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Cyber physical systems have grown exponentially and have been attracting a lot of attention over the last few years. To retrieve and
mine the useful information from massive amounts of sensor data streams with spatial, temporal, and other multidimensional
information has become an active research area. Moreover, recent research has shown that clusters of streams change with a
comprehensive spatial-temporal viewpoint in real applications. In this paper, we propose a spatial-temporal clustering algorithm
(STClu) based on nonnegativematrix trifactorization by utilizing time-series observational data streams and geospatial relationship
for clustering multiple sensor data streams. Instead of directly clustering multiple data streams periodically, STClu incorporates the
spatial relationship between two sensors in proximity and integrates the historical information into consideration. Furthermore,
we develop an iterative updating optimization algorithm STClu. The effectiveness and efficiency of the algorithm STClu are both
demonstrated in experiments on real and synthetic data sets. The results show that the proposed STClu algorithm outperforms
existing methods for clustering sensor data streams.

1. Introduction

Cyber physical systems (CPS) have grown exponentially and
have been attracting a lot of attention over the last few years
[1]. Emerging applications include transportation, energy,
manufacturing, environment monitoring, and many parts of
our social infrastructure. It consists of a large number of
sensors to monitor physical or environmental conditions [2,
3]. The incoming information in CPS needs to be considered
as a stream and not somuch as an ever-growing data set [4, 5].

To obtain interesting relationships and useful informa-
tion from multiple data streams, a variety of methods have
developed over the past decades. Beringer and Hüllermeier
[6] used a discrete Fourier transformation (DFT) to summa-
rize the data streams and presented an online version of the
classic 𝐾-means clustering algorithm to cluster parallel data
streams. To avoid recalculating theDFT coefficients andmin-
imize processing time, an incremental update mechanism
for clustering large number of data streams was proposed

in [7]. To discover cross relationships among multiple data
streams, a clustering-on-demand framework was presented
in [8]. Yeh et al. [9] proposed a framework for clustering
over multiple evolving streams by correlations and events,
which monitored the distribution of clusters over multiple
data streams based on their correlation. To find communities
in a large set of interacting entities, Aggarwal and Yu [10]
proposed an online analytical processing framework for com-
munity detection of data streams. Evolutionary clusteringwas
a relatively new topic and was formulated by Chakrabarti
et al. [11] in 2006. To discover communities and capture
their evolution with temporal smoothness, incremental and
evolutionary clustering technologies were designed to handle
dynamic data streams [10, 12–14].Wang et al. [15] proposed an
ECKF framework for evolutionary clustering large-scale data
based on low-rank kernel matrix factorization. Chi et al. [16]
proposed two algorithms to incorporate temporal smooth-
ness in evolutionary spectral clustering. Ning et al. [14]
presented an incremental approach for spectral clustering to
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Figure 1: Time-series of upstream and downstream traffic flow.

handle not only insertion/deletion of data points but also
similarity changes between existing points.

The values of a sensor in the temporal domain usually
have spatial correlation features, meaning that the sensors’
readings are influenced by near sensors. Such as in trans-
portation systems, the congestion swiftly expands along the
street and influences nearby sensors. A serious congestion
usually lasts for a few hours and covers hundreds of sensors
when reaching the full size. As time passes by, it shrinks
slowly, eventually reduces the coverage, and finally disap-
pears. As shown in Figure 1, we find that those records in
an atypical event are spatially close and timely relevant. To
retrieve the useful information from massive sensor data
streams, Tang et al. [5] proposed amodel of atypical cluster to
describe the atypical events and retrieve themwith spatial and
temporal attribute. To explore the spatial correlation between
data sampled by different sensors for sensor networks,𝛼-local
spatial clustering algorithmwas proposed [17]. To explore the
temporal locality features of sensor data, Wei and Peng [18]
proposed an incremental clustering algorithm that clusters
objects by inducing clustering results from previous time
windows.

In this paper, we propose a spatial-temporal clustering
algorithm (STClu) based on nonnegative matrix trifactor-
ization by utilizing time-series observational data streams
and geospatial relationship for clusteringmultiple sensor data
streams. Our proposal was motivated by recent progress in
nonnegativematrix factorization and its applications [19–25],
with the aim being to discover clusters of objects with similar
behavior and, consequently, discover potential anomalies and
atypical events which may be revealed by the relationship
evolving over time. We assume that the spatial feature is
the summary of the atypical event in temporal dimension,
and the temporal feature is the summary of the event in
spatial dimension. STClu simultaneously incorporates the
spatial correlation between two sensors in proximity and
integrates the historical information into consideration. To
maintain a consistent clustering result, there is a trade-off
between the spatially close and timely relevant cost embedded
in STClu and the benefit from current observations and the
spatially close historical results.Thus, the clustering results at

a given time step are determined by current snapshot, prior
knowledge, and spatial correlation between two sensors in
proximity.

The rest of this paper is organized as follows. Related
research work is introduced in Section 2. Then, the prelim-
inaries of STClu are given in Section 3. Section 4 presents
the proposed algorithm in detail, while convergence and
correctness proofs of the STClu are provided in theAppendix.
Experimental results using synthetic and real world data
sets are presented in Section 5. Finally, Section 6 gives the
conclusion.

2. A Brief Review of Matrix Factorization and
Its Applications

Graphs are used in a wide range of applications, such as
transportation networks, sensor networks, and social net-
works. So, various problems are studied under graph mining.
To find clusters in graphs is a new challenge if the graph
is evolving over time. Matrix is a usual representation of a
graph; the relationships between matrix factorization and𝐾-
means clustering have been explored in [26].

Singular value decomposition (SVD) has served as a
building block for many important applications, such as PCA
and LSI [27]. SVD factorizes a matrix with the general form
of 𝐴 ≈ SVD𝑇, where 𝑆 is a unitary basis consisting of
left-singular vectors of 𝐴, 𝐷 is a unitary basis consisting
of right-singular vectors of 𝐴, and 𝑉 is a diagonal matrix
with singular values on the diagonal. In SVD, matrices 𝑆 and
𝐷 are allowed to have negative entries; the projected data
might have negative values in spite of the original data being
positive. That can prevent from the clustering results to be
intuitive for applications such as documents or images that
have a positive data input.

