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Within each supermultiplet in the standard literature, supersymmetry relates its bosonic and fermionic component fields in a
fixed way, particularly to the selected supermultiplet. Herein, we describe supermultiplets wherein a continuously variable “tuning
parameter” modifies the supersymmetry transformations, effectively parametrizing a novel “𝑄-continuum” of distinct finite-
dimensional off-shell supermultiplets, which may be probed already with bilinear Lagrangians that couple to each other and to
external magnetic fields, two or more of these continuously many supermultiplets, each “tuned” differently.The dependence on the
tuning parameters cannot be removed by any field redefinition, rendering this “𝑄-moduli space” observable.

“Discreteness is the refuge of the clumsy.”
Jorge Hazzan

1. Introduction, Results, and Synopsis

Supersymmetry has been studied for over forty years [1, 2],
has had successful application in nuclear physics [3, 4] and
critical phenomena [5, 6], and has recently found applications
also in condensedmatter physics: see the recent reviews [7, 8],
for example. In quantum applications, the supermultiplets
must be off-shell, that is, free of any (space) time-differential
constraint that could play the role of the Euler-Lagrange
(classical) equation ofmotion.The long-standing challenge of
a systematic classification of off-shell supermultiplets [9, 10]
has been addressed with significant success in the last decade
or so; see [11–19] and references therein. One of the pivotal
ideas enabling this recent development was the use of graph-
theoretical methods [20–22] in assessing the structure of
the supersymmetry transformations within the world-line
dimensional reduction of off-shell supermultiplets, which

turned out to relate the classification problem to encryption
and coding theory [23–25].

Although this research program uncovered trillions of
off-shell supermultiplets of world-line 𝑁-extended super-
symmetry, we show herein—corroborated by concurrent
research [26]—that they provide merely a discrete subset
of a vast 𝑄-continuum, giving rise to a 𝑄-moduli space.
Furthermore, we prove herein that this novel 𝑄-continuum
is physically observable.

This may well come as a surprise, since both the con-
tinuous Lie algebras and the various discrete symmetry
groups familiar from physics applications all have discrete
sequences of inequivalent unitary and linear and finite-
dimensional representations. Reference [27] showed that the
infinite sequence of quotient supermultiplets specified in [21]
defines a similarly infinite sequence of ever larger unitary,
linear, and finite-dimensional off-shell representations of
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𝑁 ⩾ 3-extended world-line supersymmetry, and [28] finds
highly nontrivial and continuously variable dynamics for the
simplest of these supermultiplets, even with only bilinear
Lagrangians.

Our present results, however, radically extend this line
of research. By proving that each of these supermultiplets is
merely a special member in a continuum of distinct super-
multiplets, we prove that already bilinear Lagrangians of [28]
can couple continuously many distinct supermultiplets. The
coupling constants are therefore functions over this novel
𝑄-moduli space, providing access to physically probe and
observe this 𝑄-continuum.

For simplicity and concreteness, we focus on the𝑁 = 4-
extended world-line supersymmetry algebra without central
charges:

{𝑄
𝐼
, 𝑄
𝐽
} = 2𝑖𝛿

𝐼𝐽
𝜕
𝜏
,

[𝜕
𝜏
, 𝑄
𝐼
] = 0,

(1)

where 𝑖𝜕
𝜏
is the Hamiltonian (in the familiar ℏ = 1 = 𝑐 units)

and 𝑄
1
, . . . , 𝑄

4
are the supercharges, four real generators of

supersymmetry. For concreteness, we focus on a particular
set of supermultiplets (see (2) below) which were adapted
from [28] by replacing one of the component bosons with
its 𝜏-derivative and renaming the component fields. Our
present results then apply equally well not only to the𝑁 = 3

supermultiplet of [27, 28] but also to the infinite sequence of
ever larger supermultiplets constructed therein. Our present
focus onworld-line supersymmetry should nevertheless have
implications for all supersymmetry, since, (a) by dimensional
reduction, (1) is an integral part and common denominator
of every supersymmetric theory, (b) it is directly relevant in
diverse fields in physics, from candidates for the fundamental
description of 𝑀-theory [29] to the phenomenology of
topological insulators and graphene [30], and (c) it shows
up in the Hilbert space of every supersymmetric quantum
theory. We defer the exploration of these implications to a
subsequent effort.

The paper is organized as follows. Section 2 defines
an illustrative 1-parameter family of indecomposable off-
shell, unitary, and finite-dimensional supermultiplets and
identifies the novel 𝑄-continuum and the corresponding 𝑄-
moduli space, {𝛼 ∈ R}. Section 3 then explicitly constructs
Lagrangians that, even though being just bilinear in fields, (1)
inextricably depend on the tuning parameter 𝛼, (2) pairwise
couple continuously many inequivalent supermultiplets, and
(3) provide for physical probing of this 𝑄-continuum by
coupling to external magnetic fields. Section 4 provides a
token example of such nontrivial dynamics which essentially
depend on the tuning parameter 𝛼, and our conclusions are
summarized in Section 5.

2. The 𝑄-Continuum of
Off-Shell Supermultiplets

We proceed by way of a concrete example, introducing the
following 1-parameter family of variations of the off-shell
supermultiplet from [28]:
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Omitting the fourth supersymmetry, 𝑄
4
, would result in a

minimal example of this𝑄-continuum; see MainTheorem of
[26].The inclusion of𝑄

4
, however, proves that our results are

not an artifact of “too few supersymmetries” and also affords
possible extensions to higher-dimensional spacetimes to be
explored separately.

The supermultiplet (2) may be depicted (graphical depic-
tions of supersymmetry transformation rules are a time-
tested intuitive tool [31] but have been rigorously formalized
only recently [21], and we adopt those conventions) in the
manner of Figure 1. Component fields are depicted as nodes
and the 𝑄-transformations between them are depicted as
connecting edges, variously colored to correspond to the four
supercharges𝑄

𝐼
; these are drawn solid (dashed) to depict the

positive (negative) signs in (2).This graphical rendition of the
supermultiplet (2) at once reveals that the supermultiplet (2)
consists of two identical submultiplets, (𝜙

1
, 𝜙
2
| 𝜓
1
, . . . , 𝜓

4
|

𝐹
3
, 𝐹
4
) and (𝜙

5
, 𝜙
6
| 𝜓
5
, . . . , 𝜓

8
| 𝐹
7
, 𝐹
8
), which supersym-

metry connects by the one-way transformations. Such one-
way transformations are exemplified by the fact that 𝑄

1
(𝜙
2
)

contains 𝜓
6
, but 𝑄

1
(𝜓
6
) does not contain 𝜙

2
; this is depicted

by the tapering edges crossing the dashed vertical divider in
Figure 1.

Surprisingly—and radically extending our previous work
on the topic [27, 28]—we find that these one-way 𝑄-
transformations admit a continuous “tuning parameter.”
Denoting 𝛼 ∈ R in the tabulation (2), its value is in no way
restricted by the supersymmetry algebra relations (1)! That
is, the supersymmetry transformations (2) close the algebraic
relations (1) on every given component field with no need
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Figure 1: A graphical depiction of the𝑁 = 4 world-line supermultiplet (2).

of any 𝜏-differential condition and for each possible value of
𝛼 ∈ R separately. The tabulation (2) is thus a continuous 1-
parameter family of proper off-shell representations of 𝑁 =

4-extended supersymmetry on the world-line. By contrast,
the trillions of supermultiplets reported in [22, 25] as well as
those of [27, 28] and all known supermultiplets [1, 32] form
at most discrete sequences.

