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Abstract. We compute the fermionic contribution to the strong coupling αqq extracted
from the static force in Lattice QCD up to order g4 in perturbation theory. This allows
us to subtract the leading fermionic lattice artifacts from recent determinations of αqq

produced in simulations of two dynamical charm quarks.
Moreover, by using a suitable parametrization of the βqq-function, we can evaluate the
charm loop effects on αqq in the continuum limit.

1 Introduction

Many simulations of QCD are carried out with 2 + 1 dynamical quarks, taking into account only the
effects of light sea quarks (up, down, strange). So far, this kind of approach has provided really good
results and its simulation costs are affordable with modern computer facilities.

However, the discovery of new charm-states in experiments like Belle, CLEO and BABAR has
made charm physics really appealing in the last few years and including a dynamical charm quark in
Lattice QCD simulations could help us understand better the properties of these new states.

Although nowadays new supercomputers allow to simulate the 2 + 1 + 1 flavor theory, we know
[1, 2] that the effects of a dynamical charm quark are small on low energy quantities, thus a high
statistical precision is needed to disentangle them. Moreover, to resolve the small correlation length
associated with a charm quark, really fine lattices are required to control the extrapolation to zero
lattice spacing. Therefore it is interesting to understand for which kind of observables it is more
worthwhile including a charm quark in simulations of QCD.

In this work, we evaluate the charm loop effects on the strong coupling αqq, whose definition is

αqq(r) ≡ 1
CF

r2V ′(r), (1)

where CF = 4/3, r is the distance between a static quark-antiquark pair and V ′(r) ≡ dV
dr is the derivative

of the static potential V(r) with respect to the distance. The static force F(r) = V ′(r) can also be used
to measure a hadronic scale r0 defined through r2F(r)|r=r0 = 1.65 [3]. Our first results about these
studies can be found in [4], where we saw that charm loop effects on αqq become significant at about 2

�Talk given at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain. The title of the
talk at the conference was “Computation of αqq in QCD (N f = 2) using Lattice Perturbation Theory”.
��Speaker, e-mail: scali@uni-wuppertal.de

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 175, 10002 (2018)	 https://doi.org/10.1051/epjconf/201817510002
Lattice 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192449044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GeV. Here we extend our previous results, considering an additional dynamical ensemble, subtracting
the leading fermionic lattice artifacts from our non-perturbative data and taking the continuum limit
of αqq through a convenient parametrization of the βqq-function.

2 Numerical setup

To evaluate the dynamical charm effects on αqq, we compare QCD (Nf = 2), with two heavy degen-
erate quarks having the charm mass Mc, to quenched QCD, namely QCD (Nf = 0).

As a lattice discretization, we consider Wilson’s plaquette gauge action [5] and a clover improved
doublet of twisted mass Wilson fermions [6, 7]. At maximal twist, the inclusion of a clover term is
not needed for O(a) improvement of physical observables, but it reduces the O(a2) lattice artifacts
[8]. Moreover, we choose open boundary conditions in the time direction and periodic boundary
conditions in spatial directions.

To generate the dynamical ensembles, the bare coupling g is chosen such that the lattice spacings
cover the range 0.23 fm < a < 0.36 fm, whereas the hopping parameter κ is set to its critical value
to achieve maximal twist. Finally, the twisted mass parameter µ is chosen such that the RGI mass in
our simulations corresponds to the charm mass Mc. The pure gauge theory is simulated at similar or
smaller lattice spacings, setting the scale through the hadronic quantity r0 as described in [9].

In particular, we study1 three quenched ensembles at β = 6/g2 = 6.34, 6.672, 6.90 and three
dynamical ensembles at β = 5.70, 5.88, 6.00 and M/Λ = 4.87, where M/Λ is the ratio of the RGI
mass to the Λ parameter. All the simulation parameters of these ensembles are listed in Table 1 of
Ref. [11]. For further details we refer to [4, 11].

