
Research Article
Adaptive CGFs Based on Grammatical Evolution

Jian Yao, Qiwang Huang, and Weiping Wang

College of Information System and Management, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jian Yao; markovyao@163.com

Received 29 July 2015; Revised 23 November 2015; Accepted 26 November 2015

Academic Editor: Andrzej Swierniak

Copyright © 2015 Jian Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer generated forces (CGFs) play blue or red units in military simulations for personnel training and weapon systems
evaluation. Traditionally, CGFs are controlled through rule-based scripts, despite the doctrine-driven behavior of CGFs being
rigid and predictable. Furthermore, CGFs are often tricked by trainees or fail to adapt to new situations (e.g., changes in battle
field or update in weapon systems), and, in most cases, the subject matter experts (SMEs) review and redesign a large amount of
CGF scripts for new scenarios or training tasks, which is both challenging and time-consuming. In an effort to overcome these
limitations and move toward more true-to-life scenarios, a study using grammatical evolution (GE) to generate adaptive CGFs for
air combat simulations has been conducted. Expert knowledge is encoded withmodular behavior trees (BTs) for compatibility with
the operators in genetic algorithm (GA). GE maps CGFs, represented with BTs to binary strings, and uses GA to evolve CGFs with
performance feedback from the simulation. Beyond-visual-range air combat experiments between adaptive CGFs and nonadaptive
baseline CGFs have been conducted to observe and study this evolutionary process. The experimental results show that the GE is
an efficient framework to generate CGFs in BTs formalism and evolve CGFs via GA.

1. Introduction

Traditionally, computer generated forces (CGFs) in military
simulation are controlled through rule-based scripts, such
as simple rules, decision trees, and finite state machines
(FSMs) [1]. However, these predefined rule-based CGFs lack
the ability to adapt to changes in situations (e.g., an update
of weapon systems or atypical enemy tactics) in analysis
simulation [2]. CGFs are often tricked by trainees who
quickly identify and exploit the weaknesses in unchanged
scripts, resulting in degrading training effects [3]. In most
cases, the SMEs rewrite behavior scripts to adaptCGFs to new
scenarios or training tasks. It is costly and time-consuming to
create, test, and maintain a large amount of scripts, especially
in complex domain simulations, such as air combat [4].

The evolutionary process to adapt CGFs to complex mili-
tary simulations is essentially Darwinian as the computation
techniques are inspired by biological mechanisms, known
as “survival of the fittest,” providing a promising method
to generate adaptive CGFs. Grammatical evolution (GE) is
an evolutionary computation technique [5] which separates
the search and solution spaces with user-specified grammar

(usually grammar in Backus-Naur form).The domain knowl-
edge is extracted and encoded with grammar to form pheno-
typic solutions. Through a genotype-to-phenotype mapping
process based on the grammar, phenotypic solutions are
transformed into a population of genotypic binary strings
to evolve via genetic algorithm (GA) [6]. As GA is an inde-
pendent evolutionary algorithm, SMEs focus their primary
attention on encoding domain knowledge with this specified
grammar.

Behavior trees (BTs) are a more modular, scalable, and
reusable alternative to FSM in the development of Artificial
Intelligence (AI) component [7]. The inherent modularity of
BTs enables SMEs to decompose a complex task into simple
tasks (subtrees) in a hierarchical way and build hierarchies
(i.e., behavior trees) for different applications with low level
task modules. All task modules are largely self-contained
and have a common interface [8]; therefore, knowledge
represented in BTs formalism is compatible with the genetic
operators in GA. Further, as the task decomposition and
action sequences are well organized in BTs formalism, CGFs
models represented with BTs are easy for SMEs to read
directly and validate with doctrine and experience.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 197306, 11 pages
http://dx.doi.org/10.1155/2015/197306

2 Mathematical Problems in Engineering

In this paper, we introduceGE to generate adaptive CGFs,
in which domain knowledge is encoded with BTs grammar
in a modular and readable way, allowing both CGFs and
domain knowledge to evolve with GA. To explore the benefits
of our approach, experiments between adaptive CGFs and
nonadaptive doctrine-driven CGFs are conducted to study
this evolutionary process.

The outline of this paper is as follows: Section 2 is an
overview of our proposed framework to generate adaptive
CGFs with GE. Section 3 introduces BTs and details their
specific application to air combat. Section 4 presents GE
technique to evolve CGFs, followed by beyond-visual-range
(BVR) air combat experiments to validate our method and
also the analysis of the experimental results in Section 5.
Conclusions and the future works are presented in Section 6.

2. Related Work

In most military simulation systems, CGFs are rule-based
scripts (e.g., EADSIM [9], TACBRAWLER [10], and JROADS
[11]), which are often criticized for their inability to adapt
to changes in the environment or deal with novel situations.
Many different approaches have been introduced to improve
the adaptivity of CGFs.