The supermultiplet (2) then is one of the simplest exam-
ples of the 𝑄-continuum; see also [26]. In turn the real line
{𝛼 ∈ R} is the corresponding coarse𝑄-moduli space. Explicit
choices of the Lagrangian will determine corresponding
actions of a mapping class group, Γ, whereby {𝛼 ∈ R}/Γ

becomes the true (and model-dependent) 𝑄-moduli space;
see below.

The special value 𝛼 = 0 decomposes the supermultiplet
(2) into two separate off-shell (2|4|2)-dimensional super-
multiplets, both of which being the world-line dimensional
reduction of the familiar chiral supermultiplet [1, 21]. When
𝛼 ̸= 0, the off-shell supermultiplet (2) cannot be decomposed
as a direct sum of two separate supermultiplets. The off-shell
supermultiplets of 𝑁 = 3-extended supersymmetry consid-
ered in [27, 28]may be similarly extended to depend on a pre-
cisely analogous tuning parameter, dialing the “magnitude” of
the one-way 𝑄

𝐼
-transformations connecting the two halves

of the supermultiplet; see Figure 1. Those supermultiplets are
closely related to the 𝛼 = 1 version of (2): except for some
renaming of component fields, one merely needs to drop
the fourth supersymmetry and replace 𝐹

4
→ 𝜙
4
= ∫ d𝐹

4
,

effectively lowering the corresponding node (top, left) to the
bottom level in the graph in Figure 1.This, however, obstructs
dimensional extension even to just world-sheet supersym-
metry [33], providing our main motivation to consider (2)
instead of the slightly simpler supermultiplet of [27, 28].

Explicit attempts verify that no local component field
redefinition can remove the parameter 𝛼 from the super-
symmetry transformations (2). As discussed subsequently,
all efforts to eliminate 𝛼 from the 𝑄-transformations must
involve nonlocal transformations; see also (6) below.

The table (2) thus defines a 1-parameter continuum of
indecomposable off-shell, unitary, and linear representa-
tions of world-line 𝑁 = 4-extended supersymmetry, 𝛼,

parametrizing this 𝑄-continuum and providing a coarse
parametrization for the corresponding 𝑄-moduli space.

3. Lagrangians

We now turn to show that the supersymmetry tuning param-
eter 𝛼 does show up in the dynamics, is observable, and
makes any two such supermultiplets, each with a different 𝛼-
value, usefully inequivalent in the sense of [34]: using super-
multiplets with different tuning parameter values permits
constructing Lagrangians which could not be constructed
without this variation.

To prove this, we construct sufficiently general Lagran-
gians for direct use in classical applications and in quantum
models using the correspondingHamiltonian,𝐻 fl 𝑝⋅�̇�−𝐿, or
via the partition functional 𝑍[𝜙

∗
] fl ∫D[𝜙]exp{𝑖 ∫ d𝜏𝐿[𝜙

∗
+

𝜙, �̇�
∗
+ �̇�, . . .]}.

3.1. Simple Kinetic Terms. Following the procedure employed
in [28], we use the fact that any Lagrangian of the form

𝐿 fl −𝑄
4
𝑄
3
𝑄
2
𝑄
1
𝑘 (𝜙, 𝜓, 𝐹) (3)

is automatically supersymmetric, since its 𝛿
𝑄

fl 𝑖𝜖
𝐼
𝑄
𝐼
-

transformation necessarily produces a total 𝜏-derivative.This
is the direct adaptation of the construction of the so-called
𝐷-terms in standard treatments of supersymmetry [1, 2].

Dimensional analysis dictates that for kinetic-type
Lagrangians we need 𝑘(𝜙, 𝜓, 𝐹) to be bilinear in the
component fields 𝜙

1
, 𝜙
2
, 𝜙
5
, 𝜙
6
; this will produce terms of

the form �̇�
𝑎
�̇�
𝑏
, 𝑖𝜓
𝛼
�̇�
𝛽
, 𝐹
𝐴
𝐹
𝐵
, and �̇�

𝑎
𝐹
𝐵
as appropriate for

kinetic terms. Table 1 lists the individually supersymmetric
Lagrangian summands obtained this way after dropping
total 𝜏-derivatives. As shown, the ten bilinear functions
𝑘(𝜙) = 𝑘

𝑎,𝑏
𝜙
𝑎
𝜙
𝑏
result in six linearly independent terms, so

we define

𝐿
KE
�⃗�

fl −
1

4
𝑄
4
𝑄
3
𝑄
2
𝑄
1
(𝐴
1
𝜙
1

2
+ 𝐴
2
𝜙
2

2
+ 𝐴
3
𝜙
5

2

+ 2𝐴
4
𝜙
1
𝜙
2
+ 2𝐴
5
𝜙
1
𝜙
5
+ 2𝐴
6
𝜙
1
𝜙
6
) ,

(4)
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Table 1: Manifestly supersymmetric kinetic Lagrangian terms for the 𝛼-supermultiplet.

𝜙
𝑖
𝜙
𝑗

−𝑄
4
(𝜙
𝑖
𝜙
𝑗
) fl −𝑄
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𝑄
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𝑄
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𝑄
1
(𝜙
𝑖
𝜙
𝑗
)
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1
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+(�̇�
1
)
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+ (�̇�
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8
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+ 𝐹
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+ 𝑖𝜓
3
�̇�
3
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+ 𝛼�̇�
6
)
2
+ 𝑖(𝜓
1
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) + 𝑖(𝜓

2
+ 𝛼𝜓
8
)(�̇�
2
+ 𝛼�̇�
8
) + 𝑖(𝜓
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‡The −𝑄4(𝜙1𝜙2) entry is not simplified further to facilitate comparison with Table 2.

and we read off the actual summands from Table 1 to save
space. For example,
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(5)

defines the “standard-looking” kinetic terms for this super-
multiplet. Herein, the local component field redefinition

(𝜙
2
, 𝐹
8
) → (�̃�

2
, �̃�
8
) ,

�̃�
2
fl √1 + 𝛼2𝜙

2
, �̃�
8
fl
𝐹
8
− 𝛼�̇�
2

√1 + 𝛼2
,

(6)

would completely eliminate the appearance of the continuous
tuning parameter 𝛼 from the “standard-looking” Lagrangian
(5) and would thus seem to render the supermultiplets (2)
with various values of the tuning parameter 𝛼 physically
equivalent to each other. We note in passing that field
redefinition (6) complicates the transformation table (2), the
effect of which is that the partition-crossing edges in the
graph in Figure 1 become regular, “two-way” edges, hiding
the reducibility of the supermultiplet (2).

In fact, the 𝛼-dependence can be eliminated from all
Lagrangians of the particular form (4) by “diagonalizing” to
normal modes. To see this, note that all such Lagrangians can
be written in the matrix form:

𝐿
KE
�⃗�
=
∘

Φ
𝑇

⋅ K ⋅
∘

Φ + 𝑖Ψ
𝑇
⋅M ⋅ Ψ̇,
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1
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2
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5
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| 𝐹
3
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4
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7
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8
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1
, . . . , 𝜓

8
) ,
∘
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𝜏
, . . . , 𝜕

𝜏
| 1, . . . , 1] .