3 Computation of the static force

In this section we summarize the main steps that lead us to the computation of the strong coupling αqq

in QCD (Nf = 2) at M = Mc and QCD (Nf = 0).

3.1 Non-perturbative calculation

From the definition of αqq in the continuum, given in Eq. (1), it is clear that a lattice regularization of
the derivative of the static potential V(r) is needed. The most natural choice would be

F(rnaive) =
1
a

(V(Ra) − V(Ra − a)) ,
rnaive

a
= R − 1

2
, (2)

where the static potential V(Ra) can be extracted from the expectation value of a rectangular Wilson
loop W(R, T ) in the limit of infinite time separation, T → ∞. However, it has been shown [3, 9] that
it is better to introduce an improved distance rI such that the static force has no cutoff effects at the
tree-level in perturbation theory, namely

F(rI) =
1
a

(V(Ra) − V(Ra − a)) = CF
g2

4πr2
I

+ O(g4a2). (3)

A table of the improved distances for unsmeared links is provided in [9].

1Both quenched and dynamical ensembles have been produced using the program openQCD [10], available at http://luscher.
web.cern.ch/luscher/openQCD/.
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Here, in order to reduce the typical gauge noise which affects the measurements of V(Ra) at
large distances we follow Ref. [12]. In particular, before we measure the Wilson loops, all the gauge
links are replaced by HYP2-smeared ones [13], which correspond to the following choice of the
smearing HYP-parameters: α1 = 1.0, α2 = 1.0, α3 = 0.5. The static potential aV(Ra) is extracted
with great accuracy by smearing the initial and final lines of rectangular Wilson Loops up to four
levels of HYP-smearing and then solving a generalized eigenvalue problem [14]. Since the improved
distances rI depend on the static quark action, we make use of the values of rI for HYP2-smeared
links listed in Table 2 of [12]. Wilson loops have been computed using B. Leder’s program available
at https://github.com/bjoern-leder/wloop/.

3.2 Perturbative calculation

One of the goals of this work is to subtract the leading fermionic lattice artifacts from the non-
perturbative measurements of αqq realized on our dynamical ensembles.

For this purpose, first we compute the fermionic contribution to the static force up to order g4

in perturbation theory. Then we extract the leading lattice artifacts comparing our calculations to the
one-loop predictions of the continuum theory [15]. Such a computation has been performed in [16, 17]
for clover improved Wilson fermions using unsmeared links. Here we adopt the same strategy, but
we have to consider a clover improved doublet of twisted mass Wilson fermions and HYP2-smeared
links. We just summarize the main ideas and we refer to [16, 17] for further details.

The perturbative expansion of a Wilson loop W(R, T ) can be written as

W(R, T ) = 1 − g2W2(R, T ) − g4W4(R, T ) + O(g6). (4)

W2(R, T ) involves only gluons, whilst W4(R, T ) can be splitted into two terms

W4(R, T ) = Wg4 (R, T ) +W f
4 (R, T ), (5)

where Wg4 (R, T ) comes from the pure-gauge theory and W f
4 (R, T ) is a purely fermionic contribution.

Once W2(R, T ) and W4(R, T ) have been calculated, it is possible to access the perturbative expan-
sion of the static potential and the static force up to order g4. Finally, converting to the MS scheme
we can rewrite F(rI) as

F(rI) =
CFαMS (1/rI)

r2
I

[
1 + f1(z, a/rI)αMS (1/rI) + O(α2

MS
)
]
, (6)

with

f1(z, a/rI) = f1,g(a/rI) +
N f∑
i=1

f1, f (zi, a/rI), zi = z = rImi, (7)

where Nf is the number of flavors and mi are the quark masses. Since the corresponding continuum
expressions f1,g(0) and f1, f (z, 0) are known [15, 17], it follows that the relative lattice artifacts can be
written as

F(rI) − Fcont(rI)
Fcont(rI)