Nonnegative matrix factorization (NMF) [28, 29] is a
linear, nonnegative approximate data representation tech-
nique. NMF focuses on the analysis of data matrices whose
elements are nonnegative, a common occurrence in data
sets derived from text and images. The nonnegative data
matrix 𝐴 is factorized into matrixes 𝐹 and 𝐺 as 𝐴 ≈ 𝐹𝐺

𝑇,
with the constraints that 𝐹 ∈ R𝑑×𝑘 and 𝐺 ∈ R𝑛×𝑘 are
nonnegative.

In particularly, the result of a 𝐾-means clustering run
can be written as a matrix factorization 𝐴 = 𝐹𝐺

𝑇, where
𝐴 is a data matrix, 𝐹 contains the cluster centroids, and
𝐺 contains the cluster membership indicators. Nonnegative
matrix factorization focuses on the analysis of data matrices
whose elements are nonnegative [28].

To extend the applicable range of NMF methods, when
the data matrix is unconstrained, Semi-NMF is motivated
from the perspective of clustering [29], in which it restricts
𝐺 to be nonnegative while placing no restriction on the signs
of 𝐹. For reasons of interpretability, Convex-NMF constrains
the basis vectors 𝐹 = (f1, . . . , fk). The vectors defining 𝐹 lie
within the column space of𝐴: 𝑓

𝑙
= 𝑤
1𝑙
𝑎
1
+ ⋅ ⋅ ⋅ +𝑤

𝑛𝑙
𝑎
𝑛
= 𝐴𝑤

𝑙
,

or 𝐹 = 𝐴𝑊. It can be applied to both nonnegative and
mixed-sign data matrices. This constraint could interpret the
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columns 𝑓
𝑙
as weighted sums of certain data points and these

columns would capture a notion of centroids.
To expand the range of application of NMF, Semi-

NMF and Convex-NMF algorithm have been proposed in
[29]. Semi-NMF offers a low-dimensional representation of
data points which lends itself to a convenient clustering
interpretation. Convex-NMF restricts the columns of 𝐹 to be
convex combinations of data points in 𝑋. The advantage of
this constraint is that the columns asweighted sums of certain
data points could interpret. Based on NMF, a clustering
algorithm has been proposed in [29].

However, the traditional NMF, Semi-NMF, and Convex-
NMF are linear model and they may fail to discover the non-
linearities of data streams. In real world, the data streams have
potential nonlinear structure. Kernel method is a powerful
technique for extracting useful information form nonlinear
correlations. To solve the problem of nonlinearities, the
kernel method is to map the data nonlinearly into a kernel
feature space.Then, the Convex-NMFmethod can be accom-
plished in the kernel feature space to process the nonlinear
data.

Indeed, several important applications can bemodeled as
large sparse graphs, such as transportation network analysis
and social network analysis. Low-rank approximation for the
matrix of a graph is essential in finding patterns and detecting
anomalies. And it can extract correlations and remove noise
from matrix structured data. This has led to proposal of
methods such as CUR [30], CMD [31], and the family of
Colibri [32].

3. Preliminaries

To monitor the traffic status along a freeway, sensors are
deployed and utilized to collect readings, such as vehicle
speed and volume of traffic. It is assumed that data records
arrive synchronously, which means that all data streams
will be updated simultaneously. The sensors are the points
in the graph and an edge is formed between each pair of
sensors; these data records can be used to construct graphs
of transportation networks periodically.

Given two sets of spatial objects𝑂(𝑡−1) = {𝑜
(𝑡−1)

1
, . . . , 𝑜

(𝑡−1)

𝑚
}

and𝑂
(𝑡) = {𝑜

(𝑡)

1
, . . . , 𝑜

(𝑡)

𝑛
}, the spatial relationships are depicted

as Figure 2. Let 𝐺(𝑡−1) = (𝑆
(𝑡)
, 𝐸
(𝑡)
) be a graph associated with

the sensor network of transportation system at timestamp
𝑡, where 𝑠

(𝑡)

𝑖
∈ 𝑆
(𝑡) represents the set of sensors associated

with graph 𝐺
(𝑡) and 𝑒

(𝑡)

𝑖𝑗
∈ 𝐸
(𝑡) represents the set of edges

between 𝑠
(𝑡)

𝑖
and 𝑠
(𝑡)

𝑗
. And similar definitions are depicted for

𝐺
(𝑡−1) = (𝑆

(𝑡−1)
, 𝐸
(𝑡−1)

) associated with the sensor network of
transportation system at timestamp 𝑡 − 1.

Without loss of generality, we use the adjacency mat-
rices 𝑋

(𝑡−1)
∈ R𝑚×𝑚 and𝑋

(𝑡)
∈ R𝑛×𝑛 to represent two graphs

𝐺
(𝑡−1)

= (𝑆
(𝑡−1)

, 𝐸
(𝑡−1)

) and 𝐺
(𝑡) = (𝑆

(𝑡)
, 𝐸
(𝑡)
), respectively.

𝑋
(𝑖)
(𝑖, 𝑗) is the element at the 𝑖th row and 𝑗th column of the

matrix 𝑋
(𝑖); 𝑋(𝑖)(:, 𝑗) is the 𝑗th column of 𝑋(𝑖). Every row or

column in 𝑋
(𝑖) corresponds to a node in 𝑆

(𝑖). If there is an
edge from node 𝑠

(𝑖)

𝑖
∈ 𝑆
(𝑖) to node 𝑠

(𝑖)

𝑗
∈ 𝑆
(𝑖) with similarity

Upstream: t − 1

Downstream: t

Figure 2: Spatial-temporal cluster: graph 𝐺
(𝑡−1)

= (𝑆
(𝑡−1)

, 𝐸
(𝑡−1)

),
graph 𝐺

(𝑡)
= (𝑆

(𝑡)
, 𝐸
(𝑡)
) and the spatial relationship between

timestamps 𝑡 − 1 and 𝑡.

𝜌
(𝑖)

𝑖𝑗
, we set the value to 𝑋

(𝑖)
(𝑖, 𝑗). Otherwise, we set it to zero.

The similarity matrix is computed as follows:

𝜌
(𝑡)

𝑖𝑗
= exp(−


𝑠
(𝑡)

𝑖
− 𝑠
(𝑡)

𝑗



2

2𝜎2
) , (1)

where 𝜎 is a scaling parameter controlling how rapidly
similarity 𝜌

(𝑡)

𝑖𝑗
reduces with the distance between 𝑠

(𝑡)

𝑖
and 𝑠
(𝑡)

𝑗
.