(7)

All such Lagrangians can be “diagonalized” by local field
redefinitions (Φ̃, Ψ̃) = (B

∘

Φ, FΨ) defined so that B𝑇B = K

and F𝑇F = M. Here, K is manifestly symmetric and defines
( 8
2
) = 28 linearly independent bosonic bilinear terms. Taking

modulo total 𝜕
𝜏
-derivatives, M defines ( 8

2
) = 28 linearly

independent fermionic bilinear terms. It then follows that F
is an orthogonal basis transformation of the fermions 𝜓

𝛼
→

�̃�
𝛼
= Λ
𝛼

𝛽
𝜓
𝛽
, andB is of the general form (with

∘

B fl D−1BD):
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∘
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𝜏

E
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𝜙
𝑖
→ �̃�

𝑖
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𝑖

𝑗
𝜙
𝑗
,

𝐹
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𝐴
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𝑗
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𝑗
+ 𝐸
𝐴

𝐵
𝐹
𝐵
.

(8)

This “diagonalizes” the kinetic terms (7):

𝐿
KE
�⃗�
=
∘

Φ̃

𝑇

⋅ 1 ⋅
∘

Φ̃ + 𝑖Ψ̃
𝑇

⋅ 1 ⋅
̇̃
Ψ,

where
∘

Φ̃ = B
∘

Φ, Ψ̃ = FΨ.

(9)

Straightforward computation then shows that

if [

[

∘

Φ


Ψ


]

]

= [
O L𝜕

𝜏

R O
][

∘

Φ

Ψ
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
is a supersymmetry of (7)

then [[

[

∘

Φ̃



Ψ̃


]
]

]

= [
B O

O F
][

O L𝜕
𝜏

R O
][

B−1 O

O F−1
]
[
[

[

∘

Φ̃

Ψ̃

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
is a supersymmetry of (9)

.

(10)
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Since det[B] = √det[K] and det[F] = √det[M], the trans-
formation

∘

Q = [
O L𝜕

𝜏

R O
] →

∘

Q̃ = [
B O

O F
][

O L𝜕
𝜏

R O
][

B−1 O

O F−1
]

(11)

needed in (10) is well defined if and only if det[K] ̸= 0 ̸=

det[M].
Finally, since the nonzero coefficients in the final, “diag-

onalized” form of the kinetic Lagrangian (9) are all unity,
it follows that all explicit dependence on the continuous
tuning parameter 𝛼 can be hidden from the simple kinetic
Lagrangian (9) precisely if det[K] ̸= 0 ̸= det[M].

However, the explicit dependence on the continuous
tuning parameter 𝛼 does not vanish from the supersym-
metry transformations (2). This implies that simple kinetic
Lagrangians (4) may well have a continuum of supersym-
metries, not just a discrete number of supersymmetries as
proven recently for “flat” kinetic Lagrangians [35, Appendix
C.2]. Since the “kinetic-diagonalizing” field redefinition (9)
complicates the supersymmetry transformation rules (2)
and virtually all of the subsequent computations, we do
not presume it at the outset but account for this freedom
subsequently; see below.

3.2. Unhiding the Tuning Parameter. We now turn to specify
some generalizations of the simple Lagrangian (4), where the
explicit occurrences of 𝛼 can no longer be hidden by local
field redefinitions.

Mixing. Consider two separate supermultiplets of the type (2),
and label their separately variable tuning parameters 𝛼 and 𝛽,
respectively:

(𝜙
1
, 𝜙
2
, 𝜙
5
, 𝜙
6
| 𝜓
1
, . . . 𝜓
7
| 𝐹
3
, 𝐹
4
, 𝐹
7
, 𝐹
8
)
𝛼
,

(𝜑
1
, 𝜑
2
, 𝜑
5
, 𝜑
6
| 𝜒
1
, . . . 𝜒
7
| 𝐺
3
, 𝐺
4
, 𝐺
7
, 𝐺
8
)
𝛽
.

(12)

Now consider even just the bilinear coupling Lagrangians of
the form

𝐿
KE
�⃗�;𝛼,𝛽

fl −𝑄
4
𝑄
3
𝑄
2
𝑄
1
(�⃗�
(𝛼)

⋅ �⃗� (𝜙) + �⃗�
(𝛽)

⋅ �⃗� (𝜑)

+ �⃗�
(𝛼,𝛽)

⋅ ℎ⃗ (𝜙, 𝜑)) ,

(13)

where �⃗�
(𝛼)

⋅ �⃗�(𝜙) are the bilinear terms (4) and �⃗�
(𝛽)

⋅ �⃗�(𝜑)

terms are constructed in a precisely analogous way but for
the supermultiplet (𝜑 | 𝜒 | 𝐺)

𝛽
, involving a corresponding

independent set of six coefficients.
Finally, �⃗�

(𝛼,𝛽)

⋅ ℎ⃗(𝜙, 𝜑) represents the mixing terms, con-
structed as a general linear combination of the fourteen
analogously constructed terms, listed in Table 2, and it is the
inclusion of these terms that can obstruct the hiding of the

tuning parameters 𝛼 and 𝛽. To see this and motivated by the
analysis of (4), consider even the very simple analogue of (5):

𝐿
KE
mix. = −

1

2
𝑄
4
𝑄
3
𝑄
2
𝑄
1
(𝜙
1
𝜑
1
+ 𝜙
5
𝜑
5
) ,

𝐿
KE
mix. = �̇�1�̇�1 + (�̇�2 + 𝛼𝐹8) (�̇�2 + 𝛽𝐺8) + 𝐹3𝐺3 + 𝐹4𝐺4

+ �̇�
5
�̇�
5
+ �̇�
6
�̇�
6
+ 𝐹
7
𝐺
7
+ 𝐹
8
𝐺
8
+ ⋅ ⋅ ⋅ ,

(14)

where the ellipses indicate that the fermionic bilinear terms
were omitted. As in (6), the local field redefinition

�̃�
2
fl √1 + 𝛼𝛽𝜙

2
,

�̃�
8
fl
𝐹
8
− 𝛽�̇�
2

√1 + 𝛼𝛽
,

�̃�
2
fl √1 + 𝛼𝛽𝜑

2
,

�̃�
8
fl
𝐺
8
− 𝛼�̇�
2

√1 + 𝛼𝛽

(15)

turns 𝐿KEmix. into

𝐿
KE
mix. = �̇�1�̇�1 +

̇̃
𝜙
2
̇̃𝜑
2
+ 𝐹
3
𝐺
3
+ 𝐹
4
𝐺
4
+ �̇�
5
�̇�
5
+ �̇�
6
�̇�
6

+ 𝐹
7
𝐺
7
+ �̃�
8
�̃�
8
+ ⋅ ⋅ ⋅

(16)

hiding both 𝛼 and 𝛽. The transformation (15) preserves the
reality of the component fields only if 𝛼𝛽 > −1 and becomes
undefined (diverges) when 𝛼𝛽 → −1. Also, the transforma-
tion (15) does not hide the 𝛼-dependence in (4) or the 𝛽-
dependence in −𝑄4(𝜑

1

2
+ 𝜑
5

2
). Thus, by explicit counter-

example, we have the following theorem.

