1, . . . , 𝑖𝑡 ∈ 𝐶, with 𝑖0 = 𝑗 being the beginning context
and 𝑖𝑡 = 𝑘 being the context at time 𝑡.

It is worth mentioning that, whatever policies are applied
and whatever the output context is, if an adversary guesses
that the user is in a sensitive context 𝑠 ∈ 𝐶 at time 𝑡, the
probability that the guess result is true is at least 𝑃{𝑍𝑡 =𝑠} because this probability can be computed by using (2).
Moreover, since more information (i.e., the inferred context
from the released sensory data) can be observed by an
adversary, the guess probability can be larger than the prior
belief. That is, an adversary could infer the present context
with the knowledge of the prior-released context sequence
and the related Markov model.

For a hidden Markov chain 𝑍, each context has a dis-
tribution over possible outputs at any time. The output
context at time 𝑡 is a random variable 𝑂𝑡. We define the
emission matrix 𝐵 whose element is equal to

𝑏𝑡𝑐,𝑐 = 𝑃{𝑂𝑡 = 𝑐 | 𝑍𝑡 = 𝑐} , (3)
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where 𝑏𝑡𝑐,𝑐 denotes the probability of releasing the context 𝑐
at time 𝑡 with the condition that the context is 𝑐 at time 𝑡.

From (3), we knows that 𝑏𝑡𝑐,𝑐 is the probability of releasing
the real context and 𝑏𝑡𝑐,𝑐 is the probability of releasing a
fake context 𝑐 where 𝑐 ̸= 𝑐. Note that if we let 𝑐 = 𝜙
denote nothing is released and there is no fake output, the
above policy is justMaskIt in [7]. Furthermore, in our general
policy, since the output context 𝑐 may belong to possible
contexts 𝐶, it could confuse the adversaries and then allows
the privacy preserving system to release more real contexts
with the same user predefined privacy.

For a user, the context that the user dwells at any time
is hidden from the adversaries. Suppose at time 𝑡 that the
hidden context takes a value from𝑍𝑡 and the emitted context
takes a value from 𝑂𝑡. The adversaries could only infer
the hidden context of a user based on the observation of
the emitted contexts. Furthermore, the emitted context is
determined according to the emission probability. For a given
output sequence �⃗� = 𝑜1, . . . released context from the privacy
preserving system, an adversary could obtain the conditional
probability (posterior probability) that at time 𝑡 the hidden
context was 𝑐 by

𝑃 {𝑍𝑡 = 𝑐 | �⃗�}

= 𝑃 {𝑍𝑡 = 𝑐, 𝑜1, . . . , 𝑜𝑡−1} ⋅ 𝑃 {𝑜𝑡, . . . , 𝑜𝑇 | 𝑍𝑡 = 𝑐}
𝑃 {�⃗�} .

(4)

For the detailed process of the above conditional probability,
please refer to [7].

4. Problem Formulation and Our Approach

4.1. Problem Formulation. We adopt the definition of privacy
in [7], in which a user declares a subset of contexts 𝑆 ⊂
𝐶 as private sensitive contexts and also claims a privacy
preservation parameter 𝛿 with 𝛿 ∈ [0, 1]. Informally, we
declare that a released context sequence �⃗� preserves privacy
if the adversary cannot learn much about the user being in a
sensitive context from the released context sequence �⃗�. That
is, for all sensitive contexts and all times, the posterior belief
about the user being in a sensitive context cannot be larger
than the prior belief plus a predefined privacy parameter 𝛿.
Formally, we have the following 𝛿-privacy definition.
Definition 2 (see [7]). We claim that a system preserves 𝛿-
privacy against an adversary if, for all possible outputs �⃗�,
all times 𝑡, and all sensitive contexts 𝑠 ∈ 𝑆, the following
inequation holds:

𝑃 {𝑍𝑡 = 𝑠 | �⃗�} − 𝑃 {𝑍𝑡 = 𝑠} ≤ 𝛿. (5)

Note that the 𝛿-privacy definition guarantees that an
adversary cannot learn too much about the user being in a
sensitive context even though the adversary has an access
to the output sequence of the system and also knows the
Markov chain of the temporal correlations between the user’s
contexts.