The spatial relationships between two graphs are denoted
as a set of edges connecting the nodes between𝐺

(𝑡) and𝐺
(𝑡−1).

We use the adjacency matrix 𝑋
(𝑡−1,𝑡)

∈ R𝑛×𝑚 to represent
the spatial relationships. Given two objects 𝑠

(𝑡−1)

𝑖
∈ 𝑆
(𝑡−1)

and 𝑠
(𝑡)

𝑗
∈ 𝑆
(𝑡), the locations of 𝑠(𝑡−1)

𝑖
and 𝑠

(𝑡)

𝑗
are denoted

as 𝐿 ⋅ 𝑠
(𝑡−1)

𝑖
and 𝐿 ⋅ 𝑠

(𝑡)

𝑗
, respectively. The spatial relationship

between 𝐿 ⋅ 𝑠
(𝑡−1)

𝑖
and 𝐿 ⋅ 𝑠

(𝑡)

𝑗
is defined as follows:

𝐷(𝐿 ⋅ 𝑠
(𝑡)

𝑖
, 𝐿 ⋅ 𝑠
(𝑡−1)

𝑗
) = ((𝐿 ⋅ 𝑠

(𝑡)

𝑖1
− 𝐿 ⋅ 𝑠

(𝑡−1)

𝑗1
)
2

+ (𝐿 ⋅ 𝑠
(𝑡)

𝑖2
− 𝐿 ⋅ 𝑠

(𝑡−1)

𝑗2
)
2

+ ⋅ ⋅ ⋅ + (𝐿 ⋅ 𝑠
(𝑡)

𝑖𝑛
− 𝐿 ⋅ 𝑠

(𝑡−1)

𝑗𝑛
)
2

)

1/2

.

(2)

At timestamp 𝑡, the objective of STClu is to create sets
of partitions {Δ

(𝑡)

𝑖
}
𝑘

𝑖=1
. ∀𝑖 ∈ {1, . . . , 𝑘}, Δ

(𝑡)

𝑖
should meet

the following conditions: ⋃𝑘
𝑖=1

Δ
(𝑡)

𝑖
= {𝑠
(𝑡)

1
, 𝑠
(𝑡)

2
, . . . , 𝑠

(𝑡)

𝑛
} and

⋂
𝑘

𝑖=1
Δ
(𝑡)

𝑖
= ⌀. The community Δ

(𝑡)

𝑖
is a set of similar data

streams such that Δ(𝑡)
𝑖

= {𝑠
(𝑡)

1
, . . . , 𝑠

(𝑡)

|Δ
(𝑡)

𝑖
|
}, where |Δ

(𝑡)

𝑖
| is the

total number of streams in Δ
(𝑡)

𝑖
.

4. Our Approach

4.1. Objective Function of 𝑆𝑇𝐶𝑙𝑢. By utilizing time-series
observational data streams and geospatial relationship for
clusteringmultiple sensor data streams, the proposedmethod
STClu takes the spatial correlation between two sensors in
proximity and the historical information into consideration.
The cost of spatially close and timely relevant is embedded
in the objective function. The cluster partitions are obtained
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by decomposing the adjacency matrix representation of the
graph into a product of its latent factors. The square of
the Euclidean distance and the generalized Kullback-Leibler
divergence are common metrics for the approximation error
[24]. In STClu, we seek to minimize the distance function
‖𝐴 − 𝐵‖

2

𝐹
between two nonnegativematrices𝐴 and𝐵, defined

as

‖𝐴 − 𝐵‖
2

𝐹
= ∑

𝑖𝑗

(𝐴
𝑖𝑗
− 𝐵
𝑖𝑗
)
2

, (3)

where ‖ ⋅ ‖2
𝐹
is the Frobenius norm.This is lower bounded by

zero and clearly vanishes if, and only if, 𝐴 = 𝐵.
The objective function can be written as

𝐽STClu =

𝑋
(𝑡)

− 𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

2

𝐹

+

𝑋
(𝑡−1)

− 𝐶
(𝑡−1)

𝑈
(𝑡−1)

𝑅
(𝑡)
𝑇

2

𝐹

+

𝑋
(𝑡−1,𝑡)

− 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

2

𝐹

,

(4)

where 𝐶(𝑡) and 𝐶
(𝑡−1) are the representative column matrices

of 𝑋
(𝑡) and 𝑋

(𝑡−1), respectively, 𝑈
(𝑡) and 𝑈

(𝑡−1) are the
weight matrices, respectively, 𝑅(𝑡) ∈ R𝑛×𝑘1 and 𝑅

(𝑡−1)
∈

R𝑚×𝑘2 are the corresponding cluster membership matrices
for graphs 𝐺

(𝑡) and 𝐺
(𝑡−1), respectively, and 𝑈

(𝑡−1,𝑡) reflects
the correspondence between the subgroups derived from two
time steps.

Specifically, assume cluster numbers 𝑘
1
and 𝑘

2
at time

steps 𝑡 and 𝑡−1, respectively. If 𝑘
2
< 𝑘
1
, then the extra clusters

at time 𝑡 must be computed using only the current data and
we let𝑈(𝑡−1) = [𝑈

(𝑡−1)
, 0
𝑐×(𝑘2+1:𝑘2)

]. Otherwise, 𝑘
2
> 𝑘
1
andwe

simply remove the deleted cluster weight vectors in 𝑈
(𝑡−1).

4.2. Optimization of 𝑆𝑇𝐶𝑙𝑢. As can be seen, the objective
function in (4) is minimized with respect to 𝐶

(𝑡), 𝑈(𝑡), 𝑅(𝑡),
and 𝑈

(𝑡−1,𝑡), and it is unrealistic to expect an algorithm to
find the global minimum. In the following, we introduce an
alternating schema to optimize the objective function, which
can achieve a local minimum.