Theorem 1. There do exist Lagrangians of the generic type (13)
in which no well-defined, real, local field redefinition can hide
the explicit 𝛼- and 𝛽-dependence.

The expression (13) then provides a 6 + 6 + 14 = 26-
parameter continuous family of bilinear Lagrangians for the
two distinct 1-parameter families of supermultiplets: one
such family for every choice of the pair (𝛼, 𝛽) ∈ R2!
Generic choices in this 26-dimensional parameter space
{�⃗�
(𝛼)

, �⃗�
(𝛽)

, �⃗�
(𝛼,𝛽)

} define Lagrangians that depend irremov-
ably on both tuning parameters 𝛼 and 𝛽 and so provide for
dynamical responses that can be used to observe the values of
𝛼 and 𝛽 and indeed any difference between them. This then
is the practical distinction between (𝜙 | 𝜓 | 𝐹)

𝛼
and (𝜑 |

𝜒 | 𝐺)
𝛽
. For each value of the tuning parameters (𝛼, 𝛽) ∈ R2,

they provide a distinct and usefully inequivalent pair of off-
shell representations of𝑁 = 4-extended supersymmetry.

Recall that the familiar chiral and twisted-chiral super-
fields afford constructing 𝜎-models with target spaces that
cannot be described using only chiral superfields [36, 37]. In
precise analogy, (𝜙 | 𝜓 | 𝐹)

𝛼
and (𝜑 | 𝜒 | 𝐺)

𝛽
jointly afford

Lagrangians that cannot be constructed using only copies
of one of the two, except that (2) presents a continuum of
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Table 2: Fourteen bilinear “𝐷-term”-type manifestly supersymmetric Lagrangian terms that couple the 𝛼-supermultiplet with the 𝛽-
supermultiplet and showcase the appearance of these tuning parameters.

𝜙
𝑖
𝜑
𝑗

−𝑄
4
(𝜙
𝑖
𝜑
𝑗
) fl −𝑄

4
𝑄
3
𝑄
2
𝑄
1
(𝜙
𝑖
𝜑
𝑗
)

𝜙
1
𝜑
1

+2�̇�
1
�̇�
1
+ 2(�̇�

2
+ 𝛼𝐹
8
)(�̇�
2
+ 𝛽𝐺
8
) + 2𝐹

3
𝐺
3
+ 2𝐹
4
𝐺
4
+ 2𝑖𝜓

1
�̇�
1
+ 2𝑖𝜓

2
�̇�
2
+ 2𝑖𝜓

3
�̇�
3
+ 2𝑖𝜓

4
�̇�
4

𝜙
1
𝜑
2

+2�̇�
1
�̇�
2
−2(�̇�
2
+𝛼𝐹
8
)(�̇�
1
−𝛽𝐺
7
)−2𝐹
3
(𝐺
4
+𝛽�̇�
6
)+2𝐹
4
(𝐺
3
−𝛽�̇�
5
)+2𝑖𝜓

1
(�̇�
4
−𝛽�̇�
6
)+2𝑖𝜓

2
(�̇�
3
+𝛽�̇�
5
)−2𝑖𝜓

3
(�̇�
2
+𝛽�̇�
8
)−2𝑖𝜓

4
(�̇�
1
−𝛽�̇�
7
)

𝜙
1
𝜑
5

+2�̇�
1
�̇�
5
+ 2(�̇�

2
+ 𝛼𝐹
8
)�̇�
6
+ 2𝐹
3
𝐺
7
+ 2𝐹
4
𝐺
8
+ 2𝑖𝜓

1
�̇�
5
+ 2𝑖𝜓

2
�̇�
6
+ 2𝑖𝜓

3
�̇�
7
+ 2𝑖𝜓

4
�̇�
8

𝜙
1
𝜑
6

+2�̇�
1
�̇�
6
− 2(�̇�

2
+ 𝛼𝐹
8
)�̇�
5
− 2𝐹
3
𝐺
8
+ 2𝐹
4
𝐺
7
+ 2𝑖𝜓

1
�̇�
8
+ 2𝑖𝜓

2
�̇�
7
− 2𝑖𝜓

3
�̇�
6
− 2𝑖𝜓

4
�̇�
5

𝜙
2
𝜑
1

+2�̇�
2
�̇�
1
−2(�̇�
1
−𝛼𝐹
7
)(�̇�
2
+𝛽𝐺
8
)+2(𝐹

3
−𝛼�̇�
5
)𝐺
4
−2(𝐹
4
+𝛼�̇�
6
)𝐺
3
+2𝑖(𝜓

4
−𝛼𝜓
6
)�̇�
1
+2𝑖(𝜓

3
+𝛼𝜓
5
)�̇�
2
−2𝑖(𝜓

2
+𝛼𝜓
8
)�̇�
3
−2𝑖(𝜓

1
−𝛼𝜓
7
)�̇�
4

𝜙
2
𝜑
2

+2(�̇�
1
− 𝛼𝐹
7
)(�̇�
1
− 𝛽𝐺
7
) + 2�̇�

2
�̇�
2
+ 2(𝐹

3
+ 𝛼�̇�
5
)(𝐺
3
+ 𝛽�̇�
5
) + 2(𝐹

4
+ 𝛼�̇�
6
)(𝐺
4
+ 𝛽�̇�
6
) + 2𝑖(𝜓

1
− 𝛼𝜓
7
)(�̇�
1
− 𝛽�̇�
7
) + 2𝑖(𝜓

2
+

𝛼𝜓
8
)(�̇�
2
+ 𝛽�̇�
8
) + 2𝑖(𝜓

3
+ 𝛼𝜓
5
)(�̇�
3
+ 𝛽�̇�
5
) + 2𝑖(𝜓

4
− 𝛼𝜓
6
)(�̇�
4
− 𝛽�̇�
6
)

