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The class imbalance problems often reduce the classification performance of the majority of standard classifiers. Many methods
have been developed to solve these problems, such as cost-sensitive learning methods, synthetic minority oversampling technique
(SMOTE), and random oversampling (ROS). However, the existing methods still have some problems due to the possible
performance loss of useful information and overfitting. To solve the problems, we propose an adaptive ensemble method by using
the most advanced feature of self-adaption by considering an average Euclidean distance between test data and training data, where
the average distance is calculated by k-nearest neighbors (KNN) algorithm. Simulation results are provided to confirm that the
proposed method has a better performance than existing ensemble methods.

1. Introduction

Imbalanced data refers to a data set that has great differences
in the number of the classes. Currently, imbalanced data
has been applied to real-word domain and plays a key
role in civilian and government applications, such as text
classification [1], facial age estimation [2], speech recognition
[3], and governmental decision-making support systems [4].
The research of imbalanced data is of great significance in the
fields of credit fraud, data mining, and illegal account inva-
sion. Hence, more and more researchers pay great attentions
to class imbalanced issues due to the fact that the traditional
classification of imbalanced data processing is not suitable for
classifying minority classes. Imbalanced problem also caught
the attention of related areas such as machine learning and
data mining [4].

The present study focuses more on binary class imbalance
problem, where data set is sorted into majority classes and
minority classes. In the data set, the traditional balanced
data means that the numbers of each class are equal, and
the imbalanced data means that the numbers of the various
classes are significantly different. The details of binary class

imbalanced and balanced data are shown in Figures 1(a) and
1(b). The traditional classification algorithms, such as naive
Bayes [5], random forest [6], K-nearest neighbors (KNN)
[7], and RIPPER [8], aim at generating models that can
optimize the accuracy over classification, but they neglect
the minority class. In order to solve the problem mentioned
above, many methods have been proposed about binary
class imbalanced data in data level and algorithm level,
respectively. In the data level, the major idea is to transform
imbalanced into balanced data mainly by using sampling
method or to create new examples for imbalanced into
balanced data, such as SMOTE and ROS, while the algorithm-
level solutions primarily include ensemble learning methods
[9] and cost-sensitive analysis. Generally speaking, these
methods solved the problem of imbalanced data in the
accuracy of minority classes. However, there still exist some
drawbacks in these traditional imbalanced data classification
methods for handling binary class imbalanced data problems
[10]. For example, boosting and bagging based ensemble
methods may lose some valuable information in the iteration
process owing to the use of sampling methods. As a result, this
may cause the data overfitting problem. Moreover, it is hard to
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(a) Anexample of binary imbalanced data, where majority class is 58 and

minority class is 17

Majority class
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Balanced data

(b) An example of binary balanced data, where majority
data is equal to minority data

FIGURE 1: A figure illustration of imbalanced data (a) and balanced data (b).

get the optimized misclassification cost in the cost-sensitive
learning methods, and different misclassification costs lead to
different classification results. Hence, the classification results
are not stable.

To overcome the above problems, we proposed an adap-
tive ensemble method that is an improvement of existing
ensemble method [10]. Our main idea is to transform imbal-
anced binary problem into multiple balanced problems, which
neither reduce the number of majority classes nor increase that
of the minority classes. Then we build multiple base classifiers
to deal with these balanced problems and lastly we use an
adaptive ensemble rule to assemble the base classification
results obtained from base classifiers. Common ensemble
rules including Max Rule, Majority Vote Rule, Product
Rule, Min Rule, and Sum Rule were proposed in [11] and
several novel ensemble rules including MaxDistance Rule,
MinDistance Rule, ProDistance Rule, MajDistance Rule, and
SumDistance Rule were put forward in [10]. In [10], the
test results indicate that their methods have a better perfor-
mance compared with many conventional imbalanced data
processing methods over some standard imbalanced data
sets. Meanwhile, the results of their experiments proved that
SplitBal + MaxDistance has a better performance than other
combinations. Throughout this paper, SplitBal + MaxDis-
tance is referred to as SMD.

We have two improvement points for SMD and we define
itas SplitBal + MaxDistanceand AvePr (SMDA), which shares
the same process with SMD except the ensemble rule. By
using base classification algorithms including naive Bayes,
random forest, logistic regression, and SVC [12], empirically,
our proposed method is evaluated over 38 highly imbalanced
data sets. After that, the numerical results show that our
method is superior to SMD.