TacAir-Soar [12] adopted Soar Architecture [13] to
encode intelligent behavior in air combat simulation.
Although Soar is an effective production rule system to
generate behavior, the static and nonchanging rule-based
domain knowledge limits adaptivity. Toubman et al. applied
dynamic scripting algorithm to generate behavior, which
selected high weight rules from a rule base to build behavior
scripts for combat simulation; then the results were fed back
to update the weight of rules. This process continued until a
reliable script is reached. Both single player and coordinate
team behaviors created by dynamic scripting were tested in
[14, 15]. Teng et al. proposed FALCON [16] architecture based
on self-organizing neural network to evolve strategies in 1-v-1
dogfight training simulation. The proposed models showed
significant improved adaptivity and higher performance in
human-in-the-loop (HIL) experiments. The Smart Bandits
project applied AI methods, such as cognitive modeling and
machine learning, to generate human-like CGFs for air-to-
air tactical training [17]. The main principle behind these
systems is offline learning, adjusting the weights of rules with
feedback from simulation. However, CGFs represented with
weighted rule-sets models or neural network models were
black box systems, from which it was difficult for SMEs to
read the internal logics. As a result, SMEs could not produce
a clear explanation of the relationship between behaviors and
models. In practice, behaviors generated by these models are
hard to analyze and validate [1].

Further research into building adaptive CGFs focused
on mathematical models for decision-making. Virtanen et
al. applied Game Theory to study optimal maneuvers in
within-visual-range (WVR) air combat [18]. McGrew et
al. proposed approximate dynamic programming (ADP) to
compute near-optimalmaneuvering decisions forUnmanned
Aircraft System (UAS) [19]. However, due to the sheer
number of variables, it is hard to build such a mathematic

decision model that can consider all the aspects of air
combat, including maneuver, fire control, and electric device
operation, especially complex team tactics.

Recently, Air Force Research Lab (AFRL) Warfighter
Readiness ResearchDivision launched aNot-So-GrandChal-
lenge (NSGC) project with industry teams to assess the
capability of CGFs to adapt and exhibit realistic behavior, in
an attempt to offer rapid adaptive realistic behavior modeling
method for pilot training and rehearsal [20].

3. The Grammatical Evolution Approach

This section presents an overview of our proposed framework
to generate adaptive CGFs with GE, including primary works
to utilize GE and the process to evolve CGFs.

To utilize GE in air combat simulations, three primary
works have to be undertaken. First, a syntax in Backus-Naur
form (BNF) is defined, using BTs formalism to encode air
combat domain knowledge. Then, a knowledge base (KB) is
built with State-Action Space and classical tactics from both
doctrine and expertise. Last, amapping process between BNF
grammar and integer strings is defined to run the GA. The
details are presented in Sections 4 and 5.

The grammatical evolution approach to generating adap-
tive CGFs for air combat simulation proceeds as follows.
First, SMEs build initial CGFs with modules in KB. Then,
the CGFs are translated into integer strings to generate new
CGFs with GA operators (inheritance, mutation, selection,
and crossover). New CGFs are translated back into BTs as
input to conduct air combat within simulation systems. The
results of combat are measured to evaluate the fitness of
CGFs, which are fed back to direct the GA operators. Figure 1
shows the evolutionary process of CGFs.

4. Behavior Trees for Domain Knowledge
Representation

4.1. Behavior Trees. Behavior trees (BTs) originated from the
computer game industry as a more modular, scalable, and
reusable alternative to FSM in the development of Artificial
Intelligence (AI) components [7]. Recently, the robotics com-
munity has shown great interest in BTs as a modular control
formalism for UAVs and complex robots [21]. Colledanchise
and Ögren provided a specific mathematical formula for BTs
and further analyzed the safety, efficiency, and robustness of
composite BTs [22].

A BT is a directed rooted tree defined as a two-tuple 𝐵𝑇 =
⟨𝑉, 𝐸⟩, where

𝑉 = 𝐴∪𝐶∪𝑁∪𝜏 is the finite set of nodes with action
nodes 𝐴, condition nodes 𝐶, control flow nodes 𝑁,
and a root node 𝜏;
𝐸 ⊂ 𝑉×𝑉 is a finite set of edges, ∀⟨V

𝑖
, V
𝑗
⟩ ∈ 𝐸, V

𝑖
, V
𝑗
∈

𝑉; V
𝑖
is parent node of V

𝑗
, while V

𝑗
is child of V

𝑖
.

The execution of a BT proceeds as follows. The root
node sends signals called ticks to its children at a certain
frequency.This tick is then passed down to leaf nodes (Action
or Condition) with the guide of control flow nodes. Once a

Mathematical Problems in Engineering 3

CGFs in binary strings

CGFs in binary strings

010010101010

11110010101010

· · ·

010010100

Translate

Translate

Initialize

GA operators

Selection

Crossover

Mutation

Inheritance

010101010

1111011111010

· · ·

010011111100

Calculate fitness

Knowledge base

Build

Initial CGFs in BTs

Air combat simulator

New CGFs in BTs

Input Generate

?

→

A1

A2

C1

→

Guarantee
altitude above

1000ft

Perform
mission

Avoid
ground

Collision
warning

⇢

?

No pass
No reverse

Large
margins

Pass
No reverse

Large
margins

Pass and
reverse
Large

margins

Pass and
reverse

Medium
margins

Pass and
reverse
Small

margins

Drive off
road CGF2

CGF1

→

?

Switch
perspective

Find
table

Detect
objects on

table

Verify
hammer

pose

?