=

δ(1,g)F (a/rI) +
Nf∑
i=1

δ
(1, f )
F (zi, a/rI)

 g2
MS

(1/rI) + O(g4
MS

), (8)

where

4πδ(1,g)F (a/rI) = f1,g(a/rI) − f1,g(0), 4πδ(1, f )
F (zi, a/rI) = f1, f (zi, a/rI) − f1, f (zi, 0). (9)
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Figure 1: The left panel shows the calculation of 4πδ(1, f )
F for unsmeared (empty markers) and HYP2-

smeared links (full markers) choosing the same lattice discretization as our dynamical ensembles.
In the right panel we subtract the leading lattice artifacts from our non-perturbative data of αqq (full
markers) and we compare to the unsubtracted ones (empty markers). αPT is a perturbative 4-loop
calculation of αqq in QCD (Nf = 0), using the Λ parameter from [19].

In this work we only focus on the fermionic term 4πδ(1, f )
F of Eq. (9), as the calculation of the

gluonic term becomes much more intricate when using HYP-smeared links and it would need some
extra care2. Moreover, as we will see in Section 4, our continuum extrapolation of αqq is already
accurate enough and allows to clearly distinguish the charm-loop effects on αqq at high energies. This
part of the calculation has been carried out using our computer package written in Mathematica. The
fermionic contribution to the static force has been calculated for a sequence of finite lattice sizes
(L = [16, 64]) and then extrapolated to infinite volume.

3.3 One-loop cutoff effects

In this section we summarize our numerical results concerning the extraction of the leading fermionic
lattice artifacts. The calculation has been realized for unsmeared and HYP2-smeared links, in order
to see what are the main differences between these two cases.

On the left hand side of Figure 1 we show the calculation of 4πδ(1, f )
F using the lattice parameters of

our dynamical ensembles. We see clearly that at large distances in lattice units unsmeared and HYP2-
smeared links produce similar effects, while at small distances using HYP2-smeared links gives rise to
larger lattice artifacts. Moreover, as we expect, these unwanted effects become smaller when β→ ∞.
To obtain the relative size of the lattice artifacts, 4πδ(1, f )

F must be multiplied by g2
MS

(see Eq. (8)) and
this means, at our lattice spacings, that we observe around 5% effects.

The second step is to subtract the leading lattice artifacts from our non-perturbative data of αqq.
The result of this procedure is depicted in Figure 1 (r.h.s), where also a comparison with the unsub-
tracted data is shown. The most evident effect of this subtraction is that data corresponding to similar
physical distances are closer to each other compared to the unsubtracted ones, as we can see clearly
from the measurements of αqq at around 0.38 r/r0. This is encouraging because it is a signal that the
size of the lattice artifacts has been reduced considerably.

2For the calculation of the gluonic term with unsmeared links, we refer to [18].
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4 Continuum limit

The last part of this work is aimed at extracting the continuum limit of αqq in QCD (Nf = 2) at M = Mc

and QCD (Nf = 0), in order to evaluate how large the charm loop effects are on this observable.

4.1 Strategy

Studying the step scaling function σ [20] can provide a powerful tool to reach this purpose. If f is a
fixed scale factor, σ( f , u) measures how much the coupling changes when the distance scale changes
by a factor f

σ( f , u) = g2
qq( f × r)|g2

qq(r)=u. (10)

Then, from the definition of the βqq-function

βqq = −r
∂gqq

∂r
, (11)

one arrives at the exact relation

log ( f ) = −
∫ √σ( f ,u)

√
u

dx
βqq(x)

. (12)

Eq. (12) is only true in the continuum, but following [21] we parametrize βqq and the cutoff effects in
such a way that the continuum limit of αqq can be easily extracted from our lattice simulations.

