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Abstract

We prove that for harmonic quasiconformal mappings a-Hölder continuity on the
boundary implies a-Hölder continuity of the map itself. Our result holds for the class
of uniformly perfect bounded domains, in fact we can allow that a portion of the
boundary is thin in the sense of capacity. The problem for general bounded domains
remains open.
MSC 2010: 30C65.
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1. Introduction
The following theorem is the main result in [1].

Theorem 1.1. Let D be a bounded domain in ℝn and let f be a continuous mapping

of D into ℝn which is quasiconformal in D. Suppose that, for some M > 0 and 0 <a ≤ 1,

|f (x) − f (y)| ≤ M|x − y|α (1:2)

whenever x and y lie on ∂D. Then

|f (x) − f (y)| ≤ M′|x − y|β (1:3)

for all x and y on D, where β = min(α,K1/(1−n)
I ) and M’ depends only on M, a, n, K

(f) and diam(D).

The exponent b is the best possible, as the example of a radial quasiconformal map f

(x) = |x|a-1x, 0 <a < 1, of Bn onto itself shows (see [2], p. 49). Also, the assumption of

boundedness is essential. Indeed, one can consider g(x) = |x|ax, |x| ≥ 1 where a > 0.

Then, g is quasiconformal in D = Rn\Bn (see [2], p. 49), it is identity on ∂D and hence,

Lipschitz continuous on ∂D. However, |g(te1) − g(e1)| � ta+1, t ® ∞, and therefore, g is

not globally Lipschitz continuous on D.

This paper deals with the following question, suggested by P. Koskela: is it possible

to replace b with a if we assume, in addition to quasiconformality, that f is harmonic?

In the special case D = Bn this was proved, for arbitrary moduli of continuity ω (δ), in

[3]. Our main result is that the answer is positive, if ∂D is a uniformly perfect set [4].

In fact, we prove a more general result, including domains having a thin, in the sense

of capacity, portion of the boundary. However, this generality is in a sense illusory,

because any harmonic and quasiconformal (briefly hqc) mapping extends harmonically
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and quasiconformally across such portion of the boundary. Nevertheless, it leads to a

natural open question: is the answer positive for arbitrary bounded domain in ℝn?

In the case of smooth boundaries much better regularity up to the boundary can be

deduced, see [5]; related results for harmonic functions were obtained by Aikawa [6]

and Sugawa [7].

We denote by B(x, r) and S(x, r) the open ball, respectively sphere, in ℝn with center

x and radius r > 0. We adopt the basic notation, terminology and definitions related to

quasiconformal maps from [2]. A condenser is a pair (K, U), where K is a non-empty

compact subset of an open set U ⊂ ℝn. The capacity of the condenser (K, U) is defined

as

cap(K,U) = inf
∫
Rn

|∇u|ndV,

where infimum is taken over all continuous real-valued u Î ACLn(ℝn) such that u(x)

= 1 for x Î K and u(x) = 0 for x Î ℝn \ U. In fact, one can replace the ACLn condition

with Lipschitz continuity in this definition. We note that, for a compact K ⊂ ℝn and

open bounded sets U1 and U2 containing K we have: cap(K, U1) = 0 iff cap(K, U2) = 0,

therefore, the notion of a compact set of zero capacity is well defined (see [8], Remarks

7.13) and we can write cap(K) = 0 in this situation. For the notion of the modulus M

(Γ)of a family Γ of curves in ℝn we refer to Väisälä [2] and Vuorinen [8]. These two

notions are related: by results of Hesse [9] and Ziemer [10] we have

cap(K,U) = M(�(K, ∂U;U)),

where Δ (E, F; G) denotes the family of curves connecting E to F within G, see [2] or

[8] for details.

In addition to this notion of capacity, related to quasiconformal mappings, we need

Wiener capacity, related to harmonic functions. For a compact K ⊂ ℝn, n ≥ 3, it is

defined by

capW(K) = inf
∫
Rn

|∇u|2dV,

where infimum is taken over all Lipschitz continuous compactly supported functions

u on ℝn such that u = 1 on K. Let us note that every compact K ⊂ ℝn which has capa-

city zero has Wiener capacity zero. Indeed, choose an open ball BR = B(0, R) ⊃ K.

Since n ≥ 2 we have, by Hölder inequality,

∫
Rn

|∇u|2dV ≤ |BR|1−2/n

⎛
⎝∫
Rn

|∇u|n dV
⎞
⎠

2/n

for any Lipschitz continuous u vanishing outside U, our claim follows immediately

from definitions.

A compact set K ⊂ ℝn, consisting of at least two points, is a-uniformly perfect (a >

0) if there is no ring R separating K (i.e. such that both components of ℝn \ R intersect

K) such that mod(R) >a, for definition of the modulus of a ring see [8]. We say that a

compact K ⊂ ℝn is uniformly perfect if it is a-uniformly perfect for some a > 0.