We optimize the objective function with respect to one
variable while fixing the other variables. This iterative proce-
dure repeats until convergence. Using the matrix properties
Tr(𝐴𝐵) = Tr(𝐵𝐴) and Tr(𝐴) = Tr(𝐴𝑇), the objective function
𝐽 in (4) can be rewritten as

𝐽STClu

= Tr((𝑋(𝑡) − 𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

) (𝑋
(𝑡)

− 𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

)

𝑇

)

+ Tr((𝑋(𝑡−1) − 𝐶
(𝑡−1)

𝑈
(𝑡−1)

𝑅
(𝑡)
𝑇

)

× (𝑋
(𝑡−1)

− 𝐶
(𝑡−1)

𝑈
(𝑡−1)

𝑅
(𝑡)
𝑇

)

𝑇

)

+ Tr((𝑋(𝑡−1,𝑡) − 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

)

× (𝑋
(𝑡−1,𝑡)

− 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

)

𝑇

)

= Tr (𝑋(𝑡)𝑋(𝑡)
𝑇

) − 2Tr (𝑋(𝑡)𝑅(𝑡)𝑈(𝑡)
𝑇

𝐶
(𝑡)
𝑇

)

+ Tr (𝐶(𝑡)𝑈(𝑡)𝑅(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

)

+ Tr (𝑋(𝑡−1)𝑋(𝑡−1)
𝑇

) − 2Tr (𝑋(𝑡−1)𝑅(𝑡)𝑈(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

)

+ Tr (𝐶(𝑡−1)𝑈(𝑡−1)𝑅(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

)

+ Tr (𝑋(𝑡−1,𝑡)𝑋(𝑡−1,𝑡)
𝑇

)

− 2Tr (𝑋(𝑡−1,𝑡)𝑅(𝑡−1)𝑈(𝑡−1,𝑡)
𝑇

𝑅
(𝑡)
𝑇

)

+ Tr (𝑅(𝑡)𝑈(𝑡−1,𝑡)𝑅(𝑡−1)
𝑇

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

𝑅
(𝑡)
𝑇

) .

(5)

To alternately update the entries of 𝐶(𝑡), 𝑈(𝑡), 𝑅(𝑡), and
𝑈
(𝑡−1,𝑡), we resort to a Lagrangian function. Let 𝜁

𝑖𝑗
, 𝜉
𝑗𝑙
, 𝜓
𝑘𝑗
,

and 𝜗
𝑖𝑗
be the Lagrange multiplier for constraints 𝐶(𝑡)

𝑖𝑗
≥ 0,

𝑈
(𝑡)

𝑗𝑙
≥ 0, 𝑅(𝑡)

𝑘𝑗
≥ 0, and 𝑈

(𝑡−1,𝑡)

𝑖𝑗
≥ 0, respectively. Then the

Lagrange function 𝐿 is expressed as

𝐿 = Tr (𝑋(𝑡)𝑋(𝑡)
𝑇

) − 2Tr (𝑋(𝑡)𝑅(𝑡)𝑈(𝑡)
𝑇

𝐶
(𝑡)
𝑇

)

+ Tr (𝐶(𝑡)𝑈(𝑡)𝑅(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

)

+ Tr (𝑋(𝑡−1)𝑋(𝑡−1)
𝑇

) − 2Tr (𝑋(𝑡−1)𝑅(𝑡)𝑈(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

)

+ Tr (𝐶(𝑡−1)𝑈(𝑡−1)𝑅(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

)

+ Tr (𝑋(𝑡−1,𝑡)𝑋(𝑡−1,𝑡)
𝑇

)

− 2Tr (𝑋(𝑡−1,𝑡)𝑅(𝑡−1)𝑈(𝑡−1,𝑡)
𝑇

𝑅
(𝑡)
𝑇

)

+ Tr (𝑅(𝑡)𝑈(𝑡−1,𝑡)𝑅(𝑡−1)
𝑇

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

𝑅
(𝑡)
𝑇

)

+ Tr (𝜁𝐶(𝑡)
𝑇

) + Tr (𝜉𝑈(𝑡)
𝑇

)

+ Tr (𝜓𝑅(𝑡)
𝑇

) + Tr (𝜗𝑈(𝑡−1,𝑡)
𝑇

) .

(6)

Since the derivatives of 𝐿 with respect to 𝑈
(𝑡), 𝐶(𝑡), 𝑅(𝑡),

and 𝑈
(𝑡−1,𝑡) must be zero, we have

𝜕𝐿

𝜕𝑈(𝑡)
= −2𝐶

(𝑡)
𝑇

𝑋
(𝑡)
𝑅
(𝑡)

+ 2𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

𝑅
(𝑡)

+ 𝜉,

𝜕𝐿

𝜕𝐶(𝑡)
= −2𝑋

(𝑡)
𝑅
(𝑡)
𝑈
(𝑡)
𝑇

+ 2𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡)
𝑇

+ 𝜁,
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𝜕𝐿

𝜕𝑅(𝑡)
= − 2𝑋

(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

+ 2𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

− 2𝑋
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

+ 2𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

− 2𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

+ 2𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

+ 𝜓,

𝜕𝐿

𝜕𝑈(𝑡−1,𝑡)
= − 2𝑅

(𝑡)
𝑇

𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

+ 2𝑅
(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

𝑅
(𝑡−1)

+ 𝜗.

(7)

Using the Karush-Kuhn-Tucker conditions [29, 33] and
letting 𝜉

𝑗𝑙
𝑈
(𝑡)

𝑗𝑙
= 0, 𝜁

𝑖𝑗
𝐶
(𝑡)

𝑖𝑗
= 0, 𝜓

𝑘𝑗
𝑅
(𝑡)

𝑘𝑗
= 0, and 𝜗

𝑖𝑗
𝑈
(𝑡−1,𝑡)

𝑖𝑗
=

0, we obtain the following equations for 𝑈
(𝑡), 𝐶(𝑡), 𝑅(𝑡), and

𝑈
(𝑡−1,𝑡):

[−𝐶
(𝑡)
𝑇

𝑋
(𝑡)
𝑅
(𝑡)

+ 𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

𝑅
(𝑡)
]
𝑗𝑙

𝑈
(𝑡)

𝑗𝑙
= 0,

[−𝑋
(𝑡)
𝑅
(𝑡)
𝑈
(𝑡)
𝑇

+ 𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡)
𝑇

]
𝑖𝑗

𝐶
(𝑡)

𝑖𝑗
= 0,

[−𝑋
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

+ 𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

− 𝑋
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

+ 𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

− 𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

+ 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

]
𝑘𝑗

𝑅
(𝑡)

𝑘𝑗
= 0,

[−𝑅
(𝑡)
𝑇

𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

+ 𝑅
(𝑡)
𝑇

𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

𝑅
(𝑡−1)

]
𝑖𝑗

𝑈
(𝑡−1,𝑡)

𝑖𝑗
= 0.