The rest of this paper is organized as follows. Section 2
introduces the works related to our research. Section 3 shows
the proposed method. Section 4 reports our experimental
procedure, describes details on the setup of experiments, and
analyzes the processed data results. Finally, in Section 5, we
summarize the study and draw the conclusion.

2. Related Work

Over the past decades, the imbalanced data problem has
always been a difficult problem in data mining. There are

TABLE 1: Related work list.

Data level [9,13, 14]
Algorithm level
Ensemble learning [10, 11]
Cost-sensitive learning [15]

also other data characteristics such as data shift [13] and class
overlapping [14], which can influence the performance of
conventional classification algorithms for dealing with imbal-
anced problems. However, we still focus on the imbalance
characteristic between classes.

So far, many measures have been proposed to solve
the binary class imbalance problem [10-14, 16-21]. These
measures can be broadly by data level and algorithm level,
as shown in Table 1. The existing measures can adapt the
imbalanced class in algorithm level, while preprocess of
measures can adjust data from being imbalanced to balanced
in data level. Our methods could be regarded as in algorithm
level; in this section, we will introduce some methods that
belong to algorithm level.

The algorithm level includes cost-sensitive learning,
ensemble learning, and recognition-based learning. (1) Cost-
sensitive learning approaches obtain the lowest classification
error by adjusting the class misclassification cost. MetaCost
[15] is a kind of this algorithm, which uses cost-sensitive
procedure to make the classification algorithm cost-sensitive.
(2) Ensemble learning is used to reduce the variance and bias
by integrating the results of many classification algorithms on
imbalanced data. Representatively, boosting can adaptively
identify the samples, which is classified as error, so it can
obtain a good performance on imbalance problem. Bagging
improves the classification performance by processing the
base classifiers. (3) Autoassociation, RIPPER, and recogni-
tion based learning provide the discrimination model created
on the examples of the target class alone which have been
certified to be effective in dealing with high-dimensional and
complicated binary imbalanced data.

However, these ensemble methods may have some
unavoidable drawbacks such as changing the raw data spa-
tial distribution or lead to overfitting caused by sampling
methods. In addition, these ensemble algorithms may lose the
connection between the test data and training data. In other
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FIGURE 2: Framework of our proposed adaptive ensemble method for handling binary imbalanced data.

words, test data can be classified as the class which is closer
than the spatial distribution distance. Our method avoids
some weaknesses of these traditional imbalanced problems
processing methods mentioned previously by transforming
the imbalanced problem into several balanced ones; thus it is
not like the existing imbalance problems handling methods.
Furthermore, our method takes into account the distance
between data factors in the ensemble rule, because, in theory,
the closer they are, the more similar they are, and our
ensemble method is adaptive, which is different from SMD.

3. Our Proposed Method

Our proposed method includes three parts: data balancing,
modeling, and classifying. Figure 2 describes the frame of
the proposed method. For data balancing, in the process
of our method, we first divide the majority data set into
several parts which are equal to the amount of minority class
data. Then we combine the part with the minority class into
a new balanced data set. So many balanced data sets are

received. For modeling, next, each new balanced data set is
used to create a base classifier with a given base classification
algorithm. As for classifying, lastly, these base classification
results are put into an adaptive ensemble classifier to classify
test data. In the modeling component, we directly apply a base
algorithm to every balanced data set. Subsequently, we will
introduce two procedures of data balancing and classifying as
follows.

3.1. Data Balancing. Existing measures to balance the imbal-
anced data usually lead to the loss of information as well
as overfitting. Therefore, it can be realized to transform
imbalanced data set into multiple balanced data sets without
importing noise data or lessening the raw data. It is well
known that the majority of class data sets are usually more
than the minority in an imbalanced data set. So we divide the
majority class data set into multiple sets, and each set is equal
to minority class in number. Considering the similarities of a
class, we can split the majority class data set into multiple sets
(SplitBal). Then each set is added to the minority class data
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TaBLE 3: The strategies for AdaptiveMaxDistance Rule.

Rule Strategy Rule Strategy
R, = arg max—PiL_ R, = arg max Pa_ | average (P,))
MaxDistance Lsisk Diio~+ ! AdaptiveMaxDistance Lizk "11)‘
R, = arg max——>— R, = arg max——>— + average (P,,)
ik Dip +1 1sisk Dip + &

The distance with
majority class

The distance with
minority class

Test data

b
Ll

F1GURE 3: Figure illustration of the average distance.

set to build a new balanced data set. Lastly, we could obtain
multiple balanced data sets.