No pass
No reverse

Large
margins

Pass
No reverse

Large
margins

Pass and
reverse
Large

margins

Pass and
reverse

Medium
margins

Pass and
reverse
Small

margins

Drive off
road

CGF1
CGF2

· · ·

?

→ → →

Facing wrong
way

At
parkinglot

At
intersection U-turn

Follow
lanes

Over take
obstacle

Handle
intersection

Handle
parkinglot

?

?

⇢

⇢

⇢

⇢

⇢

⇢

CGFn
Combat pilot

behavior

Collision
warning

Avoid
ground

Missile
warning

Enemies in
range

Odds ok Do combat

disEngage

Bingo fuel Fly home

Do
patrolling/

strike/
surveillance

Fly home

Evasive
maneuvre

· · ·

→

?

Switch
perspective

Find
table

Detect
objects on

table

Verify
hammer

pose

CGFn

VID-6
(60/60)

26k

9k Flank 045
∘

at 35NM
for 2min

25k

Figure 1: Process to generate adaptive CGFs.

leaf node receives a tick and executes its task, it returns to
its parent status 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 if its execution has not finished
yet, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 if it has achieved its goal, or 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 otherwise,
and Condition queries about the state and Action performs a
specific task in the execution.

Control flow nodes are typically Selector, Sequence, Paral-
lel, and Decorator; the first executes all its children from left
to right until one fails, while the second executes its children
until one succeeds. A Parallel node executes all its children
sequentially, returns 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 if a given number of children
return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠, returns 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 if the remaining running
children are not enough to reach the given number, even if
they are all going to succeed, and returns 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 otherwise.
TheDecorator sets constraints to pass ticks to its children.The
algorithms of BTs nodes are presented in Algorithms 1–7.The
symbols are 𝑆 (𝑆𝑢𝑐𝑐𝑒𝑠𝑠), 𝐹 (𝐹𝑎𝑖𝑙𝑢𝑟𝑒), 𝑅 (𝑅𝑢𝑛𝑛𝑖𝑛𝑔) ⊆ 𝑋, State
Space𝑋(𝑡) ∈ 𝑋, and control signals 𝑈(𝑡) ∈ 𝑈.

4.2. Encode Air Combat Domain Knowledge with BTs. Doc-
trine and expertise are the main source of domain knowledge
in building CGFs for complex combat simulations. It ranges
from low level device operations to high level tactics drawn
from SMEs with real combat experience. In this research, we

for 𝑖 ← 1 to𝑁 do
𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑖𝑐𝑘(𝑐ℎ𝑖𝑙𝑑(𝑖));
if 𝑠𝑡𝑎𝑡𝑒 == 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 then
return 𝑅𝑢𝑛𝑛𝑖𝑛𝑔;

if 𝑠𝑡𝑎𝑡𝑒 == 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 then
return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠;

return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

Algorithm 1: Selector.

for 𝑖 ← 1 to𝑁 do
𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑖𝑐𝑘(𝑐ℎ𝑖𝑙𝑑(𝑖));
if 𝑠𝑡𝑎𝑡𝑒 == 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 then
return 𝑅𝑢𝑛𝑛𝑖𝑛𝑔;

if 𝑠𝑡𝑎𝑡𝑒 == 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then
return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠;

Algorithm 2: Sequence.

4 Mathematical Problems in Engineering

for 𝑖 ← 1 to𝑁 do
𝑠𝑡𝑎𝑡𝑒
𝑖
← 𝑇𝑖𝑐𝑘(𝑐ℎ𝑖𝑙𝑑(𝑖));

if 𝑛𝑆𝑢𝑐𝑐𝑁𝑜𝑑𝑒𝑠(𝑠𝑡𝑎𝑡𝑒
𝑖
) ≥ 𝑛𝑆 then

return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠;
else if 𝑛𝐹𝑎𝑖𝑙𝑁𝑜𝑑𝑒𝑠(𝑠𝑡𝑎𝑡𝑒

𝑖
) ≥ 𝑛𝐹

then
return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

else
return 𝑅𝑢𝑛𝑛𝑖𝑛𝑔;

Algorithm 3: Parallel.

if 𝑋
𝑛
(𝑡) ∈ 𝑆

𝑛
then

return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠;
if 𝑋
𝑛
(𝑡) ∈ 𝐹

𝑛
then

return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;
if 𝑋
𝑛
(𝑡) ∈ 𝑅

𝑛
then

𝑈
𝑛
(𝑡) ← 𝛾

𝑛
(𝑋
𝑛
(𝑡));

return 𝑅𝑢𝑛𝑛𝑖𝑛𝑔;

Algorithm 4: Action.

if 𝑋
𝑛
(𝑡) ∈ 𝑆

𝑛
then

return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠;
if 𝑋
𝑛
(𝑡) ∈ 𝐹

𝑛
then

return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

Algorithm 5: Condition.

if 𝐶ℎ𝑒𝑐𝑘(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠) == True
then
𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑖𝑐𝑘(𝑐ℎ𝑖𝑙𝑑);
return 𝑠𝑡𝑎𝑡𝑒;

else
return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒;

Algorithm 6: Decorator.

return 𝑇𝑖𝑐𝑘(𝑐ℎ𝑖𝑙𝑑(0));

Algorithm 7: Root.

use the doctrine in [23], and the State and Action Space are
as followed.