(8)

According to (8), we present the following updating rules:

𝑈
(𝑡)

𝑗𝑙
← 𝑈

(𝑡)

𝑗𝑙

[𝐶
(𝑡)
𝑇

𝑋
(𝑡)
𝑅
(𝑡)
]
𝑗𝑙

[𝐶(𝑡)
𝑇

𝐶(𝑡)𝑈(𝑡)𝑅(𝑡)
𝑇

𝑅(𝑡)]
𝑗𝑙

, (9)

𝐶
(𝑡)

𝑖𝑗
← 𝐶

(𝑡)

𝑖𝑗

[𝑋
(𝑡)
𝑅
(𝑡)
𝑈
(𝑡)
𝑇

]
𝑖𝑗

[𝐶(𝑡)𝑈(𝑡)𝑅(𝑡)
𝑇

𝑅(𝑡)𝑈(𝑡)
𝑇

]
𝑖𝑗

, (10)

𝑅
(𝑡)

𝑘𝑗
← 𝑅

(𝑡)

𝑘𝑗
(( [𝑋

(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

+ 𝑋
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

+𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

]
𝑘𝑗

)

× ([𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

+ 𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

+ 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

× 𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

]
𝑘𝑗

)

−1

) ,

(11)

𝑈
(𝑡−1,𝑡)

𝑖𝑗
← 𝑈

(𝑡−1,𝑡)

𝑖𝑗

[𝑅
(𝑡)
𝑇

𝑋
(𝑡−1,𝑡)

𝑅
(𝑡−1)

]
𝑖𝑗

[𝑅(𝑡)
𝑇

𝑅(𝑡)𝑈(𝑡−1,𝑡)𝑅(𝑡−1)
𝑇

𝑅(𝑡−1)]
𝑖𝑗

. (12)

Proofs of the convergence of update rules (9), (10), (11),
and (12) are given in the Appendix.

4.3. Algorithm Description. To eliminate linearly dependent
columns and construct the subspace used for low-rank
approximation from data matrix 𝑋, a unique and indepen-
dent subspace 𝐶 is constructed using Colibri-𝑆 and Colibri-
𝐷 [32]. Algorithm 1 summarizes the details of the iterative
updating algorithm for (4). It is assumed that the adjacency
matrices 𝑋

(𝑡), 𝑋
(𝑡−1), 𝑋

(𝑡−1,𝑡), 𝑅
(𝑡−1), and 𝑈

(𝑡−1) are given.
To improve the clustering efficiency, the variable factors
are initialized by the previous clustering results instead of
random values [29]. Applying the update rules in (9), (10),
(11), and (12) until convergence, we obtain a new 𝐶

(𝑡), 𝑈(𝑡),
𝑅
(𝑡), and 𝑈

(𝑡−𝑡,𝑡).
The computational cost of the proposed STClu algo-

rithm is discussed as follows. To compute the complexity
of the STClu algorithm, we need to inspect its main opera-
tions, namely, the decomposition matrix and multiplicative
updates. In the decomposition step, the computation is
actually done using the three small matrices, 𝑈, 𝐶, and 𝑅.
Each of 𝑈, 𝐶, and 𝑅 is multiplied by an update factor, which
involves several matrix multiplications. We assume that 𝑘 is
the cluster number at time step 𝑡, 𝑐

1
and 𝑐
0
are the sizes of the

data subspaces at time steps 𝑡 and 𝑡−1, respectively, and 𝑛
1
and

𝑛
0
are the sizes of the input matrices at time steps 𝑡 and 𝑡 − 1,

respectively; themultiplicative update stops after𝑇 iterations,
and the cost for STClu is 𝑂(𝑇(𝑐

2
𝑘 + 𝑐𝑛𝑘 + 𝑐𝑛

2
+ 𝑐
2
𝑛)), where

𝑛 = max(𝑛
0
, 𝑛
1
) and 𝑐 = max(𝑐

0
, 𝑐
1
).

5. Experiments and Results

In this section, we use several synthetic and real world data
sets to evaluate the effectiveness and efficiency of the STClu
algorithm.

5.1. Baseline Algorithms and Evaluation Methods. To demon-
strate the efficiency of STClu, we compare it with the
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Input: Matrices𝑋(𝑡),𝑋(𝑡−1),𝑋(𝑡−1,𝑡), 𝑅(𝑡−1), and 𝑈
(𝑡−1), cluster number 𝑘(𝑡), and maximum iteration 𝑇

Output: Matrices 𝐶(𝑡), 𝑈(𝑡), 𝑅(𝑡), and 𝑈
(𝑡−1,𝑡)

(1) use the family of Colibri methods to get 𝐶(𝑡)

(2) determine cluster number 𝑘(𝑡)

(3) initialize 𝑈(𝑡), 𝑅(𝑡), and 𝑈
(𝑡−1,𝑡) using 𝑅

(𝑡−1), 𝑈(𝑡−1), and 𝑈
(𝑡−1,𝑡), respectively

(4) if we need to form a new partition
(5) go to (8)
(6) else
(7) let 𝑅(𝑡) = 𝑅

(𝑡−1) and 𝑈
(𝑡)

= 𝑈
(𝑡−1), and return

(8) while not converging and 𝑡 ≤ 𝑇 do
(9) update 𝑈(𝑡) by (9)
(10) update 𝐶(𝑡) by (10)
(11) update 𝑅(𝑡) by (11)
(12) update 𝑈(𝑡−1,𝑡) by (12)
(13) end while
(14) return 𝑈

(𝑡), 𝐶(𝑡), 𝑅(𝑡), and 𝑈
(𝑡−1,𝑡)

Algorithm 1: STClu.

following three popular clustering algorithms. The first is 𝐾-
means clustering in the principle component analysis (PCA)
subspace. The other two algorithms are the typical spectral
clustering algorithm normalized cut (Ncut) [34] and NMF-
based clustering [19].

To evaluate clustering quality, all our comparisons are
based on clustering accuracy (ACC) and normalized mutual
information (NMI) measurements.