3.2. Classifying. After modeling, we can build multiple clas-
sifiers with the processed balanced data acquired from data
balancing. Then we can get some classification results from
these classifiers. Next we combine these classification results
together. Like [9], we make some assumptions as follows:
assume that there are k binary class data sets and two class
labels; the class labels are C; and C,. Then we could get
K base classifiers with a given base algorithm. For the ith
classifier (1 < i < k), it will classify the test data as C,
with the probability P;; and as C, with the probability P,,.
Moreover, R, and R, represent the ultimate ensemble results
for classes C, and C,, respectively. Five ensemble rules and
their description and details are shown in [10]. But these
ensemble rules just adopt the results of the classification
while overlooking the connection between the test data and
training data. The test data tends to be grouped into the
class whose average Euclidean instances are closer to the test
data. A new multilabel classifier that uses neighbor distance
was mentioned in [22]. Considering the average Euclidean
instances between the test data and the training data, five
novel ensemble rules were proposed in [9]. In these ensemble
methods, D;; (1 < i < k, 1 < j < 2) indicate the
average Euclidean distance between new data and the data
with class label C; in the ith data. From Figure 3, we can
learn the process of obtaining D;; with KNN. The details of
MaxDistance are shown in Table 2.

However, in the rules R; = arg max, ;. (p;;/(D;+1)) and
R, = argmax,_;(p,/(D;, + 1)), a fixed value should be
added in the denominator with the purpose of preventing
the average Euclidean distance from being equal to 0. Then

the results of experiment in [10] show that the value can
be defined anywhere from 0 to 1, so they add the distance
with 1. But we argue that the value added to average in the
denominator could be defined with 0, and the value also
should be adaptive from 0 to 1 with different classification
algorithms. The reasons are as follows. (1) The average
distance D;; could not be 0, because from Figure 3 we can
know that it is impossible for the new data to be the same as
all the train data. (2) When we use different base classification
algorithms, the value added to average in the denominator
should be mutative. So we define the added value as «,
which ranges from 0 to 1. (3) From the MaxDistance Rule,
we can find that the effect of P; is weak even though it
has been considered as the best important decision element
in most traditional algorithms. And in [22], we find that
EMLA (average of P;) always has a better performance than
other ensemble rules, so we combine the EMLA with R, =
arg max,;x (p;1/(Dj +@)) and R, = arg max, . (p;o/(Djp +
«)) as shown in Table 3. Finally, the classification results R,
and R, are obtained with the ensemble rules in Tables 2 and
3, respectively. If R; > R,, the test data is considered as C;
otherwise it is considered as C,.

4. Numerical Simulation

In this paper, we have adopted 38 public imbalanced data sets
which came from Keel data set repository [23]. The details of
these 38 data sets are shown in Table 4, including imbalance
radio, total attributes (ATT), total number of data sets, and
the number of minority (positive) class data sets. For more
detailed information about the employed data sets, interested
authors are referred to http://sci2s.ugr.es/keel/imbalanced
.php.

We use the 5-fold cross-validation strategy in the follow-
ing experiment. Four different base classification algorithms,
naive Bayes, random forest, logistic regression, and SVC, were
selected as base classifiers. We use AUC [24] as our algorithm
metric which has more advantages than G-Mean and F-
Measure [25]. In our experiment, every AUC of every data
set will be tested repeatedly and then take an average.

Our study in this paper made up two experiments. The
first experiment is to determine the added value in our rule.
Then the second experiment is to compare the proposed
method SMDA with SMD method when handling the imbal-
anced binary problems using different base classification
algorithms.

Experiment 1. We first use the data set yeast3 (shown in
Table 5) to test the AUC value of our method by using
different values in our ensemble rules. Then we choose the
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TABLE 4: Statistic summary of the 38 highly imbalanced data sets.