State Space. The chosen state variables are extracted from
the cockpit instruments to make the simulation approximate
to real-life exercises, such as the range and aspect angle of
bandits displayed on radar, different alarming signals from
Radar Warning Receiver (RWR), and cues of missile launch

authority on Head-Up Display (HUD) calculated by fire
control systems. The statuses of fighter are also considered,
such as the speed, altitude, heading, and weapon accounts.
The state variables are used to describe the condition nodes
in BTs.

Action Space. The primary actions in air combat can be
divided into maneuver, fire control, and device operation. As
for BVRcombat, themaneuver ismuch simpler than inWVR,
where the pilot just sets the speed, heading, and altitude to
approach of the adversary without performing a complex
sequence of maneuvers. On the contrary, the operations on
airborne devices and fire control systems are the core of BVR
tactics. For example, while radar is the primary device to
search for adversaries in battlefield, the emission of radar
exposes the position and intention of pilot.Therefore, exactly
when to activate radar is a critical decision in a sudden attack
tactic. A total of 23 primary actions are provided in our
simulation for CGFs.

Tactics. A tactic is a sequence of actions to achieve specific
goals (e.g., missile evasion tactics), and most air combat
tactics have been validated in training and real-life warfare.
A tactic is represented as a subtree in KB, which is reusable
as an independent block to build CGFs. Figure 2 describes a
classical missile evasion tactic. A pilot makes a turn to place
the enemy radar at 3 or 9 o’clock to break radar lock, activates
an electronic countermeasure (ECM), and dispenses chaffs
and decoys to jam missile seeker at the same time.

4.3. BNFGrammar for Air Combat. TheBNFgrammar in BTs
formalism can be represented by a quaternary tuple:

BTsBNF = ⟨𝑇, 𝐺, 𝑆, 𝑃⟩, where

𝑇 = 𝐴 ∪ 𝐶 is the terminal set, including Condition 𝐶
and Action 𝐴;
𝐺 = 𝑁∪𝜏 is the set of nonterminals, including control
nodes𝑁 and root node 𝜏;
𝑆 = 𝜏 is the start symbol (the root node in BTs);
𝑃 is a set of production rules.

The production rules in BNF grammar for air combat are
defined as follows:

⟨𝐵𝑇⟩ ~= ⟨𝐵𝑇⟩⟨𝑁𝑜𝑑𝑒⟩ | ⟨𝑁𝑜𝑑𝑒⟩
⟨𝑁𝑜𝑑𝑒⟩ ~= ⟨𝐶𝑜𝑛𝑡𝑟𝑜𝑙⟩ | ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ | ⟨𝐴𝑐𝑡𝑖𝑜𝑛⟩ |
⟨𝑅𝑜𝑜𝑡⟩

⟨𝐶𝑜𝑛𝑡𝑟𝑜𝑙⟩ ~= 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 | 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 |

⟨𝐷𝑒𝑐𝑜𝑟𝑎𝑡𝑜𝑟⟩

⟨𝐷𝑒𝑐𝑜𝑟𝑎𝑡𝑜𝑟⟩ ~= ⟨𝐷𝑒𝑐𝑜𝑟𝑎𝑡𝑜𝑟𝑇𝑦𝑝𝑒⟩⟨𝑁𝑜𝑑𝑒⟩
⟨𝐷𝑒𝑐𝑜𝑟𝑎𝑡𝑜𝑟𝑇𝑦𝑝𝑒⟩ ~= 𝑂𝑛𝑐𝑒 | 𝑅𝑒𝑝𝑒𝑎𝑡 | 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙10𝑠 |
⋅ ⋅ ⋅

⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ~= ⟨𝑆𝑡𝑎𝑡𝑒⟩ |

⟨𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒⟩⟨𝑜𝑝⟩(𝑛𝑢𝑚𝑏𝑒𝑟)

⟨𝑆𝑡𝑎𝑡𝑒⟩ ~= 𝑅𝑎𝑑𝑎𝑟𝑊𝑎𝑟𝑛𝑖𝑛𝑔 | 𝑀𝑖𝑠𝑠𝑖𝑙𝑒𝑊𝑎𝑟𝑛𝑖𝑛𝑔 |

𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 | ⋅ ⋅ ⋅

Mathematical Problems in Engineering 5

⇢

⇢
⇢

?

Turn

Turn

IsMissileWarning

IsMissile

Once

Interval

Turn on ECM Dispense chaffs and
flares

IsBanditAt
3/9 line

⇢ Sequence node

⇢
⇢

Parallel node

? Selector node

Decorate node

Condition node

Action node

Warning

10 s

Interval 10 s

Figure 2: Example of missile evasion tactic behavior tree.