We denote the a-dimensional Hausdorff measure of a set F ⊂ ℝn by Λa(F).
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2 The main result
In this section D denotes a bounded domain in ℝn, n ≥ 3. Let

�0 = {x ∈ ∂D : cap (B(x, ε) ∩ ∂D) = 0 for some ε > 0},

and Γ1 = ∂D \ Γ0. Using this notation we can state our main result.

Theorem 2.1. Assume f : D → Rn is continuous on D, harmonic and quasiconformal

in D. Assume f is Hölder continuous with exponent a, 0 <a ≤ 1, on ∂D and Γ1 is uni-

formly perfect. Then f is Hölder continuous with exponent a on D.

If Γ0 is empty we obtain the following

Corollary 2.2. If f : D → Rn is continuous on D, Hölder continuous with exponent a,
0 <a ≤ 1, on ∂D, harmonic and quasiconformal in D and if ∂D is uniformly perfect,

then f is Hölder continuous with exponent a on D.

The first step in proving Theorem 2.1 is reduction to the case Γ0 = ø. In fact, we

show that existence of a hqc extension of f across Γ0 follows from well known results.

Let D’ = D ∪ Γ0. Then D’ is an open set in ℝn, Γ0 is a closed subset of D’ and ∂D’ = Γ1.

Clearly cap(K ∩ Γ0) = 0 for each compact K ⊂ D’, and therefore, by Lemma 7.14 in

[8], Λa(K ∩ Γ0) = 0 for each a > 0. In particular, Γ0 has s-finite (n - 1)-dimensional

Hausdorff measure. Since it is closed in D’, we can apply Theorem 35.1 in [2] to con-

clude that f has a quasiconformal extension F across Γ0 which has the same quasicon-

formality constant as f.

Since Γ0 is a countable union of compact subsets Kj of capacity zero and hence of

Wiener capacity zero we conclude that Γ0 has Wiener capacity zero. Hence, by a clas-

sical result (see [11]), there is a (unique) extension G : D′ → Rn of f which is harmonic

in D’. Obviously, F = G is a harmonic quasiconformal extension of f to D′ which has

the same quasiconformality constant as f.

In effect, we reduced the proof of Theorem 2.1 to the proof of Corollary 2.2. We

begin the proof of Corollary 2.2 with the following

Lemma 2.3. Let D ⊂ ℝn be a bounded domain with uniformly perfect boundary.

There exists a constant m > 0 such that for every y Î D we have

cap
(
B

(
y,
d
2

)
,D

)
≥ m, d = dist

(
y, ∂D

)
. (2:4)

Proof. Fix y Î D as above and z Î ∂D such that |y - z| = d ≡ r. Clearly diam(∂D) =

diam(D) > 2r. Set F1 = B(z, r) ∩ (∂D) andF2 = B(z, r) ∩ B(y, d2 ), F3 = S(z, 2r). Let Γi,j =

Δ (Fi, Fj; ℝ
n) for i, j = 1, 2, 3. By Järvi and Vu̇orinen [4, Thm 4.1(3)], there exists a

constant a = a(E, n) > 0 such that

M(�1,3) ≥ a

while by standard estimates [2, 7.5] there exists b = b(n) > 0 such that

M(�2,3) ≥ b .

Next, by Vuorinen [8, Cor 5.41] there exists m = m(E, n) > 0 such that

M(�1,2) ≥ m .
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Finally, with B = B(y, d
/
2) we have

cap(B,D) = M(�(B, ∂D;Rn)) ≥ M(�1,2) ≥ m.

In conclusion, from the above lemma, our assumption

|f (x1) − f (x2)| ≤ C|x1 − x2|α , x1, x2 ∈ ∂D,

and Lemma 8 in [1], we conclude that there is a constant M, depending on m, n, K

(f), C and a only such that

|f (x) − f (y)| ≤ M|x − y|α , y ∈ D, x ∈ ∂D, dist(y, ∂D) = |x − y|.

However, an argument presented in [1] shows that the above estimate holds for y Î
D, y Î ∂D without any further conditions, but with possibly different constant:

|f (x) − f (y)| ≤ M′|x − y|α , y ∈ D, x ∈ ∂D. (2:5)

The following lemma was proved in [12] for real valued functions, but the proof

relies on the maximum principle which holds also for vector valued harmonic func-

tions, hence lemma holds for harmonic mappings as well.

Lemma 2.6. Assume h : D → Rn is continuous on D and harmonic in D. Assume for

each x0 Î ∂D we have

sup
Br(x0)∩D′

|h(x) − h(x0)| ≤ ω(r) for 0 < r ≤ r0.

Then |h(x) - h(y)| ≤ ω(|x - y|), whenever x, y Î D and |x - y| ≤ r0.

Now we combine (2.5) and the above lemma, with r0 = diam(D), to complete the

proof of Corollary 2.2 and therefore of Theorem 2.1 as well.
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