Data set ATT Instance Minority IR
(1) Yeast3 9 1484 163 8.10
(2) Ecoli03 8 336 35 8.60
(3) Yeast2vs4 9 514 51 9.08
(4) Ecoli067vs35 8 222 22 9.09
(5) Ecoli0234vs5 8 202 20 9.10
(6) Glass015vs2 10 172 17 9.12
(7) Yeast0359vs78 9 506 50 9.12
(8) Yeast0256vs3789 9 1004 99 9.14
(9) Yeast02579vs368 9 1004 99 9.14
(10) Ecoli046vs5 7 203 20 9.15
(11) Yeast1289vs7 9 947 30 30.57
(12) Ecoli0267vs35 8 224 22 9.18
(13) Glass04vs5 10 92 9 9.22
(14) Ecoli0346vs5 8 205 20 9.25
(15) Ecoli0347vs56 257 25 9.28
(16) Yeast05679vs4 9 528 51 9.35
(17) Vowel0 14 988 90 9.98
(18) Ecoli067vs5 7 220 20 10.00
(19) Glass016vs2 10 192 17 10.29
(20) Led7digit 443 37 10.97
(21) EcoliOlvs5 240 20 11.00
(22) Glass06vs5 10 108 9 11.00
(23) Glass0146vs2 10 205 17 11.06
(24) Glass2 10 214 17 11.59
(25) Ecoli0147vs56 7 332 25 12.28
(26) Ecoli0146vs5 7 280 20 13.00
(27) ShuttlecOvs4 10 1892 123 13.87
(28) Yeastlvs7 8 459 30 14.30
(29) Glass4 10 214 13 15.46
(30) Ecoli04 8 336 20 15.80
(31) Pageblockl3vs4 11 472 28 15.86
(32) Glass016vs5 10 184 9 19.44
(33) Glasss 10 214 9 22.78
(34) Yeast2vs8 9 482 20 23.10
(35) Yeast4 9 1484 51 28.10
(36) Yeast5 9 1484 44 32.73
(37) Ecoli0137vs26 8 281 7 39.14
(38) Yeast6 9 1484 35 41.40

TaBLE 5: The data set of Yeast3.

Data set ATT Instances Minority IR

Yeast3 9 1484 163 8.10

fixed value which can make the best AUC. In experiment,
the values are 0, 0.2, 0.4, 0.6, 0.8, and 1.0. From Figure 4, we
can know that « should be defined as 1, 0, 1, and 0 when the
base classification algorithms are naive Bayes, random forest,
logistic regression, and SVC, respectively.