⟨𝑆𝑡𝑎𝑡𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒⟩ ~= 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 | 𝑆𝑝𝑒𝑒𝑑 | 𝐻𝑒𝑎𝑑𝑖𝑛𝑔 |

𝑇𝑔𝑡𝑇𝑦𝑝𝑒 | 𝑇𝑔𝑡𝐻𝑒𝑎𝑑𝑖𝑛𝑔 | 𝑇𝑔𝑡𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 | 𝑇𝑔𝑡𝑆𝑝𝑒𝑒𝑑 |

𝑇𝑔𝑡𝐴𝑠𝑝𝑒𝑐𝑡𝐴𝑛𝑔𝑙𝑒 | ⋅ ⋅ ⋅

⟨𝑜𝑝⟩ ~== |<|>|<=|>=|
⟨𝐴𝑐𝑡𝑖𝑜𝑛⟩ ~= 𝑆𝑒𝑡𝑆𝑝𝑒𝑒𝑑 | 𝑆𝑒𝑡𝐻𝑒𝑎𝑑𝑖𝑛𝑔 | 𝑆𝑒𝑡𝐴𝑙𝑡 |

𝐿𝑜𝑐𝑘𝑂𝑛 | 𝐿𝑎𝑢𝑛𝑐ℎ | 𝐴𝑐𝑡𝑖V𝑎𝑡𝑒𝐸𝐶𝑀 | 𝐴𝑐𝑡𝑖V𝑎𝑡𝑒𝑅𝑎𝑑𝑎𝑟 |
⋅ ⋅ ⋅

5. Grammatical Evolution for Adaptive CGF

5.1. Grammatical Evolution. Grammatical evolution is a
grammar-based evolutionary computation technique pio-
neered by O’Neill and Ryan [5]. The core idea is to separate
problemdescription from solution, in order to focus SMEs on
the problem rather than the details in the search algorithm.

GE is composed of user-specified context-free grammar
(usually grammar in BNF) to encode domain knowledge
and an evolutionary algorithm (usually GA) to search for
solutions; Figure 3 shows the components of grammatical
evolution. GE takes a genotypic individual and maps it to a
phenotype with BNF grammar. Fitness function evaluates the
phenotype and genetic operators guide the evolution of the
individual with fitness value.

5.2. Mapping Process between Integer Strings and BTs. BTs are
the phenotype for CGF representation; to evolve CGFs with

GA, BTs should be mapped to a genotype (e.g., integer or
binary strings) for genetic operators.

The genotype-to-phenotype mapping proceeds as fol-
lows.

Integer strings (genotype) are used to choose production
rules based on the mapping function

𝑅𝑢𝑙𝑒 = 𝑐 mod 𝑟, (1)

where 𝑐 is the codon integer value in genotype and 𝑟 is the
number of rule choices for the current nonterminal symbol
in BNF grammar. The process starts with an identified start
symbol, in our case ⟨𝐵𝑇⟩. Then, the first element in genotype
strings is used to select production rules. Figure 4 shows the
mapping process of a missile launch tactic in BTs.

5.3. Fitness Function for CGFs. The fitness of CGFs is the
guide for evolutionary process direction, just as with the
object function in GA. While the final measure of perfor-
mance for CGFs is win or loss, some intermediate measures
can also be used to valuate the fitness. In our model, the
performance of CGFs was measured with the following
fitness function:

Fitness = 𝑤
1
∗ Score + 𝑤

2
∗ 𝑅safe + 𝑤3 ∗ 𝑅missile, (2)

where Score is the result of the combat; the pilot is awarded 1
point for eliminating the enemy without loss, 1/3 for a draw,

6 Mathematical Problems in Engineering

BNF
grammar

Grammatical evolution

Phenotype
in BNF

Fitness function

Fitness

Individual
in binary strings

Genetic operators

Figure 3: Components of grammatical evolution.

2 4 3 4 5 1 0 2 2 4

(a) Integer strings (genotype)

LaunchAuthorized Launch

⇢

(b) BT for missile launch (phenotype)

⟨BT⟩

⟨BT⟩⟨Node⟩

⟨BT⟩⟨Node⟩

2%2 = 0

4%2 = 0 2%4 = 2

⟨Action⟩

3%2 = 1
1%4 = 1 4%23 = 4

⟨Node⟩ ⟨Condition⟩ Launch

4%4 = 0 0%2 = 0

⟨Control⟩ ⟨State⟩

5%4 = 1 2%13 = 2

Sequence LaunchAuthorized

(c) Mapping process

Figure 4: Mapping process from integer strings to missile launch behavior tree.

Mathematical Problems in Engineering 7

and 0 for a loss without eliminating the enemy. The 𝑅missile
is the ratio of missiles that hit target and were fired; 𝑅safe is
the ratio of safe time (not being locked by bandit radar or
tracked by missiles) to the engagement time which begins
once on-board devices have acquired bandit. 𝑤

𝑖
is the weight

of measures, and ∑3
𝑖=1
𝑤
𝑖
= 1.

The three measures considered here reflect the main
aspects of air combat, such as the final result of engagement,
the resources consumed during the combat, and the risk
to eliminate a bandit. The weights of the measure can be
adjusted to achieve different types of CGF; for example, SMEs
set a high 𝑤

2
to generate a more conservative pilot.

5.4. Evolution Strategy. While GA explores genotypic search
space without limit, a large amount of syntactically correct
phenotypic CGF solutions violates the doctrine and perfor-
mance stupid behaviors. This is caused by “ripple effect” of
GE: a small genotypic change can lead to a major phenotypic
change. For example, a single gene mutation in chromosome
causes a high level control flow node changing from Selector
to Sequence; then the execution of BTs is totally different.
To overcome this effect and maintain a stable evolutionary
process, we employ two strategies to improve the efficiency
of exploration.