𝜙
2
𝜑
5

+2�̇�
2
�̇�
5
− 2(�̇�

1
−𝛼𝐹
7
)�̇�
6
+ 2(𝐹
3
+𝛼�̇�
5
)𝐺
8
− 2(𝐹
4
+𝛼�̇�
6
)𝐺
7
+ 2𝑖(𝜓

1
−𝛼𝜓
7
)�̇�
8
+ 2𝑖(𝜓

2
+𝛼𝜓
8
)�̇�
7
− 2𝑖(𝜓

3
+𝛼𝜓
5
)�̇�
6
− 2𝑖(𝜓

4
−𝛼𝜓
6
)�̇�
5

𝜙
2
𝜑
6

+2�̇�
2
�̇�
6
+ 2(�̇�

1
−𝛼𝐹
7
)�̇�
5
+ 2(𝐹
3
+𝛼�̇�
5
)𝐺
7
+ 2(𝐹
4
+𝛼�̇�
6
)𝐺
8
+ 2𝑖(𝜓

1
−𝛼𝜓
7
)�̇�
5
+ 2𝑖(𝜓

2
+𝛼𝜓
8
)�̇�
6
+ 2𝑖(𝜓

3
+𝛼𝜓
5
)�̇�
7
+ 2𝑖(𝜓

4
−𝛼𝜓
6
)�̇�
8

𝜙
5
𝜑
1

+2�̇�
5
�̇�
1
+ 2�̇�
6
(�̇�
2
+ 𝛽𝐺
8
) + 2𝐹

7
𝐺
3
+ 2𝐹
8
𝐺
4
+ 2𝑖𝜓

6
�̇�
2
+ 2𝑖𝜓

5
�̇�
1
+ 2𝑖𝜓

8
�̇�
4
+ 2𝑖𝜓

7
�̇�
3

𝜙
5
𝜑
2

+2�̇�
5
�̇�
2
−2�̇�
6
(�̇�
1
−𝛽𝐺
7
) − 2𝐹

7
(𝐺
4
+𝛽�̇�
6
) + 2𝐹

8
(𝐺
3
+𝛽�̇�
5
) − 2𝑖𝜓

6
(�̇�
3
−𝛽�̇�
5
) + 2𝑖𝜓

5
(�̇�
4
−𝛽�̇�
6
) − 2𝑖𝜓

8
(�̇�
1
−𝛽�̇�
7
) + 2𝑖𝜓

7
(�̇�
2
−𝛽�̇�
8
)

𝜙
5
𝜑
5

+2�̇�
5
�̇�
5
+ 2�̇�
6
�̇�
6
+ 2𝐹
7
𝐺
7
+ 2𝐹
8
𝐺
8
− 2𝑖𝜓

6
�̇�
6
− 2𝑖𝜓

5
�̇�
5
− 2𝑖𝜓

8
�̇�
8
− 2𝑖𝜓

7
�̇�
7

𝜙
5
𝜑
6

+2�̇�
5
�̇�
6
− 2�̇�
6
�̇�
5
− 2𝐹
7
𝐺
8
+ 2𝐹
8
𝐺
7
+ 2𝑖𝜓

6
�̇�
7
+ 2𝑖𝜓

5
�̇�
8
− 2𝑖𝜓

8
�̇�
5
− 2𝑖𝜓

7
�̇�
6

𝜙
6
𝜑
1

+2�̇�
6
�̇�
1
− 2�̇�
5
(�̇�
2
+ 𝛽𝐺
8
) + 2𝐹

7
𝐺
4
− 2𝐹
8
𝐺
3
− 2𝑖𝜓

6
�̇�
3
− 2𝑖𝜓

5
�̇�
4
+ 2𝑖𝜓

8
�̇�
1
+ 2𝑖𝜓

7
�̇�
2

𝜙
6
𝜑
2

+2�̇�
6
�̇�
2
+2�̇�
5
(�̇�
1
−𝛽𝐺
7
) + 2𝐹

7
(𝐺
3
+𝛽�̇�
5
) + 2𝐹

8
(𝐺
4
+𝛽�̇�
6
) + 2𝑖𝜓

6
(�̇�
2
+𝛽�̇�
8
) + 2𝑖𝜓

5
(�̇�
1
−𝛽�̇�
7
) + 2𝑖𝜓

8
(�̇�
4
−𝛽�̇�
6
) + 2𝑖𝜓

7
(�̇�
3
+𝛽�̇�
5
)

Also,𝑄4(𝜙6𝜑5) ≃ 𝑄
4
(𝜙5𝜑6), 𝑄

4
(𝜙6𝜑6) ≃ 𝑄

4
(𝜙5𝜑5).

such usefully inequivalent supermultiplets, not just a discrete
set of two! The most general bilinear “kinetic” Lagrangian
providing for pairwise coupling of the continuously many
inequivalent, off-shell supermultiplets of this type is then a
double 𝑄-moduli space integral:

𝐿
KE
bilinear fl ∫ d𝛼d𝛽𝑤

�⃗�
(𝛼, 𝛽) 𝐿

KE
�⃗�;𝛼,𝛽

, (17)

where𝑤
�⃗�
(𝛼, 𝛽) is some appropriate weight function ensuring

the convergence of the double integral over the coarsemoduli
space, R2

𝛼,𝛽
. Depending on the particular choice of the

Lagrangian, that is, a choice of the various �⃗�-parameters in
(13), certain different values in the (𝛼, 𝛽)-plane will produce
physically equivalent dynamics, generating a corresponding
“mapping class group,” Γ

�⃗�
, of symmetries. In particular,

Section 3.1 shows that there do exist proper local field
redefinitions that can hide the 6 + 6 parameters �⃗�

(𝛼)

, �⃗�
(𝛽)

in
(13), but it is not clear howmany of the 14 parameters �⃗�

(𝛼,𝛽)

—
if any—can be hidden this way; a precise determination
of the “mapping class group” and corresponding physical
equivalences (dualities) will have to remain open for now.
The weight function will have to be invariant with respect to
this Γ
�⃗�
, seems likely to be model-dependent, and so is also

beyond our present scope. Suffice it here to mention that,
in familiar cases (such as the Deligne-Mumford-Teichmüller
theory for Riemann surfaces, the moduli spaces of Calabi-
Yau manifolds, and the (super)string landscape [38–41]), the
analogue of this Γ

�⃗�
is discrete and the analogue of the quotient

R2
𝛼,𝛽
/Γ
�⃗�
is a compact, albeit singular space.

The Lagrangians (17) depend on the continuous tun-
ing parameters 𝛼, 𝛽 differently from all previously studied
supersymmetric Lagrangians.The tuning parameters 𝛼, 𝛽 are
not the familiar coefficients parametrizing the choice of the
Lagrangian as 𝐴

𝑖
’s above are. Instead, the tuning parameters

𝛼, 𝛽 do parametrize the supersymmetry action within the
supermultiplet (2), in a way not unlike within the formalism
of “projective superspace” [42, 43]; see [44, 45] for the relation
to the more general “harmonic superspace.” However, in all
those efforts, all supersymmetric Lagrangians are localized to
special values of those parameters, whereas Lagrangians such
as (13) are supersymmetric for every choice of 𝛼, 𝛽, and the
integral (17) is then also supersymmetric.

Since an analogous continuous parameter 𝛼 ̸= 1 may be
introduced in the 𝑁 = 3 supermultiplets studied in [27, 28],
those specific supermultiplets are also just specialmembers of
separate 𝑄-continua of off-shell supermultiplets, all usefully
inequivalent in the same sense.

3.3. Super-Zeeman Terms. We now turn to Lagrangian terms
that are still bilinear but where dimensional analysis requires
an overall dimension-full parameter of the kind that may be
identified as a Larmor-like frequency, coupling the supermul-
tiplet (2) to external magnetic fields [28, 46].

In general, we seek functions 𝑓(𝜙, 𝜓, 𝐹) such that each of

𝑄
3
𝑄
2
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
4
𝑄
2
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
4
𝑄
3
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
4
𝑄
3
𝑄
2
𝑓 (𝜙, 𝜓, 𝐹)

(18)

vanishes modulo total derivatives. Then, the six quadratic
derivatives

𝑄
2
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
3
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
3
𝑄
2
𝑓 (𝜙, 𝜓, 𝐹) ,
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Table 3: The 𝑄
3
𝑄
2
𝑄
1
-transforms of bosonic bilinear terms, modulo total 𝜏-derivatives.