Clustering accuracy (ACC) discovers the one-to-one
relationships between clusters and classes and measures the
extent to which each cluster contains data points from the
corresponding class. It is defined as [18, 19]

ACC =
∑
𝑛

𝑖=1
𝛿 (map (𝑟

𝑖
) , 𝑙
𝑖
)

𝑛
, (13)

where 𝑟
𝑖
denotes the cluster label, 𝑙

𝑖
denotes the true class

label, 𝑛 is the total number of documents, 𝛿(𝑥, 𝑦) is the delta
function that is equal to one if 𝑥 = 𝑦 and zero otherwise, and
map(𝑟

𝑖
) is the permutation mapping function that maps each

cluster label 𝑟
𝑖
to the equivalent label from the data set.

Between two random variables 𝑖 (category label) and 𝑗

(cluster label), NMI is defined as [35]

NMI =
∑
𝑘
(𝑎)

𝑖=1
∑
𝑘
(𝑏)

𝑗=1
𝑛
𝑖,𝑗
log ((𝑛 ⋅ 𝑛

𝑖,𝑗
) / (𝑛
𝑖
⋅ 𝑛
𝑗
))

√(∑
𝑘
(𝑎)

𝑖=1
𝑛
𝑖
log (𝑛

𝑖
/𝑛)) (∑

𝑘
(𝑏)

𝑗=1
𝑛
𝑗
log (𝑛

𝑗
/𝑛))

, (14)

where 𝑛 is the number of documents, 𝑛
𝑖
and 𝑛

𝑗
denote the

number of documents in category 𝑖 and cluster 𝑗, respectively,
𝑛
𝑖,𝑗
denotes the number of documents in category 𝑖 as well as

in cluster𝑗, and 𝑘
(𝑎) and 𝑘

(𝑏) are the cluster numbers in the
true andpredicted clusters.TheNMI score is 1 if the clustering
results perfectly match the category labels whereas the score
is 0 if the data are randomly partitioned.The higher the NMI
score is, the better the clustering quality is.

Since there are no predefined categories in our data,
we have to design an alternative way to carry out the

evaluation. In this paper, we use the 𝐾-means clustering
result of the combined feature data as the target labels for
feature clustering. Similarly, the𝐾-means clustering result of
the combined user data is used as the target labels for user
clustering. To randomize the experiments, we conduct the
evaluation using different cluster numbers. Note that all the
experiments ran on the same machine. At each time step, for
each given cluster number, 30 test runs are carried out on
different randomly chosen clusters. For each experiment, we
run it 10 times and report the average.

5.2. Synthetic Data Sets. In this section, we use synthetic
datasets to demonstrate that STClu can significantly cluster
data for multiple evolving data streams over time. The
number of nodes and number of clusters in each time step are
given. The synthetic datasets are generated by two steps [18].
The first step generates the objects’ geographic information,
and the second step generates the values of the objects’ non-
geographic attributes. The objects’ nongeographic attributes
are generated by applying prototype systemsused in [6]. It can
be defined as follows:𝑓(𝑡+Δ𝑡) = 𝑓(𝑡)+𝑓


(𝑡+Δ𝑡),𝑓(𝑡+Δ𝑡) =

𝑓

(𝑡) + 𝑢(𝑡), in which 𝑓(⋅) is a stochastic process, 𝑡 = 0,

andΔ𝑡, 2Δ𝑡, . . . are independent random variables, uniformly
distributed in an interval [−𝑎, 𝑎]. So, the data stream 𝑆(⋅) can
be defined by 𝑆(𝑡) = 𝑓(𝑡 + ℎ(𝑡)) + 𝑔(𝑡), where ℎ(⋅) and 𝑔(⋅) are
stochastic processes that are generated in the same way as the
prototype 𝑓(⋅). The constant 𝑎 determines the smoothness of
a data stream, which can be different for 𝑝(⋅), ℎ(⋅), and 𝑔(⋅),
such as 0.05, 0.1, and 0.2, respectively. To examine the quality
of STClu for clustering multiple data streams, we generate
random datasets with the number of streams ranging from
100 to 1000. Each stream has a length of 2,000 points.

We show the performance of fourmethods while the time
window evolving over time and the number of clusters in
the data varies from 2 to 20. The stream number is fixed at
400, and each of them contains 1,000 points. As can be seen
in Table 1, the average ACC and NMI among four methods
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Table 1: Comparison of ACC and NMI results for the four methods based on synthetic data sets.

𝑘
ACC NMI

𝐾-means Ncut NMF STClu 𝐾-means Ncut NMF STClu
2 0.3959 0.4954 0.5449 0.6542 0.3480 0.5130 0.5895 0.6749

4 0.3855 0.4740 0.5120 0.6436 0.4148 0.5233 0.4416 0.6967

5 0.3773 0.4685 0.5205 0.6757 0.3810 0.5016 0.5781 0.6122

6 0.3710 0.4866 0.5425 0.5603 0.4162 0.5430 0.6041 0.6059

8 0.3864 0.4636 0.4893 0.6038 0.4257 0.5247 0.5098 0.7022

10 0.3711 0.4540 0.4919 0.6231 0.3960 0.5154 0.4082 0.7238

12 0.3896 0.4802 0.5231 0.5868 0.4051 0.5088 0.5916 0.5421

15 0.3819 0.4728 0.5102 0.4834 0.4180 0.5207 0.5252 0.6281

18 0.4121 0.4827 0.5082 0.5293 0.4315 0.5786 0.5850 0.5823

20 0.4019 0.5275 0.6110 0.6516 0.4171 0.5823 0.4390 0.6299
Average 0.3873 0.4805 0.5254 0.6012 0.4053 0.5311 0.5272 0.6398

with the different numbers on synthetic dataset are shown.
It can be clearly found that the STClu outperforms all other
approaches and having highest NMIs at evolving time steps.
The reason is that it incorporates the previous clustering
results of the upstream sensors and the spatial relationship
between the upstream and downstream sensors.

The average ACC and NMI value for the proposed
algorithm varies with the varied number of clusters or data
streams shown in Figures 3(a) and 3(b), respectively. As
shown in Figure 3, we can observe that the performance of
the proposed algorithm STClu is very robust to the number
of clusters and data streams.

Finally, we evaluate the average processing time for a
round of clustering multiple data streams.There are different
factors affecting the execution time. In this experiment, we
evaluate the effect of the window size and the number of data
streams on the response time for the compared algorithms.