First, we take a special grammar symbol ⟨𝑋𝑂⟩ to label
crossover points for crossover operators [24]. As most sub-
tactics (e.g., missile evasion) are self-contained blocks, we
use ⟨𝑋𝑂⟩ to separate subtactics and indicate the crossover
boundaries. During the evolution process, the context-
sensitive tactics are exchanged as independent blocks. Both
two-point crossover and one-point crossover are applied to
improve the efficiency of exploration:

⟨𝐶𝐺𝐹⟩ ~= 𝐸V𝑎𝑑𝑒𝑀𝑖𝑠𝑠𝑖𝑙𝑒 = ⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩; 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑇𝑔𝑡 =
⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩;
𝐷𝑜𝑔𝐹𝑖𝑔ℎ𝑡 = ⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩; 𝐺𝑢𝑖𝑑𝑒𝑊𝑒𝑎𝑝𝑜𝑛 =

⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩;
𝐷𝑟𝑎𝑔𝐴𝑤𝑎𝑦 = ⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩; 𝐵𝑟𝑒𝑎𝑘𝐿𝑜𝑐𝑘 =

⟨𝐵𝑇⟩; ⟨𝑋𝑂⟩;
Second, we adopt a variable probability for mutation

operator at different levels to keep the BTs structure stable. As
CGFs behaviors are more sensitive to high level changes, we
assign a lower mutation probability to high level control flow
nodes. By contrast, low level nodes receive a relatively higher
mutation probability. For𝑁 levels BTs, the top node (root) is
level 0 and the lowest leaf node is level 𝑁 − 1. Assuming 𝑃

𝑚

is the mutation probability parameter for GA, we set 𝑃
𝑚
(𝑖) =

𝑃
𝑚
∗ (1 − 𝑒

−𝑖
) as the mutation probability for nodes at level 𝑖.

6. Case Study

6.1. Scenario and Simulation. As an exploratory study, we
tested our method in a 1-v-1 BVR air combat scenario. Both
red and blue were equipped with identical fighters, missiles,
and avionic systems.The initial height was set at 9000mwith
a velocity of 0.9Ma for both sides and the distance between
them established as 450 km. Both sides received an initial
position and velocity of adversary from Air Early Warning

Table 1: Parameters for genetic algorithm.

Parameter Value
Population size 100
Generations 100
Elite size 15
Tournament size 4
Single-point crossover ratio 50%
Two-point crossover ratio 50%
Mutation probability 5%

(AEW) at the beginning of the task. The experiments were
conducted with theWeapon Effectiveness Simulation System
(WESS), a simulation platform for equipment effectiveness
analysis [25]. Figure 5 shows a screenshot of the scenario in
simulation.

6.2. Experimental Setup. The objective of experiments was to
evaluate the effectiveness of adaptive CGFs in an air combat
scenario. The red pilot was a nonadaptive doctrine-driven
CGF set at Expert level. The blue pilot was assigned an
identical fighter and weapons and used adaptive CGFs to
engage red. Two different levels, Trainee and Expert, were
set as the initial level for blue pilot at the beginning of the
evolutionary process. The weights in fitness function were
𝑊 = [0.7, 0.1, 0.2] for both sides. The parameters for GE
are given in Table 1. It is noteworthy that the population size
is 100, which means that we should initialize 100CGFs. As
creating such a large number of CGFs is quite laborious, we
instead created only 20CGFs for each level and generated
another 80 initial CGFs with mutations and crossovers. In
each generation, every blue CGF in the population fought 10
times against the red adversary, and a total of 100 ∗ 100 ∗ 10
simulations were conducted.

6.3. Results. The performance of adaptive CGFs in each
generation was measured with the average fitness value of
the population, as well as the overall Exchange Ratio (ER),
defined as the ratio of the number of red losses divided
by blue losses over a series of encounters. Figure 6 shows
the evolutionary process of average fitness of adaptive Blue
Trainee and adaptive Blue Expert in the engagement with Red
Expert. The average fitness value of adaptive Blue Trainees
started with 0.1 and quickly rose to about 0.32 after 70
generations and then stagnated across the subsequent 30
generations. Conversely, the fitness of Red Expert decreased
from 0.62 to 0.42. As for the adaptive Blue Expert, the initial
fitness is 0.29, below Red Expert; the reason was that 80% of
initial Blue Experts were generated randomly. However, the
average fitness of blue increased to the same level of red, at
about 0.4.

Figure 7 shows the evolutionary process of the ER in each
generation. Figure 7(a) shows an increase in the ER as the
adaptive Blue Trainees evolved over generations, with ER
from about 10% to 40%, and the top 15% fitness populations
even reaching 50% by generation 60, meaning that the elites
of blue achieved equal capabilities to red after sufficient

8 Mathematical Problems in Engineering

Figure 5: Screenshot of 1-v-1 BVR air combat scenario.