The goal of a privacy preserving system is to release as
many real contexts as possible, while satisfying the 𝛿-privacy

constraint. Specifically, a privacy preserving system tries to
obtain an emission matrix 𝐵, which preserves user’s privacy
(i.e., (5) holds), and maximizes the utility of the system.
Formally, the utility of a privacy preserving system is defined
as follows.

Definition 3. We say that the utility of a system is the
expectation of the number of the released real contexts; that
is,

𝑢 (A) = ∑
�⃗�

𝑃 {�⃗�} ⋅ {𝑖 | 𝑜𝑖 = 𝑐𝑖}


= ∑
𝑡∈[𝑇],𝑐∈𝐶

𝑃 {𝑍𝑡 = 𝑐} ⋅ 𝑏𝑡𝑐,𝑐,
(6)

where 𝑏𝑡𝑐,𝑐 is the probability of releasing the real context 𝑐 at
time 𝑡, 𝑃{𝑍𝑡 = 𝑐} is the prior belief that the user is in context
𝑐 at time 𝑡, and [𝑇] is the set of all possible discrete times in a
period of time.

Therefore, the objective of a privacy preserving system is
obtaining an emission matrix 𝐵, which tries to maximize the
utility with the privacy preservation.

Götz et al. [7] proposed a method, in which all possible
emission probabilities are brute-force-searched to find one
that maximizes the utility while preserving 𝛿-privacy. More-
over, in the process of trying each emission matrix in [7], the
posterior belief has to be computed. However, the attempts
on all possible emission probabilities on all possible output
context sequences to resolve the solution would consume
huge computation resources, thus leading to less feasible
resource-constrained smartphones and even PCs.

To cope with the issue of the huge computation con-
sumption in the above approach, in this section, we design
an efficient privacy preserving approach, in which the emis-
sion matrix can be obtained in an efficient way. We first
present some propositions to illustrate our privacy preserving
approach and then describe our privacy preserving algo-
rithm.

To make the privacy preservation problem easier, we first
assume that there exist no temporal correlations between
user contexts. Under this assumption, to preserve 𝛿-privacy,
the system should only guarantee that, at any time for any
sensitive context, its posterior belief under any possible
observation is not larger than 𝛿 plus its prior belief.
Proposition 4. Under the assumption that there exist no
temporal correlations between the adjacent contexts, a system
A preserves 𝛿-privacy against an adversary if, for any possible
released context 𝑜 ∈ 𝐶 and for any possible sensitive context
𝑠 ∈ 𝑆 at any time 𝑡, the following inequation holds:

𝑏𝑡𝑠,𝑜 ⋅ 𝑃𝑡𝑠
∑𝑐∈𝐶 𝑏𝑡𝑐,𝑜 ⋅ 𝑃𝑡𝑐

≤ 𝛿 + 𝑃𝑡𝑠 , (7)

where 𝑏𝑡𝑠,𝑜 is the emission probability of releasing context 𝑜 at
time 𝑡 under the condition that the real context is 𝑠 at time 𝑡 and
𝑃𝑡𝑠 and 𝑃𝑡𝑐 are the prior beliefs that the context is, respectively, 𝑠
and 𝑐 at time 𝑡 with 𝑃𝑡𝑠 > 0 and 𝑃𝑡𝑐 > 0.
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The above proposition is evident since it needs no con-
sideration of the temporal correlations between the adjacent
contexts. Moreover, there always exists a feasible solution to
(7). Specifically, whatever the current context is at any time
𝑡, a system preserves 𝛿-privacy if the emission probability
of releasing a context 𝑐 equals its prior belief 𝑃𝑡𝑐 . Formally,
if, for any context 𝑐, 𝑐 ∈ 𝐶, we let the emission probability
𝑏𝑡𝑐,𝑐 = 𝑃𝑡𝑐 , the following inequation holds:

𝑏𝑡𝑠,𝑜 ⋅ 𝑃𝑡𝑠
∑𝑐∈𝐶 𝑏𝑡𝑐,𝑜 ⋅ 𝑃𝑡𝑐

= 𝑃𝑡𝑜 ⋅ 𝑃𝑡𝑠
∑𝑐∈𝐶 𝑃𝑡𝑜 ⋅ 𝑃𝑡𝑐

= 𝑃𝑡𝑠 . (8)