𝜙
𝑖
𝜙
𝑗

−𝑖𝑄
3
𝑄
2
𝑄
1
(𝜙
𝑖
𝜙
𝑗
)

(1/2)𝜙
1
𝜙
1

+�̇�
1
𝜓
4
− (�̇�
2
+ 𝛼𝐹
8
)𝜓
1
+ 𝐹
3
𝜓
2
− 𝐹
4
𝜓
3

(1/2)𝜙
2
𝜙
2

+(�̇�
1
− 𝛼𝐹
7
)(𝜓
4
− 𝛼𝜓
6
) − �̇�
2
(𝜓
1
− 𝛼𝜓
7
) + (𝐹

3
+ 𝛼�̇�
5
)(𝜓
2
+ 𝛼𝜓
8
) − (𝐹

4
+ 𝛼�̇�
6
)(𝜓
3
+ 𝛼𝜓
5
)

(1/2)𝜙
5
𝜙
5 +�̇�

5
𝜓
8
− �̇�
6
𝜓
5
+ 𝐹
7
𝜓
6
− 𝐹
8
𝜓
7

+�̇�
5
𝜓
8
− �̇�
6
𝜓
5
+ 𝐹
7
𝜓
6
− 𝐹
8
𝜓
7

}

}

}

subtract
(1/2)𝜙

6
𝜙
6

𝜙
1
𝜙
2

+𝛼[�̇�
1
𝜓
7
+ (�̇�
2
+ 𝛼𝐹
8
)𝜓
6
+ 𝐹
3
𝜓
5
+ 𝐹
4
𝜓
8
− �̇�
5
𝜓
3
− �̇�
6
𝜓
2
− 𝐹
7
𝜓
1
− 𝐹
8
𝜓
4
]

𝜙
1
𝜙
5 +�̇�

1
𝜓
8
− (�̇�
2
+ 𝛼𝐹
8
)𝜓
5
+ 𝐹
3
𝜓
6
− 𝐹
4
𝜓
7
+ �̇�
5
𝜓
4
− �̇�
6
𝜓
1
+ 𝐹
7
𝜓
2
− 𝐹
8
𝜓
3

+�̇�
1
𝜓
8
− (�̇�
2
+ 𝛼𝐹
8
)𝜓
5
+ 𝐹
3
𝜓
6
− 𝐹
4
𝜓
7
+ �̇�
5
𝜓
4
− �̇�
6
𝜓
1
+ 𝐹
7
𝜓
2
− 𝐹
8
𝜓
3

}

}

}

subtract
𝜙
2
𝜙
6

𝜙
1
𝜙
6 −�̇�

1
𝜓
5
− (�̇�
2
+ 𝛼𝐹
8
)𝜓
8
+ 𝐹
3
𝜓
7
+ 𝐹
4
𝜓
6
+ �̇�
5
𝜓
1
+ �̇�
6
𝜓
4
− 𝐹
7
𝜓
3
− 𝐹
8
𝜓
2

+�̇�
1
𝜓
5
+ (�̇�
2
+ 𝛼𝐹
8
)𝜓
8
− 𝐹
3
𝜓
7
− 𝐹
4
𝜓
6
− �̇�
5
𝜓
1
− �̇�
6
𝜓
4
+ 𝐹
7
𝜓
3
+ 𝐹
8
𝜓
2

}

}

}

add
𝜙
2
𝜙
5

𝜙
5
𝜙
6

𝜕
𝜏
(𝜙
5
𝜓
5
− 𝜙
6
𝜓
8
) ≃ 0

𝑄
4
𝑄
1
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
4
𝑄
2
𝑓 (𝜙, 𝜓, 𝐹) ,

𝑄
4
𝑄
3
𝑓 (𝜙, 𝜓, 𝐹)

(19)

are all manifestly supersymmetric. When applying 𝛿
𝑄
= 𝑖𝜖 ⋅

𝑄, 𝑄
𝐼
from 𝛿

𝑄
either equals one of the two 𝑄

𝐼
’s used in the

definition (19) and so produces 𝑖𝜕
𝜏
by (1) or does not and so

reproduces one of the expressions (18) and again a total 𝜏-
derivative by assumption (18). Such terms remind us of the
so-called 𝐹-terms in standard treatments of supersymmetry
[1, 2].

We again restrict our attention to bilinear terms for
simplicity, and Table 3 presents the linearly independent such
terms, obtained by applying only the first batch of three
supercharges. The other three expressions (18) each produce
analogous results with a pattern virtually identical to the one
shown in Table 3.The last-row entry, 𝜙

5
𝜙
6
, results in a total 𝜏-

derivative all by itself, and simple row operations (indicated
by braces) show that we can form threemore.Thismeans that
each of the twenty-four terms

1

2
𝑄
𝐼
𝑄
𝐽
(𝜙
5

2
− 𝜙
6

2
) ,

𝑄
𝐼
𝑄
𝐽
(𝜙
1
𝜙
5
− 𝜙
2
𝜙
6
) ,

𝑄
𝐼
𝑄
𝐽
(𝜙
1
𝜙
6
+ 𝜙
2
𝜙
5
) ,

𝑄
𝐼
𝑄
𝐽
(𝜙
5
𝜙
6
)

(20)

is a supersymmetric Lagrangian contribution. This list turns
out to be repetitive and contains only four linearly indepen-
dent expressions, listed in Table 4. The most general super-
Zeeman type Lagrangian bilinear in the component fields of
the (𝜙 | 𝜓 | 𝐹)

𝛼
supermultiplet is therefore

𝐿
SZ
�⃗�;𝛼

fl 𝐵
1
𝑍
1
+ 𝐵
2
𝑍
2
+ 𝐵
3
𝑍
3
+ 𝐵
4
𝑍
4
, (21)

with the terms𝑍
𝑖
listed in Table 4. Of these, only the last term

contains the expression

𝐵
4
𝑍
4
= ⋅ ⋅ ⋅ + 𝛼𝐵

4
𝜙
5
�̇�
6
+ ⋅ ⋅ ⋅

≃ ⋅ ⋅ ⋅ +
1

2
𝛼𝐵
4
(𝜙
5
�̇�
6
− �̇�
5
𝜙
6
) + ⋅ ⋅ ⋅

(22)

which in Lagrangian physics may be interpreted as the
coupling of the magnetic field 𝐵

4
to the angular momentum

of rotation in the (𝜙
5
, 𝜙
6
)-plane—if the bosons 𝜙

5
, 𝜙
6
are

interpreted as Cartesian coordinates in the target space.
The elimination of the auxiliary fields 𝐹

3
, 𝐹
4
, 𝐹
7
, 𝐹
8
(and

𝐺
3
, 𝐺
4
, 𝐺
7
, 𝐺
8
) by means of their equations of motion is

expected to induce additional terms of the type (22) owing
to the mixing of the auxiliary fields with the 𝜏-derivatives of
the propagating fields𝜙

𝑖
.This justifies the identification of the

terms (21) and the supersymmetric version of the �⃗� ⋅ �⃗� terms
exhibiting the Zeeman effect.