Let us introduce the following parametrization of βqq, which is not motivated by perturbation
theory, but it allows to parametrize our data really well:

βqq = −
g3

qq

P(g2
qq)
, P(gqq) = p0 + p1g

2
qq + p2g

4
qq + · · · . (13)

This choice permits to rewrite Eq. (12) as

log ( f ) = − p0

2

[
1

σ( f , u)
− 1

u

]
+

p1

2
log
[
σ( f , u)

u

]
+

nmax∑
n=1

pn+1

2n
[
σn( f , u) − un] , (14)

where 2 × (nmax + 1) is the degree of the polynomial P(gqq).
However, on a lattice one can only measure an approximation Σ( f , u, a/r0) of the step scaling

function σ( f , u) such that
lim
a→0
Σ ( f , u, a/r0) = σ( f , u). (15)

This means that if we want to extract the coefficients p0, p1, . . . , pnmax+1 of our parametrization of βqq

from lattice simulations, instead of Eq. (14) we have to use

log ( f )+ h = − p0

2

[
1

Σ( f , u, a/r0)
− 1

u

]
+

p1

2
log
[
Σ( f , u, a/r0)

u

]
+

nmax∑
n=1

pn+1

2n
[
Σn( f , u, a/r0) − un] , (16)

where h ≡ h( f , u, a/r0) is a particular function that depends, other than f and u, on the lattice spacing
a. Since we expect cutoff effects proportional to a2/r2

0, we choose to parametrize h( f , u, a/r0) as

h( f , u, a/r0) = ρ( f , u) × a2

r2
0

, ρ( f , u) =
nρ−1∑
i=0

ρi( f )ui. (17)
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Thus, we can estimate the coefficients pi of βqq performing a global best-fit to our data at different
lattice spacings through the Eqs. (16) and (17). The continuum extrapolation of αqq can be realized
solving the ODE which follows from the definition of the βqq-function (Eq. (11)). Since this requires
the choice of an initial condition (or the value of the Λ parameter for both theories), we need to know
the value of αqq at a reference distance rre f in the continuum limit. This can be achieved by using an
interpolation function for the static force [9]

F(rre f ) = f1 + f2r−2
re f (18)

between the two neighboring points. Setting rre f = 0.75r0 and taking the continuum limit of the
interpolations realized at different lattice spacings we obtain

• Nf = 0: αqq(0.75r0) = 0.7947(28), χ2/Ndo f = 0.13 (constant fit);

• Nf = 2: αqq(0.75r0) = 0.8076(20), χ2/Ndo f = 0.27 (constant fit).

4.2 Results of the best-fits

Before showing our final results, we begin this section with a few remarks. Using improved distances
rI , it is not possible to keep the factor f exactly constant. However, we have seen that choosing
f ∈ [2.03, 2.10] and f ∈ [1.94, 2.10] for our quenched and dynamical ensembles respectively produces
acceptable best-fits for a large number of parametrizations of βqq and ρ(u), see Eqs. (13), (17). The
widths of these ranges depend in some manner on the lattice spacings and on the explored distances,
therefore some attempts were needed before arriving at the ranges above-mentioned.

We tried different types of (correlated) best-fits, varying the number of parameters both in the
parametrization of the βqq-function and in the function ρ(u) that parametrizes the cutoff effects. We
only show the parametrizations that provide an acceptable chi-squared using the minimum number of
parameters, underlining that we obtain compatible results for different best-fits.

Theory p0 p1 p2 p3 × 102 p4 × 103 p5 × 105 ρ0
χ2

Ndo f

N f = 0 16.07(78) −3.33(44) 0.610(86) −4.04(71) 1.21(25) −1.32(31) 0.96(43) 21.31
20

Nf = 2 14.64(50) −1.99(22) 0.308(32) −1.32(18) 0.192(33) 0.85(26) 24.67
24

Nf = 2
(subtr.) 15.84(52) −2.25(23) 0.329(33) −1.38(18) 0.198(33) 0.22(25) 18.17

24

Table 1: Results of the continuum extrapolation in Nf = 0 and Nf = 2 theories. In the second row
we show the results obtained with the original non-perturbative data, while in the third row the ones
obtained subtracting the leading fermionic lattice artifacts.