However, by knowing the posterior belief of a context
𝑐 at time 𝑡 (denoted by 𝑄𝑡𝑐,𝑜) and also knowing the context
transition probability of entering a sensitive context 𝑠 at the
next time 𝑡+1 (denoted by𝑃𝑡𝑐,𝑠), an adversary could obtain the
posterior belief of a user being in sensitive context 𝑠 at time
𝑡+1with probability𝑄𝑡𝑐,𝑜𝑃𝑡𝑐,𝑠. In fact, if𝑄𝑡𝑐,𝑜𝑃𝑡𝑐,𝑠 > 𝑃𝑡+1𝑠 +𝛿, the
𝛿-privacy will be broken. Therefore, in order to preserve 𝛿-
privacy, for any output context 𝑜 at time 𝑡 and for any possible
sensitive context 𝑠 at time 𝑡 + 1, the following inequation
should hold:

∑
𝑐∈𝐶

𝑄𝑡𝑐,𝑜 ⋅ 𝑃𝑡𝑐,𝑠 ≤ 𝑃𝑡+1𝑠 + 𝛿. (9)

Motivated by the above analysis, to preserve 𝛿-privacy in
the existence of temporal correlations between user contexts,
the 𝛿-privacy preserving problem is formulated as follows.

Proposition 5. Under the existence of temporal correlations
between the contexts, a system preserves 𝛿-privacy if the
emission probability is resolved from the following optimization
problem:

max ∑
𝑐∈𝐶,𝑡∈𝑇

𝑏𝑡𝑐,𝑐 ⋅ 𝑃𝑡𝑐

s.t. (1) 𝑄𝑡𝑠,𝑜 ≤ 𝛿 + 𝑃𝑡𝑠 ,
∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶, 𝑡 ∈ 𝑇

(2) ∑
𝑐∈𝐶

𝑄𝑡𝑐,𝑜 ⋅ 𝑃𝑡𝑐,𝑠 ≤ 𝑃𝑡+1𝑠 + 𝛿,

∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶, 𝑡 ∈ 𝑇
(3) ∑
𝑐∈𝐶

𝑄𝑡𝑐,𝑜 ⋅ �̂�𝑡−1𝑠,𝑐 ≤ 𝑃𝑡−1𝑠 + 𝛿,

∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶, 𝑡 ∈ 𝑇
(4) 𝑏𝑡𝑐,𝑐 ∈ [0, 1] ,

∀𝑐, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇,

(10)

where 𝑏𝑡𝑐,𝑐 is the emission probability of releasing context 𝑐 at
time 𝑡 under the condition that the user is in context 𝑐 at time
𝑡, 𝑃𝑡𝑐 is the prior belief of a user being in context 𝑐 at time 𝑡,𝑄𝑡𝑐,𝑜
is the posterior belief that a user is in context 𝑐 on the output
context 𝑜 at time 𝑡, �̂�𝑡−1𝑠,𝑐 = 𝑃𝑡−1𝑠,𝑐 /∑𝑐∈𝐶 𝑃𝑡−1𝑠,𝑐 is the normalized

probability of𝑃𝑡−1𝑠,𝑐 ,𝑃𝑡𝑐,𝑠 is the transition probability from context
𝑐 at time 𝑡 to context 𝑠 at time 𝑡 + 1, and 𝑃𝑡+1𝑠 and 𝑃𝑡−1𝑠 are the
prior probabilities of a user being in context 𝑠 at time 𝑡 + 1 and
time 𝑡 − 1, respectively.
Proof. As mentioned in Proposition 4, under the assumption
that there exist no temporal correlations between contexts,
the solution to Constraint (1) in (10) preserves 𝛿-privacy at
time 𝑡. On the contrary, due to the existence of temporal
correlations between contexts, the above solution may break
𝛿-privacy at time 𝑡 − 1 or 𝑡 + 1. In fact, Constraint (2) in (10)
guarantees that the posterior belief of a user being in sensitive
context 𝑠 at time 𝑡 + 1, caused by any released context at
time 𝑡, will be not larger than its prior belief plus 𝛿. Similarly,
Constraint (3) in (10) guarantees that the posterior belief of a
user being in sensitive context 𝑠 at time 𝑡 − 1, only caused by
any released context at time 𝑡, will be not larger than its prior
belief plus 𝛿.