Summary. The four terms in Table 4 together with their (𝜙 |
𝜓 | 𝐹)

𝛼
→ (𝜑 | 𝜒 | 𝐺)

𝛽
counterparts and the 26-parameter

Lagrangian (13) then form the most general, 34-parameter
family of bilinear Lagrangians

𝐿
KE
�⃗�;𝛼,𝛽

+ 𝐿
SZ
�⃗�;𝛼
+ 𝐿

SZ
�⃗�;𝛽

(23)

for two different supermultiplets from the family (2).
Many of the summands in Tables 1, 2, and 4 have negative

signs and so would—if used on their own—contribute nega-
tively to the kinetic energy, that is, induce nonpositivity of the
kinetic energy and nonunitarity in general. However, when
they are used jointly with the first three supersymmetric sets
of kinetic terms in Table 1 (which are positive-definite), it is
clear that unitarity constrains the coefficients𝐴

𝑖
in (4) so that

𝐴
4
, 𝐴
5
, 𝐴
6
as well as the coefficients of the Lagrangian sum-

mands fromTables 2 and 4 should be sufficiently smaller than
𝐴
1
, 𝐴
2
, 𝐴
3
. This is similar to the analogous case examined in

[28].
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Table 4: Super-Zeeman bilinear contributions, modulo total 𝜏-derivatives.

𝑍
1
fl 𝜙
5
𝐹
7
+ 𝜙
6
𝐹
8
+ 𝑖𝜓
6
𝜓
8
− 𝑖𝜓
6
𝜓
8

𝑍
2
fl 𝜙
5
𝐹
8
− 𝜙
6
𝐹
7
+ 𝑖𝜓
6
𝜓
5
+ 𝑖𝜓
8
𝜓
7

𝑍
3
fl 𝜙
1
𝐹
7
+ 𝜙
2
𝐹
8
+ 𝜙
5
𝐹
3
+ 𝜙
6
𝐹
4
− 𝑖𝜓
1
𝜓
7
+ 𝑖𝜓
2
𝜓
8
+ 𝑖𝜓
3
𝜓
5
− 𝑖𝜓
4
𝜓
6

𝑍
4
fl 𝜙
1
𝐹
8
− 𝜙
2
𝐹
7
− 𝜙
6
𝐹
3
+ 𝜙
5
𝐹
4
− 𝑖𝜓
1
𝜓
6
+ 𝑖𝜓
2
𝜓
5
− 𝑖𝜓
3
𝜓
8
+ 𝑖𝜓
4
𝜓
7
+ 𝛼(𝜙

5
�̇�
6
− 𝑖𝜓
6
𝜓
7
− 𝑖𝜓
5
𝜓
8
)

Requiring positivity of the kinetic energy, and unitarity
more generally, restricts these parameters to an open neigh-
borhood in this 34-dimensional parameter space. Most of
the corresponding models depend explicitly on the tuning
parameter 𝛼 ∈ R (and 𝛽 for two copies of the supermultiplet
(2), etc.) besides the dependence on the coefficients of these
summands. This parameter 𝛼 (and 𝛽 for two copies, etc.)
then provides a genuine, observable characteristic of the
supermultiplet (2). We conclude that the supermultiplets (2)
which differ only in a different choice of the parameter 𝛼
cannot be regarded as physically equivalent in general. This
dependence on the tuning parameter 𝛼 becomes only more
complex in the general (not just bilinear) “𝐷-term” (3) and
“𝐹-term” (18)-(19) Lagrangian summands.

4. Sample Dynamics

To illustrate the intricate dependence on 𝛼, that is, on the
choice from among the continuously many inequivalent
supermultiplets, consider the sum of the Lagrangian sum-
mands (4) with �⃗�



= (𝑎
1
, 0, 𝑎
3
, 0, 0, 0) and those in (21) with

�⃗�


= (0, 0, 0, 𝐵
4
), and focus only on the bosonic fields:

𝐿
KE
�⃗�


;𝛼
=
𝑎
1

2
[�̇�
1

2

+ (�̇�
2
+ 𝛼𝐹
8
)
2

+ 𝐹
3

2
+ 𝐹
4

2
]

+
𝑎
3

2
[�̇�
5

2

+ �̇�
6

2

+ 𝐹
7

2
+ 𝐹
8

2
] + ⋅ ⋅ ⋅ + 𝐵

4
[𝜙
1
𝐹
8

− 𝜙
2
𝐹
7
− 𝜙
6
𝐹
3
+ 𝜙
5
𝐹
4
+
𝛼

2
(𝜙
5
�̇�
6
− �̇�
5
𝜙
6
)] + ⋅ ⋅ ⋅ ,

(24)

where the ellipses denote the omitted fermionic terms. The
externalmagnetic field,𝐵

4
, is here coupled only to the angular

momentum in the (𝜙
5
, 𝜙
6
)-plane.

The Euler-Lagrange equations of motion for 𝐹
3
, 𝐹
4
, 𝐹
7
, 𝐹
8

are of course algebraic:

𝐹
3
=
𝐵
4
𝜙
6

𝑎
1

,

𝐹
4
= −

𝐵
4
𝜙
5

𝑎
1

,

𝐹
7
=
𝐵
4
𝜙
2

𝑎
3

,

𝐹
8
= −

𝛼𝑎
1
�̇�
2
+ 𝐵
4
𝜙
1

𝛼2𝑎
1
+ 𝑎
3

,

𝑎
3
̸= −𝛼
2
𝑎
1
.

(25)

The special case when 𝑎
3
= −𝛼
2
𝑎
1
must be treated separately.

Substituting these back into the Lagrangian yields

𝐿
KE
�⃗�


;𝛼

𝐹
𝐴

=
𝑎
1

2
�̇�
1

2

+
𝑎
1
𝑎
3

2 (𝑎
3
+ 𝑎
1
𝛼2)

�̇�
2

2

+
𝑎
3

2
�̇�
5

2

+
𝑎
3

2
�̇�
6

2

−
𝐵
4

2

2 (𝑎
3
+ 𝑎
1
𝛼2)

𝜙
1

2
−
𝐵
4

2

2𝑎
3

𝜙
2

2

−
𝐵
4

2

2𝑎
1

𝜙
5

2
−
𝐵
4

2

2𝑎
1

𝜙
6

2
+ ⋅ ⋅ ⋅

+
𝑎
1

𝑎
3
+ 𝑎
1
𝛼2

𝛼

2
𝐵
4
(�̇�
1
𝜙
2
− 𝜙
1
�̇�
2
)

−
𝛼

2
𝐵
4
(�̇�
5
𝜙
6
− 𝜙
5
�̇�
6
) + ⋅ ⋅ ⋅

(26)

which induces a coupling of the external angular momentum
also to the angular momentum in the (𝜙

1
, 𝜙
2
)-plane but with

𝑎
1
/(𝑎
3
+ 𝑎
1
𝛼
2
) times the magnitude of the interaction in the

(𝜙
5
, 𝜙
6
)-plane.

The Euler-Lagrange equations are

0 = 𝑎
1
�̈�
1
+

𝛼𝑎
1
𝐵
4

𝛼2𝑎
1
+ 𝑎
3

�̇�
2
+

𝐵
4

2

𝛼2𝑎
1
+ 𝑎
3

𝜙
1
,

0 =
𝑎
1
𝑎
3

𝛼2𝑎
1
+ 𝑎
3

�̈�
2
−

𝛼𝑎
1
𝐵
4

𝛼2𝑎
1
+ 𝑎
3

�̇�
1
+
𝐵
4

2

𝑎
3

𝜙
2
;

0 = 𝑎
3
�̈�
5
− 𝛼𝐵
4
�̇�
6
+
𝐵
4

2

𝑎
1

𝜙
5
,

0 = 𝑎
3
�̈�
6
+ 𝛼𝐵
4
�̇�
5
+
𝐵
4

2

𝑎
1

𝜙
6
.