The following set of experiments evaluate the effect of
window size on the execution time of these algorithms.
Figure 4(a) shows that as the window size increases, the pro-
cessing time of these algorithms increases. The 𝑦-axis shows
the execution time, while the 𝑥-axis represents the window
size 𝑤(𝑡) from 60 to 600. In Figure 4(b), the 𝑦-axis shows
the execution time, while the 𝑥-axis represents the number
of data streams being varied from 100 to 1000. The other
parameters are fixed as follows: 𝑤(𝑡) = 300 s, 𝑘 = 4. Note
that as the number of streams increases, the execution time of
these methods increases. However, the time of the STClu and
NMF increasesmuchmore slowly than others.This is because
of the execution efficiency of STClu and NMF for clustering
multiple data streams in the approximate subspace. Although
STClu requires more time than NMF, as can be seen from the
experiments, it is able to process extremely large sensor data
streams with spatial, temporal, and other multidimensional
information.

5.3. Real World Data Sets. The real world data sets were
obtained from the PeMS (http://pems.dot.ca.gov/) database.

With sensor devices installed on road networks, a system
monitors traffic flows on major US highways 24 hours a day,
7 days a week, thus acquiring huge volumes of data. We col-
lected data from963 sensors positioned along the freeway.We
selected 15months of daily data records giving the occupancy
rates (between 0 and 1) of different car lanes on freeways in the
San Francisco bay area over time.Thedata set covered records
sampled every 10min from 1 January 2008 to 30 March 2009.
Data for public holidays were removed from the data set, as
well as datva collected on two days with anomalies (8 and 9
March 2008), where all sensors weremuted between 2:00 and
3:00 am.

First, we discuss the experiments on the PeMS data set
with the number of clusters varying from 2 to 20. For each
given cluster number 𝑘, the clustering results of all these
algorithms on the PeMS data set are shown in Table 2; Ncut,
NMF, and the proposed STClu algorithm achieve better
performance than the 𝐾-means algorithm, since these three
algorithms consider the geometrical structure information
contained in the data.

Next, we discuss the experiments on the PeMS data set
with different time steps. For each time step, the clustering
results of all these algorithms on the PeMS data set are shown
in Table 3. We observe that the STClu algorithm performs
better than the other three algorithms for most time steps,
except 𝑡 = 1.The reason for this is that STClu integrates more
historical knowledge and the spatial relationship between two
sensors in proximity.

Finally, we report the experimental results on PeMS
data set over a different number of time steps with a
varying number of clusters. The clustering results of all these
algorithms on the PeMS data set are shown in Table 4.
STClu outperforms the other three algorithms in terms
of both ACC and NMI, because it simultaneously con-
siders the geometric structure and incorporates the prior
knowledge and the spatial correlation between sensors in
proximity.
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Figure 3: The performance of the proposed algorithm varying with the size of (a) clusters, (b) data streams, respectively.
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Figure 4: Average processing time: (a) while the window size 𝑤(𝑡) varies from 60 to 600, (b) while the number of streams varies from 100 to
1000, respectively.

6. Conclusions

Clustering multiple sensor data streams in CPS has been
extensively studied in various applications, including trans-
portation systems, sensor networks, and social networks. To
extract and retain meaningful information from multiple
sensor data streams, we assume that the spatial feature is
the summary of the atypical event in temporal dimension,
and the temporal feature is the summary of the event

in spatial dimension. In this work, we have proposed a
spatial-temporal clustering algorithm, called STClu. It uti-
lizes time-series observational data streams and geospatial
relationship for clustering multiple sensor data streams. It
aims to discover clusters of objects with similar behavior
and discover potential anomalies which may be revealed by
the relationship evolving over time. STClu simultaneously
incorporates the spatial relationship between two sensors
in proximity and integrates the historical information into
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Table 2: Comparison of the ACC and NMI results for the four methods on PeMS with the number of clusters varying from 2 to 20.

𝑘
ACC NMI

𝐾-means Ncut NMF STClu 𝐾-means Ncut NMF STClu
2 0.2716 0.3014 0.3163 0.5060 0.2808 0.3027 0.3260 0.5127
3 0.2685 0.2950 0.3064 0.5065 0.2762 0.2947 0.3197 0.5167
5 0.2660 0.2933 0.3089 0.5107 0.2741 0.2952 0.3256 0.5540
8 0.2641 0.2988 0.3155 0.5123 0.2759 0.3011 0.3119 0.5679
10 0.2687 0.2919 0.2996 0.5078 0.2748 0.2899 0.3105 0.5282
12 0.2642 0.2890 0.3004 0.5115 0.2711 0.2889 0.3137 0.5611
15 0.2697 0.2969 0.3097 0.5057 0.2777 0.2973 0.3129 0.5098
19 0.2674 0.2946 0.3059 0.5104 0.2754 0.2943 0.2959 0.5510
20 0.2764 0.2976 0.3052 0.5164 0.2813 0.2955 0.3023 0.6043
Average 0.2685 0.2954 0.3075 0.5097 0.2764 0.2955 0.3132 0.5451

Table 3: Comparison of the ACC and NMI results for the four methods on PeMS with different time steps.

Time step ACC NMI
𝐾-means Ncut NMF STClu 𝐾-means Ncut NMF STClu

1 0.2671 0.3033 0.3262 0.5052 0.2796 0.3085 0.3248 0.5052
2 0.2777 0.3157 0.3340 0.5053 0.2908 0.3184 0.3276 0.5065
3 0.2805 0.3102 0.3057 0.5100 0.2895 0.3019 0.3279 0.5477
4 0.2716 0.3074 0.2753 0.5083 0.2838 0.2856 0.3162 0.5323
5 0.2744 0.3054 0.3303 0.5140 0.2842 0.3115 0.3165 0.5836
6 0.2782 0.3090 0.3104 0.5028 0.2878 0.3035 0.3193 0.4839
7 0.2823 0.3263 0.3283 0.5077 0.2983 0.3208 0.3214 0.5277
8 0.2779 0.3275 0.2845 0.5091 0.2967 0.2999 0.3069 0.5395
9 0.2576 0.3409 0.3810 0.5027 0.2881 0.3796 0.3346 0.4834
10 0.2480 0.3256 0.3627 0.5086 0.2779 0.3759 0.3423 0.5350
11 0.2390 0.3118 0.3471 0.5072 0.2698 0.3678 0.3245 0.5227
12 0.2305 0.2989 0.3315 0.5120 0.2637 0.3656 0.3445 0.5653
Average 0.2654 0.3152 0.3264 0.5077 0.2842 0.3283 0.3255 0.5277

Table 4: Comparison of the ACC andNMI results for the fourmethods on PeMSwith the number of clusters varying from 2 to 20 at different
time steps.