Therefore, for any time 𝑡 the solution (i.e., the emission
probability at time 𝑡) to (10) satisfies the statement that an
adversary, based on all possible output contexts at time 𝑡,
cannot infer that the user is in a sensitive context at times 𝑡−1,
𝑡, and 𝑡 + 1 with a probability larger than its prior belief plus
𝛿. In other words, an adversary cannot infer that the user is
in a sensitive context at time 𝑡 with a probability larger than
its prior belief plus 𝛿 under all the possible released context at
time 𝑡, 𝑡 − 1, and 𝑡 + 1. Thus, based on the transitivity, under
the observation of any possible released context sequence, the
above solution preserves 𝛿-privacy.

We have to mention that the condition in the posterior
probability in (10) is the context at time 𝑡 while, in the
definition of the 𝛿-privacy, the condition is the context
sequence �⃗�. Thus, the computing of (10) is much more
efficient than that from the definition of the 𝛿-privacy if a
brute-force search is used. Furthermore, the above solution
to (10) is also optimal. The proof is evident, because any
possible solution must satisfy the above 4 constraints which
are the necessary and sufficient conditions. However, (10)
is not a linear programming problem due to the fact there
exist multiple multiplications on different variables. In order
to speed up the running time, we then propose an efficient
approach which formulates the above optimization problem
to a near optimal problem.

Theorem 6. Under the existence of temporal correlations
between user contexts, a system preserves 𝛿-privacy if the
emission probability at any time 𝑡 is resolved from the following
linear programming problem:

max ∑
𝑐∈𝐶

𝑏𝑡𝑐,𝑐 ⋅ 𝑃𝑡𝑐

s.t. (1) 𝑄𝑡𝑠,𝑜 ≤ 𝛿 + 𝑃𝑡𝑠 ,
∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶,

(2) ∑
𝑐∈𝐶

𝑄𝑡𝑐,𝑜 ⋅ 𝑃𝑡𝑐,𝑠 ≤ 𝑃𝑡+1𝑠 + 𝛿,

∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶,



Security and Communication Networks 7

Input:Markov chain 𝑀, sensitive contexts 𝑆, privacy threshold 𝛿
Output: Emission probabilities 𝐵 = (𝑏𝑡𝑖,𝑗) with 𝑖, 𝑗 ∈ 𝐶, 𝑡 ∈ 𝑇
(1) for all 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 do
(2) compute 𝑃𝑡𝑐 by Eq. (2);
(3) end for
(4) for all 𝑡 = 1, . . . , 𝑇 do
(5) construct a linear programming problem as Eq. (11);
(6) compute 𝑏𝑡

𝑐,𝑐
where 𝑐, 𝑐 ∈ 𝐶.

(7) end for

Algorithm 1: Emission probability generation.

(3) ∑
𝑐∈𝐶

𝑄𝑡𝑐,𝑜 ⋅ �̂�𝑡−1𝑠,𝑐 ≤ 𝑃𝑡−1𝑠 + 𝛿,

∀𝑠 ∈ 𝑆, 𝑜 ∈ 𝐶,
(4) 𝑏𝑡𝑐,𝑐 ∈ [0, 1] , ∀𝑐, 𝑐 ∈ 𝐶.

(11)
The proof is evident because, at any given time 𝑡,

(11) achieves local optimization solution and guarantees 𝛿-
privacy at that time through the above 4 constraints. That is,
the solution at any given time does not affect the solutions
in the future. We have to mention that (11) is not optimal
to 𝛿-privacy problem. There exist some assignments of
emission probabilities under which the result in (11) at some
given time may not be maximized but leads to the global
optimization value in (10). The reason lies in the relation
between the local optimization problem and the global one.
Detailedly, if we decrease the emission probability at some
given time, then a lower posterior probability is achieved
which means less posterior belief. Based on less posterior
belief, an adversary could infer current and future context
with less correctness. Thus, we could increase the emission
probability at next time to release more real contexts while
still guaranteeing the predefined 𝛿-privacy. Although (11) is
not optimal, it is a linear programming problem; thus we
can resolve it efficiently by using the existing methods such
as the simplex method. To make it better, the above linear
programming problem can also be resolved in advance to
reduce the computation consumption. It needs to mention
that the computing process of (11) at time 𝑡 requires the
solution results of (11) at other times prior to 𝑡 due to the fact
the posterior probability at time 𝑡 is related to the emission
probabilities at time prior to 𝑡. That is, in order to compute
the solution to (11) at time 𝑡, we should compute the optimal
solution to (11) at times prior to 𝑡 first. Thus, it requires that
the process of solution to (11) in ascending order of time 𝑡.
4.2. The Proposed Approach. According to Theorem 6,
we propose our efficient context-aware privacy preserving
approach, called CAPP. Algorithm 1 generates the emission
probabilities according to the user’s Markov model 𝑀, sen-
sitive contexts 𝑆, and privacy parameter 𝛿. Note that 𝑀 is
learned from historical observations at the training phase of
Markov chain.