Table 1 summarizes the results of our continuum extrapolations. The numbers listed in the table
have been produced using 6 parameters for βqq and 1 for ρ(u) in quenched QCD (thus 6+1 parameters
on the whole), whilst 5+ 1 parameters have been used in QCD (Nf = 2). For equal number of param-
eters, subtracting the leading fermionic lattice artifacts for the 2 flavor theory produces a bit smaller
relative errors and a better chi-squared. Moreover, we can see that the coefficient ρ0, introduced to
parametrize the cutoff effects, is compatible with zero when the one-loop fermionic lattice artifacts are
subtracted. Expanding (13) in powers of gqq, we can rewrite βqq in a way similar to the one motivated
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Figure 2: In the left panel a comparison of αqq in QCD (Nf = 2) at M = Mc and quenched QCD
is shown. The blue circles and the red squares denote the measurements of αqq produced with our
finest lattices in Nf = 0 and Nf = 2 theories respectively. The blue and red bands stand for the
continuum extrapolations obtained using three different lattice spacings for both theories. The widths
of the bands originate from the errors on the data and their correlation is taken into account. The right
panel shows instead a comparison between our continuum extrapolation of αqq in quenched QCD (the
blue band) and the one obtained in a previous work [9] (the red circles) using a different strategy. The
dashed black lines are the predictions in perturbation theory up to four loops. The spread of the lines
comes from the uncertainty in the Λ parameter.

by perturbation theory. In particular, the first two coefficients are given by

βqq = −g3
qq

 1
p0
− p1

p2
0

g2
qq

 + O(g7
qq) ≡ −g3

qq

(
b0 + b1g

2
qq

)
+ O(g7

qq). (19)

This allows us to identify b0 ≡ 1/p0 and b1 ≡ −p1/p2
0. From our continuum extrapolation of the

quenched theory we obtain b0 = 0.062(3) and b1 = 0.013(3). These estimates deviate a bit from the
perturbative results for Nf = 0 (b0 =

11
(4π)2 ≈ 0.070 and b1 =

102
(4π)4 ≈ 0.004), but this is something

that we could expect because the parameters pi have been estimated in a range which is far away
from the domain of validity of perturbation theory (αqq < 0.20 in case of a 4-loop calculation). Once
we know the parameters of the βqq-function, the continuum limit of αqq can be easily extracted and
our final results are depicted in Figure 2. On the left hand side a comparison of αqq in Nf = 0
and Nf = 2 (subtracting the leading fermionic lattice artifacts) theories is shown, where we use
r/r0(Mc) on the x-axis for the dynamical points. We see that the continuum limits are accurate enough
to distinguish the dynamical charm effects on αqq at distances r/r0 � 0.5. In the right panel we
compare our continuum extrapolation of αqq in quenched QCD to the one obtained in Ref. [9] and the
predictions of perturbation theory up to four loops. We observe a really good agreement with [9] and
with perturbation theory at αqq � 0.20.

5 Conclusions and Outlook
In this work we have focused on evaluating the one-loop cutoff effects of a dynamical charm quark on
αqq using HYP2-smeared links. We see that these effects are small, but HYP2-smeared links produce
bigger lattice artifacts compared to unsmeared links at small distances in lattice units.
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We have also tried to extract the continuum limit of αqq studying the step scaling function σ.
This strategy allowed us to evaluate the dynamical charm effects on αqq and for quenched QCD we
find a really good agreement with perturbation theory at high energies and Ref. [9] at low energies.
Our continuum extrapolations also indicate that the dynamical charm effects on αqq are significant at
distances r/r0 � 0.5.

In future we plan to extend these measurements to other values of quark masses to study the
mass-dependence of the strong coupling αqq.
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