Adaptive Blue Trainee
Red Expert

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e fi

tn
es

s

0 8020 40 60 100

Generations

(a) Adaptive Blue Trainee versus Red Expert

Adaptive Blue Expert
Red Expert

0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e fi

tn
es

s

20 40 60 80 1000

Generations

(b) Adaptive Blue Expert versus Red Expert

Figure 6: Fitness of adaptive blue CGFs in the evolution.

evolution. Figure 7(b) shows the result of combat between
adaptive Blue Expert and nonadaptive Red Expert. Due to
the random initializations, the ER of blue started slightly
lower than 50%, before scoring a draw at 50%. The top 15%
fitness of blue outperformed red with ER above 50% after
60 generations and 𝑡-test at the 5% significance level with a
50% ER, for the last 60 generations were unable to reject the
null hypothesis that average ER is greater than 50%. At the
same time, the fluctuation of the top 15% population shows
the variety of generated elite CGFs.

6.4. Validation of Adaptive CGFs. Validation, in simple terms,
is the process of determining the degree to which a model
meets the requirements of the simulation [26]. In this
particular instance, we focused on the adaptivity of CGFs
during simulation and data drawn from the experiment

results supported our hypothetical function of the models.
Consequently, the objective of validation here was to check
whether the adaptive CGFs violated the doctrine and exper-
tise.

In actuality, to date, the most common means of val-
idating CGFs’ behaviors has been through face validation
[1], meaning that SMEs watch the combat animation or
analyze the logs of simulation. During the preliminary face
validation, five SMEs independently validated 10% of the
top 15% fitness CGFs in the last 10 generations and did not
observe any obvious behaviors that violated the doctrine.
However, the so-called “stupid” behaviors were commonly
identified in the low fitness value CGFs.

Furthermore, a direct method was proposed to validate
CGFs based on the readability of BTs formalism. Since task
decomposition and action sequences were well organized

Mathematical Problems in Engineering 9

Average of floor 15% fitness blue population
Average of the blue population
Average of top 15% fitness blue population

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ex

ch
an

ge
 R

at
io

0 8020 40 60 100

Generations

(a) Adaptive Blue Trainee versus Red Expert

Average of floor 15% fitness blue population
Average of the blue population
Average of top 15% fitness blue population

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ch

an
ge

 R
at

io

0 8020 40 60 100

Generations

(b) Adaptive Blue Expert versus Red Expert

Figure 7: Exchange Ratio of adaptive blue CGFs in the evolution.

Insignificant: 13%

Slight: 26%

Medium: 36%

Serious: 25%

Insignificant Serious
0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

MediumSlight

Figure 8: Statistical results of direct validation on CGFs.

in BTs, the SMEs were able to directly read and analyze
CGFs models rather than rely on face validation. Without
knowledge of the combat results, SMEs examined 100CGF
samples fromevolution process and evaluated their degrees of
violating doctrine and expertise. The degrees were classified
as “serious,” “medium,” “slight,” and “insignificant.”

The statistical results of direct validation are shown in
Figure 8. The proportions of each degree are presented in
the pie chart: “insignificant” level CGFs amounts to 13%,
“serious” and “slight” account for one-quarter each, and the
largest part is “medium” CGFs with 36%. The attached box-
plot compares the fitness value to the degree of violating
doctrine and expertise. The fitness and degree were almost
consistent in the whole, and CGFs that seriously violated
doctrine scored the lowest fitness, about 0.05, while CGFs
without significant errors got medium fitness of 0.79.The dif-
ference between CGFs in groups “medium” and “slight” was

not significant;mediumfitnesswas 0.37 and 0.31, respectively.
The outliers in each group were worthy of note in that SMEs’
judgmentsmismatched combat performances.The reason for
these inconsistencies might be the lack of expertise or the
novel knowledge emerging in the evolutionary process.

According to the results of both face validation and direct
validation by SMEs, we came to the conclusion that adaptive
CGFs with high fitness were consistent with doctrine and
expertise and fitness function was an effective method to
ensure the validity of CGFs.

7. Conclusions and Future Work

In this paper, we have presented a novel framework to
generate adaptive CGFs based on grammatical evolution,
which encode domain knowledge in modular behavior trees
and evolve CGFs via GA. Adaptive CGFs for air combat were

10 Mathematical Problems in Engineering

developed and tested in BVR engagement with nonadaptive
doctrine-driven CGFs. The experiments demonstrated the
adaptivity of generated CGFs with increasing fitness value
and an overall Exchange Ratio.

Future work will focus on the verification and validation
of the generatedCGFs and analysis of the variety in evolution.
Mining innovative tactic from GE generated CGFs will also
be a new challenge, and related works are being conducted
via machine learning techniques. We also plan to apply these
methods to human-in-the-loop (HIL) training and study the
evolutionary process when training with real-life pilots.

Conflict of Interests

The authors declare no conflict of interests.

Authors’ Contribution

Drafting of paper was performed by Jian Yao. Model con-
struction was done by Jian Yao and Qiwang Huang. Sim-
ulation experiments were conducted by Jian Yao. Planning
and supervision of the research were performed by Weiping
Wang.

Acknowledgment

Thiswork is partly supported by theNational Natural Science
Foundation of China (no. 61273198 and no. 91324014).

References

[1] NATO, “Human behavior representation in constructive simu-
lation,” Tech. Rep. RTO-TR-HFM-128, NATO RTO, 2009.

[2] S. J. E. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz,
and J. Zander, “Grand challenges on the theory of modeling
and simulation,” in Proceedings of the Symposium on Theory
of Modeling & Simulation—DEVS Integrative M&S Symposium
(DEVS ’13), p. 34, San Diego, Calif, USA, April 2013.