Input: context 𝑐 at time 𝑡, emission probability 𝑏𝑡𝑖,𝑗 ∈ 𝐵
Output: output context 𝑜 at time 𝑡
(1) for all 𝑐 ∈ 𝐶 and 𝑏𝑡

𝑐,𝑐
> 0 do

(2) return 𝑐 with probability 𝑏𝑡
𝑐,𝑐

(3) end for

Algorithm 2: An efficient checking decision algorithm (CAPP).

Based on the generated emission probabilities, Algo-
rithm 2 decides how to release the context of a user with 𝛿-
privacy preservation.

It is worth mentioning that even if an adversary had
known the Markov model and even the related emission
probability matrices, he/she cannot infer the original context
with a large probability from the output context sequence of
CAPP.Themain reason lies in the fact that the constraint of 𝛿-
privacy guarantees that an adversary cannot learn too much
about the user being in a sensitive context.

5. Evaluation

5.1. Settings. We implement our context-aware privacy pre-
serving algorithm (called CAPP) and compare it with tra-
ditional privacy approaches, such as MaskSensitive, MaskIt
(using the hybrid check) [7], and EfficientFake [8]. MaskSen-
sitive is a naive approach, in which all sensitive contexts are
hidden or suppressed while releasing all nonsensitive ones.
All the simulations are conducted in the platform MATLAB
8.4, which runs on theWindows 8.1 operating systemwith the
hardware of Intel Core 1.80GHz CPU and 8GB memories.

In this paper, the dataset used in the simulation is from
real human traces: Reality Mining dataset, in which fine-
grained mobility data of 100 students and staff at MIT over
the 2004-2005 academic year are contained [37]. In Reality
Mining dataset, the GPS location contexts of each user
are, respectively, obtained from the cell towers in the trace
through the public cell ID database (e.g., Google location
API). We consider 91 users who have at least 1 month of
data, in which the total length is 11,091 days. The average,
minimum, and maximum trace length per user are 122 days,
30 days, and 269 days, respectively. The average, minimum,
and maximum number of distinct locations per user are 19, 7,
and 40, respectively.
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To obtain a Markov chain for each user, we train on the
first half of the user’s trace with the remaining half being
used for evaluation. Note that, during the collection of the
trace of the user, 𝛿-privacy may not be guaranteed due to
lack of the prior belief and the emission probabilities. Upon
obtaining the solution to (11), we can guarantee the 𝛿-privacy
preservation for the user.

For the simulation parameters, we choose the privacy
parameter 𝛿 = 0.1. It is worth mentioning that the larger the
privacy parameter 𝛿 is, the lower the user’s privacy protection
level is and thus the more the real sensory data is released.
There are two different ways of choosing sensitive contexts.
Unless stated, for each user, we choose uniformly at random
sensitive contexts for each user, named “random as sensitive.”
Alternatively, for each user, we choose the location with the
highest prior probability as the home of the user and choose
it as sensitive, named “home as sensitive.”

As aforementioned, the utility of a privacy preserving
approach is the expectation of the number of the released real
contexts, so we use the normalized utility as themeasurement
which is defined as the fraction of the released real contexts.
We should note that a higher utility of an approach means a
higher quality of service is provided by context-aware apps.
Similarly, we measure privacy breaches as the number of
the sensitive contexts in the user’s context sequence that
are breached divided by the length of the user’s context
sequence.Note that, from the definition, the three approaches
CAPP, EfficientFake, andMaskIt always guarantee no privacy
breaches. MaskSensitive probably cannot guarantee the 𝛿-
privacy due to the absent consideration of the existence of
temporal correlations between user contexts.

5.2. Results. First, we compare the privacy breaches of CAPP
with other approaches in the following two scenarios. In one
scenario, we choose three contexts for each user at random as
sensitive, and, in the other, we choose the home of each user
as sensitive. Note that the home of a user has the highest prior
belief, which means the user spends most of his/her time at
home compared to that at other locations.