Experiment 2. Performance results are evaluated in compar-
isons of SDMA and SMD. For every imbalanced data set, the
detailed AUC values for both methods with the four different
base classification algorithms are shown in Table 6. The end
of the row represents the average of AUC values of the two
methods with each classification algorithm. From Figure 5,
we can observe that there are 33 AUC values of SMDA which
are greater than or equal to SMD by using logistic regression.
In addition, 25 AUC values of SMDA are greater than SDMA
using SVC, while they are greater than or equal to SMD using
random forest. It is noticed that 30 AUC values of SMDA are
great than or equal to SMD using naive Bayes. In Figure 6, we
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TaBLE 6: AUC value for SMDA and SMD using different classification algorithms.
DATA Logistic regression SvC Random forest Naive Bayes
SMDA SMD SMDA SMD SMDA SMD SMDA SMD
Yeast3 0.9617 0.9600 0.9521 0.8529 0.9757 0.9773 0.9093 0.8355
Ecoli03 0.9259 0.9309 0.9211 0.8997 0.9415 0.9349 0.8955 0.9037
Yeast2vs4 0.9206 0.9192 0.9211 0.8655 0.9755 0.9720 0.8798 0.8487
Ecoli067vs35 0.9497 0.8697 0.8508 0.8677 0.9551 0.9594 0.8433 0.8326
Ecoli0234vs5 0.9398 0.8809 0.9396 0.9425 0.9873 0.9845 0.7885 0.8595
Glass015vs2 0.5556 0.5644 0.7600 0.7033 0.8033 0.7678 0.7022 0.6877
Yeast0359vs78 0.8044 0.7877 0.7012 0.5987 0.8334 0.8457 0.7312 0.6032
Yeast0256vs3789 0.8443 0.8429 0.8190 0.7928 0.8473 0.8393 0.7156 0.6893
Yeast02579vs368 0.9380 0.9379 0.9142 0.8958 0.9579 0.9589 0.9214 0.8251
Ecoli046vs5 0.9593 0.9343 0.9283 0.9523 0.9903 0.9861 0.8924 0.8792
Ecoli0267vs35 0.9198 0.8932 0.8315 0.8797 0.9373 0.9382 0.8369 0.8286
Glass04vs5 0.9538 0.9470 0.9667 0.9667 1.0000 1.0000 0.9875 0.9875
Ecoli0346vs5 0.9444 0.8375 0.9278 0.9486 0.9833 0.9819 0.8931 0.8986
Ecoli0347vs56 0.9388 0.8982 0.9178 0.9371 0.9720 0.9712 0.8896 0.8957
Yeast05679vs4 0.8479 0.8437 0.8333 0.7439 0.9142 0.9134 0.7835 0.7151
Vowel0 0.9833 0.9826 0.9992 0.9997 0.9991 0.9988 0.9715 0.9340
Ecoli067vs5 0.8910 0.8359 0.9308 0.9231 0.9654 0.9731 0.8064 0.8385
Glass016vs2 0.6529 0.6265 0.7211 0.6760 0.7824 0.7770 0.6897 0.6843
Led7digit 0.9530 0.9525 0.9619 0.9615 0.9549 0.9538 0.9462 0.9427
Ecoli0lvs5 0.9767 0.9580 0.9488 0.9453 0.9872 0.9918 0.8581 0.8186
Glass06vs5 0.9094 0.8404 0.9839 0.9739 1.0000 1.0000 1.0000 1.0000
Glass0146vs2 0.7048 0.6663 0.7336 0.7324 0.8276 0.8480 0.7287 0.7169
Glass2 0.6923 0.6752 0.8447 0.8175 0.8213 0.8011 0.7252 0.7293
Ecoli0147vs56 0.9393 0.9016 0.9236 0.9255 0.9736 0.9742 0.8076 0.8045
Ecoli0146vs5 0.9412 0.9284 0.9480 0.9500 0.9863 0.9882 0.8076 0.8045
ShuttlecOvs4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9757 0.9757
Yeastlvs7 0.8273 0.8268 0.7849 0.6529 0.8306 0.8368 0.7835 0.6054
Glass4 0.9316 0.8585 0.9595 0.9662 0.9663 0.9655 0.8688 0.8814
Ecoli04 0.9831 0.9815 0.9911 0.9100 0.9928 0.9928 0.9203 0.9428
Pageblockl3vs4 1.0000 0.9985 0.7889 0.9119 0.9984 0.9968 0.9623 0.8959
Glass016vs5 0.8912 0.8765 0.9526 0.9559 0.9912 0.9882 1.0000 1.0000
Glass5 0.8725 0.8600 0.9350 0.9230 0.9925 0.9875 0.9950 0.9950
Yeast2vs8 0.8574 0.8546 0.7663 0.7256 0.8806 0.8795 0.8038 0.7758
Yeast4 0.8740 0.8743 0.8692 0.8154 0.9307 0.9277 0.8368 0.7837
Yeast1289vs7 0.7782 0.7776 0.6606 0.5877 0.7960 0.7974 0.7741 0.5185
Yeast5 0.9803 0.9859 0.9827 0.9373 0.9912 0.9912 0.9861 0.9524
Ecoli0137vs26 0.9164 0.9385 0.9443 0.9702 0.9611 0.9684 0.9572 0.9084
Yeast6 0.9254 0.9235 0.9273 0.8529 0.9482 0.9478 0.9516 0.9394
Average 0.8919 0.8729 0.8879 0.8674 0.9382 0.9370 0.8654 0.8386

can see that the average AUC values of our method are greater
than SMD overall. Therefore, we can obtain that that SMDA
has a better performance than SMD in dealing with the data
sets mentioned above.

5. Conclusion

An adaptive ensemble method based on spatial characteris-
tics for dealing with the binary class imbalanced problems

has been given in this paper. Different from the existing
methods mentioned in this paper, our method firstly uses an
adaptive ensemble rule for dealing with imbalanced binary
problem. Furthermore, our method neither alters the raw
data distribution nor suffers from unexpected mistakes or
data loss.

Our method applies random splitting to the majority
class instances to transform the imbalanced binary class
data into multiple balanced binary class data. After that, we
use a base classification algorithm to build multiple base
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FIGURE 5: The performance comparison of SMDA (our proposed)
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classifiers. Finally, we use the proposed adaptive ensemble
rule to assemble the classification results received from base
classifiers. The experimental results show that (i) the added
variable value to the distance in our methods is adaptive,
which changes with the classification algorithm and ranges
from 0 to 1, and (ii) our ensemble rule SMDA has a better
performance than SMD, so we could obtain that the proposed
method currently performs better than the existing methods
mentioned in this paper.
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