[3] S. Mittal, M. J. Doyle, and A. M. Portrey, “Human in the
loop in System of Systems (SoS) modeling and simulation,”
in Modeling and Simulation Support for System of Systems
Engineering Applications, chapter 16, pp. 415–451, JohnWiley &
Sons, 2014.

[4] S. Mittal, M. J. Doyle, and E. Watz, “Detecting intelligent agent
behavior with environment abstraction in complex air combat
systems,” in Proceedings of the 7th Annual IEEE International
Systems Conference (SysCon ’13), pp. 662–670, IEEE, Orlando,
Fla, USA, April 2013.

[5] M. O’Neill and C. Ryan, Grammatical Evolution, Springer, New
York, NY, USA, 2003.

[6] M. Mitchell, An Introduction to Genetic Algorithms, MIT press,
1998.

[7] A. Champandard, “Behavior trees for next-gen game AI,” in
Proceedings of the Game Developers Conference (GDC ’07),
Audio Lecture, December 2007.

[8] I. Millington and J. Funge,Artificial Intelligence for Games, CRC
Press, 2012.

[9] Teledyne Brown Engineering Incorporated, EADSIM Executive
Summary, Teledyne Brown Engineering Incorporated, 2012.

[10] R. Kerchner, “The TAC BRAWLER air combat simulation
analyst manual (rev. 3.0),” Decision Science Application Report
668, 1985.

[11] P. Kerbusch and P. Eigeman, “Flexible and reusable tactical
behaviour models for combat aircraft,” Technical Report, DTIC
Document, 2010.

[12] J. E. Laird, K. J. Coulter, O. M. Jones, P. G. Kenny, F. Koss, and
P. E. Nielsen, “Integrating intelligent computer generated forces
in distributed simulation: TacAir-Soar,” in Proceedings of the
Simulation InteroperabilityWorkshop (STOW ’98), Orlando, Fla,
USA, March 1998.

[13] J. Laird,The Soar Cognitive Architecture, MIT Press, 2012.
[14] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. van

den Herik, “Dynamic scripting with team coordination in air
combat simulation,” inModern Advances in Applied Intelligence:
27th International Conference on Industrial Engineering and
Other Applications of Applied Intelligent Systems, IEA/AIE 2014,
Kaohsiung, Taiwan, June 3–6, 2014, Proceedings, Part I, vol. 8481
of Lecture Notes in Computer Science, pp. 440–449, Springer,
2014.

[15] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. van
den Herik, “Improving air-to-air combat behavior through
transparent machine learning,” in Proceedings of the Inter-
service/Industry Training, Simulation & Education Conference
(I/ITSEC ’14), Orlando, Fla, USA, 2014.

[16] T.-H. Teng, A.-H. Tan, Y.-S. Tan, and A. Yeo, “Self-organizing
neural networks for learning air combat maneuvers,” in Pro-
ceedings of the Annual International Joint Conference on Neural
Networks (IJCNN ’12), pp. 1–8, IEEE, Brisbane, Australia, June
2012.

[17] J. Roessingh, R. Rijken, R. Merk et al., “Modelling CGFs for
tactical air-to-air combat training motivation-based behaviour
and machine learning in a common architecture,” Tech. Rep.
NLR-TP-2011-540, National Aerospace Laboratory NLR, 2011.

[18] K. Virtanen, J. Karelahti, and T. Raivio, “Modeling air combat
by a moving horizon influence diagram game,” Journal of
Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1080–1091,
2006.

[19] J. S. McGrew, J. P. How, B. Williams, and N. Roy, “Air-combat
strategy using approximate dynamic programming,” Journal of
Guidance, Control, and Dynamics, vol. 33, no. 5, pp. 1641–1654,
2010.

[20] M. J. Doyle andA.M. Portrey, “Rapid adaptive realistic behavior
modeling is viable for use in training,” in Proceedings of the
23rd Conference on Behavior Representation in Modeling and
Simulation (BRIMS ’14), pp. 73–80, Washington, DC, USA,
April 2014.

[21] O. Petter, “Increasing modularity of UAV control systems using
computer game behavior trees,” in Proceedings of the AIAA
Guidance, Navigation, and Control Conference, AIAA 2012-
4458, Minneapolis, Minn, USA, August 2012.

[22] M. Colledanchise and P. Ögren, “How Behavior Trees modular-
ize robustness and safety in hybrid systems,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’14), pp. 1482–1488, Chicago, Ill, USA, September
2014.

[23] R. L. Shaw, Fighter Combat: Tactics and Maneuvering, Naval
Institute Press, 1985.

[24] M. Nicolau and I. Dempsey, “Introducing grammar based
extensions for grammatical evolution,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’06), pp.
648–655, July 2006.

Mathematical Problems in Engineering 11

[25] Y.-L. Lei, Q. Li, F. Yang, W.-P. Wang, and Y.-F. Zhu, “A com-
posable modeling framework for weapon systems effectiveness
simulation,” System Engineering Theory & Practice, vol. 33, no.
11, pp. 2954–2966, 2013.

[26] DMSO, “VV & A recommended practices guide,” Tech. Rep.,
Defense Modeling and Simulation Office, 2015, http://www
.msco.mil/VVA RPG.html.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