Time step ACC NMI
𝐾-means Ncut NMF STClu 𝐾-means Ncut NMF STClu

1 0.2694 0.3024 0.3213 0.5056 0.2802 0.3056 0.3254 0.5090
2 0.2731 0.3054 0.3202 0.5059 0.2835 0.3066 0.3237 0.5116
3 0.2733 0.3018 0.3073 0.5104 0.2818 0.2986 0.3268 0.5509
4 0.2679 0.3031 0.2954 0.5103 0.2799 0.2934 0.3141 0.5501
5 0.2716 0.2987 0.3150 0.5109 0.2795 0.3007 0.3135 0.5559
6 0.2712 0.2990 0.3054 0.5072 0.2795 0.2962 0.3165 0.5225
7 0.2760 0.3116 0.3190 0.5067 0.2880 0.3091 0.3172 0.5188
8 0.2727 0.3111 0.2952 0.5098 0.2861 0.2971 0.3014 0.5453
9 0.2670 0.3193 0.3431 0.5096 0.2847 0.3376 0.3185 0.5439
10 0.2607 0.3184 0.3494 0.5107 0.2822 0.3466 0.3389 0.5536
11 0.2481 0.3093 0.3384 0.5085 0.2731 0.3398 0.3301 0.5344
12 0.2539 0.3044 0.3084 0.5129 0.2757 0.3286 0.3308 0.5731
Average 0.2654 0.3152 0.3264 0.5077 0.2842 0.3283 0.3255 0.5277
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consideration. Experimental results on synthetic and real
world data sets show that STClu achieves a better perfor-
mance for clustering multiple sensor data streams evolving
over time.

Appendix

In this section, we investigate the convergence and correct-
ness of the objective function in (4) under update rules (9),
(10), (11), and (12). Regarding these four update rules, we have
the following theorem.

Theorem A.1. For 𝑋(𝑡), 𝐶(𝑡), 𝑈(𝑡), 𝑅(𝑡), and 𝑈
(𝑡−1,𝑡)

≥ 0, the
update formulas for 𝑈

(𝑡), 𝐶(𝑡), 𝑅(𝑡), and 𝑈
(𝑡−1,𝑡) given in (9),

(10), (11), and (12), respectively, monotonically decrease the
objective function in (4).

The proofs are provided with the aid of auxiliary func-
tions. Since the first termof the objective function 𝐽STClu in (4)
is only related to 𝑈

(𝑡), the first term of the objective function
𝐽STClu in (4) is only related to 𝐶

(𝑡), and the third term of 𝐽STClu
in (4) is only related to 𝑈

(𝑡−1,𝑡), we have exactly the same
updating rule for𝑈(𝑡), 𝐶(𝑡), and𝑈

(𝑡−1,𝑡)as in [19], respectively.
Thus, we can use the convergence proof in [19] to show that
𝐽STClu is monotonically decreasing under the updating rules
in (9), (10), and (12), respectively. Please see [19, 36] for details.
Next, we prove convergence under the update rule for 𝑅(𝑡) in
(11).

Definition A.2. 𝑍(V, V) is an auxiliary function for 𝐽(V) if the
following two conditions are satisfied:

𝑍(V, V) ≥ 𝐽 (V) , 𝑍 (V, V) = 𝐽 (V) . (A.1)

Lemma A.3. For any V and V, if 𝑍 is an auxiliary function, 𝐽
is monotonically decreasing under the formula

V𝑡+1 = arg min
V

𝑍(V, V𝑡) . (A.2)

Proof. Consider

𝐽 (V𝑡+1) ≤ 𝑍 (V𝑡+1, V𝑡) ≤ 𝑍 (V𝑡, V𝑡) = 𝐽 (V𝑡) . (A.3)

Thus, 𝑍(V𝑡+1, V𝑡) ≤ 𝑍(V𝑡, V𝑡) and 𝐽(V𝑡+1) ≤ 𝐽(V𝑡), which
completes the proof.

Next, we show that the update rule for 𝑅
(𝑡) in (12) is

exactly the same as the update in (A.2) with a proper auxiliary
function. Considering any element 𝑅(𝑡)

𝑘𝑗
in 𝑅
(𝑡), we let

𝐽 (𝑅
(𝑡)
) =


𝑋
(𝑡)

− 𝐶
(𝑡)
𝑈
(𝑡)
𝑅
(𝑡)
𝑇

2

𝐹

+

𝑋
(𝑡−1)

− 𝐶
(𝑡−1)

𝑈
(𝑡−1)

𝑅
(𝑡)
𝑇

2

𝐹

+

𝑋
(𝑡−1,𝑡)

− 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

2

𝐹

.

(A.4)
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(A.5)

Since our update rule operates elementwise, it is sufficient
to show that each 𝐽(𝑅

(𝑡+1)
)
𝑘𝑗

is nonincreasing under the
update formula in (12).
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𝑇

]
𝑘𝑗

)

× ([𝑅
(𝑡)
𝑈
(𝑡)
𝑇

𝐶
(𝑡)
𝑇

𝐶
(𝑡)
𝑈
(𝑡)

+ 𝑅
(𝑡)
𝑈
(𝑡−1)
𝑇

𝐶
(𝑡−1)
𝑇

𝐶
(𝑡−1)

𝑈
(𝑡−1)

+ 𝑅
(𝑡)
𝑈
(𝑡−1,𝑡)

𝑅
(𝑡−1)
𝑇

𝑅
(𝑡−1)

𝑈
(𝑡−1,𝑡)

𝑇

]
𝑘𝑗

)

−1

) .

(A.10)

Since (A.6) is an auxiliary function for 𝐽
𝑘𝑗
(𝑅
(𝑡)

𝑘𝑗
), 𝐽
𝑘𝑗
(𝑅
(𝑡)

𝑘𝑗
)

is nonincreasing under the update rule in (11).
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