Figures 2 and 3 report the average fractions of released
and suppressed contexts by various algorithms in the above
two scenarios, respectively. From the figures, we observe that
MaskSensitive suppresses all the sensitive contexts in both
scenarios. Although all sensitive contexts are not released in
MaskSensitive, an adversary who knows the Markov chain of
contexts can infer about 40–60% sensitive contexts from the
suppressed ones in the two scenarios. The main reason lies
in that the temporal correlation between contexts discloses
enough information to an adversary and then makes an
adversary infer a larger posterior belief which may exceed
the corresponding prior belief by the privacy parameter 𝛿.
On the contrary, the other three approaches such as CAPP,
EfficientFake, and MaskIt guarantee 𝛿-privacy through. For
CAPP, EfficientFake, and MaskIt, we can see that some
sensitive contexts as well as some nonsensitive ones are
suppressed and released. Furthermore, the average fraction
of the released real contexts by CAPP is larger than that of
MaskSensitive, MaskIt, and EfficientFake. From the figures,
we see that MaskIt sacrifices less than 20% of the utility of
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Figure 2: Privacy breach comparison (home as sensitive).
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Figure 3: Privacy breach comparison (random as sensitive).

MaskSensitive to guarantee privacy. However, both Efficient-
Fake and CAPP increase near 20% of the utility compared to
MaskSensitive while guaranteeing privacy. The main reason
is that the introduced deception policy makes an adversary
difficult to infer the posterior belief and then allows releasing
more real contexts. Although both EfficientFake and CAPP
are formalized to linear programming problems, our CAPP
performs better than EfficientFake in the aspect of average
utility in both scenarios.Themain reason is twofold.The first
is that the goal in EfficientFake is to maximize the emission
probability only while in CAPP the goal is to maximize the
utility value at a given time. The second is that solution
space on EfficientFake is greatly decreased. Specifically, in
EfficientFake, the form of the emission probability matrix is
decreased to a vector, which decreases the accuracy of the
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Figure 4: Privacy-utility tradeoff (home as sensitive).
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Figure 5: Privacy-utility tradeoff (random as sensitive).

solution greatly in EfficientFake, leading to less utility than
CAPP. On the contrary, in CAPP, the solution space is not
shrunk, and we can obtain a better optimization solution.

We then compare the utility of our CAPP with other
approaches under different privacy parameters which varies
from 0.05 to 0.3. Similar to the former experiments, we
choose different sensitive contexts in the experiments: the
sensitive context for a user is chosen to be the user’s home,
and the other is chosen at random. We expect the utility
to increase with the decrease of the privacy requirement.
As we can see from Figures 4 and 5, the utility increases
slowly as 𝛿 increases in both scenarios. Furthermore, we can
see that, at the same privacy parameter 𝛿, each approach
performs better in the second scenariowhere randomcontext

is chosen as sensitive than that in the first scenario where
home is sensitive. Since, in the first scenario in Figure 4,
the location for each person with the highest prior belief is
chosen as sensitive context, the number of sensitive contexts
is larger than that in the second scenario in Figure 5 where
a context is randomly chosen as sensitive. To guarantee the
same 𝛿-privacy, CAPP and EfficientFake should disguise
more contexts by releasing more fake contexts in the first
scenario. But, compared with other approaches, our CAPP
achieves the best due to its fine approximation to the optimal
optimization of the problem.

6. Conclusions

In this paper, we address the context-aware privacy preserv-
ing problem for smartphones. We formalize the context-
privacy preservation problem to an optimization problem
and prove the correctness and the optimality of our for-
mulation through theoretical analysis. In order to speed up
the computing further, we propose an efficient near optimal
approach in which a linear programming problem is for-
mulated. By resolving the linear programming problem, an
efficient context-aware privacy preserving algorithm (CAPP)
is proposed. Through the extensive experimental evaluations
on real mobility trace, we demonstrate that our proposed
CAPP achieves much more utility than the traditional
approaches while guaranteeing the user’s 𝛿-privacy policy.
One interesting future work is to determine an online context
releasing decision algorithm which could make quicker and
more efficient decisions only based on the present context of
the user with privacy preservation. Since this paper concerns
the privacy preservation for a single user, another future
work is to propose a privacy preservation approach with the
consideration of interactions among users since there exists
group mobility in humans.
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