(27)

The two coupled pairs of differential equations both describe
a similar response to the external magnetic field 𝐵

4
. A little

surprisingly perhaps, the frequencies in the solutions to both
pairs are (system (27) produces four decoupled 4th-order,
linear equations with constant coefficients, which are easily
solved using trial 𝑒𝑖𝜔𝑡-like functions)

𝜔
12±

= 𝜔
56±

fl
√2𝑎
3
+ 𝑎
1
𝛼2 ± 𝛼√𝑎

1
(4𝑎
3
+ 𝑎
1
𝛼2)

√2𝑎
1
𝑎
3

𝐵
4

(28)

and clearly depend on 𝛼; note that 𝜔
𝑖𝑗−
(𝛼) = 𝜔

𝑖𝑗+
(−𝛼). This

proves that the value of the tuning parameter 𝛼, effectively
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limited to 𝛼 ⩾ 0, is physically observable through probing
with external magnetic fields and that distinctly “tuned”
supermultiplets of type (2) are observably (and so usefully)
inequivalent [34]. These frequencies acquire complex or
purely imaginary values for certain choices of 𝑎

1
, 𝑎
3
, and

𝛼, describing, respectively, attenuated/boosted oscillatory or
hyperbolic motion. The frequencies are real for

((𝛼 ̸= 0) , (𝑎1 ⩾ −
4𝑎
3

𝛼2
) , (𝑎
3
> 0))

∨ ((𝛼 = 0) , (𝑎1, 𝑎3 > 0)) .

(29)

Furthermore, the frequencies (28) are incommensurate
for most choices of 𝑎

1
, 𝑎
3
, and 𝛼. That is, the ratio

𝜔
12+

𝜔
12−

=
𝜔
56+

𝜔
56−

= √
2𝑎
3
+ 𝑎
1
𝛼
2
+ 𝛼√𝑎

1
(4𝑎
3
+ 𝑎
1
𝛼2)

2𝑎
3
+ 𝑎
1
𝛼2 − 𝛼√𝑎

1
(4𝑎
3
+ 𝑎
1
𝛼2)

(30)

is not an integer for most choices of the coefficients in the
Lagrangian 𝑎

1
, 𝑎
3
and the tuning parameter 𝛼; the orbits

are space-filling Bowditch/Lissajous-like figures. Therefore,
the dynamics of the supermultiplet (2) governed by the Lag-
rangian (24) exhibits nonrepetitive (pseudorandom or chao-
tic) oscillatory motion for most of the parameter values
(29). This effect reminds us of the nonrepetitive (chaotic)
dynamics also found for a similar supermultiplet of 𝑁 = 3

supersymmetry on the world-line [28].

5. Conclusions

We have presented a 1-parameter continuous family of off-
shell supermultiplets (2) of 𝑁 = 4 world-line supersym-
metry, which radically generalizes the study of the discrete
sequence of off-shell supermultiplets [27, 28]. In fact, all of
the qualitative conclusions from the present study of (2) apply
just as well to a similar 𝑄-continuum of 𝑁 = 3 off-shell
supermultiplets within which the supermultiplets [27, 28] are
special cases.

The supermultiplet (2) exhibits an explicit, continuously
variable tuning parameter, labeled 𝛼, the value of which
controls the relative “magnitude” in the binomial results of
applying the supercharges to the component fields. By virtue
of the existence of these binomial terms, the supermultiplet
(2)may be thought of as a network ofAdinkras [21] connected
by one-way edges, as depicted in Figure 1.

For two distinct members from this continuous family of
off-shell supermultiplets, we have constructed a multiparam-
eter family of general bilinear Lagrangians (23) which has the
following characteristics:

(1) It generalizes the “standard” kinetic terms (as in (5),
with 𝛼 → 0) into a 6-parameter family of Lagran-
gians (4) but which all by itself may be simplified
back to the “standard” form by means of local field
redefinitions.

(2) Itmixes two off-shell supermultiplets of the same type
(2), each with a different value of the tuning parame-
ter, given as 14-parameter linear combinations of the

terms from Table 2, where the explicit dependence
on the tuning parameter(s) 𝛼(𝛽, . . .) cannot always be
eliminated.

(3) It couples such supermultiplets to external magnetic
fields inducing a variant of the super-Zeeman effect,
given as 4-parameter linear combinations of the
terms from Table 4, where the explicit dependence
on the tuning parameter(s) 𝛼(𝛽, . . .) cannot always be
eliminated.

(4) Themultidimensional parameter space of the Lagran-
gians (23) has at least one open neighborhood, where
the kinetic energy is guaranteed to be positive, indi-
cating unitarity of the corresponding quantum the-
ory.

Using the constructions described in Section 3, these Lagran-
gians can be generalized to include (a) higher-order interac-
tion terms and (b) couplings to additional and all differently
tuned supermultiplets from the family (2).

Section 4 then demonstrates that, except for very special
choices within this parameter space, the Lagrangians explic-
itly depend on the tuning parameter 𝛼, and also 𝛽 in (13),
of the supermultiplet (2), in ways that have direct dynamical
consequences, and observably affect the response of these
supermultiplets to probing by external magnetic fields.

Furthermore, the wealth and diversity of even just the
bilinear coupling/mixing terms listed in Table 2 indicate
that supermultiplets with a different choice of the tuning
parameter are indeed observably different and so usefully
inequivalent in the sense of [34]. The same analysis applies
just as well for the infinite sequence of supermultiplets
discussed in [27].

We thus have clear proof by explicit example that inequiv-
alent off-shell supermultiplets (unitary, finite-dimensional
linear representations) of world-line 𝑁-extended supersym-
metry without central extensions form a physically observ-
able continuum. We have explicitly parametrized this 𝑄-
continuum in terms of the “tuning parameter” 𝛼 appearing
explicitly in (2) and have shown that even simple, bilinear
Lagrangians such as (23) provide pairwise coupling between
continuously many inequivalent such off-shell supermulti-
plets. This in turn provides a way of physically probing the
variation in the dynamics over this novel 𝑄-moduli space.

Quite clearly, just as all bilinear Lagrangians (23) depend
quadratically on the tuning parameters, general 𝜎-model
Lagrangians including but not limited to (3) will exhibit more
general variation over the 𝑄-moduli space. However, already
the dynamics governed by Lagrangians (23) restricted to
purely bilinear terms exhibit physically observable and highly
nonlinear dependence on 𝛼—as exhibited in the frequencies
(28)—albeit being derived from Lagrangian (24) that is itself
only quadratic in 𝛼.

Such variations in dynamics are at the core of stud-
ies such as the Deligne-Mumford-Teichmüller theory for
(super)string world-sheets, moduli spaces of Calabi-Yau
compactifications, and the (super)string landscape [38–41].
We have herein shown that conceptually similar moduli
spaces also emerge, in a qualitatively similar manner, in the
representation theory of supersymmetry.
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[27] T. Hübsch and G. A. Katona, “On the construction and the
structure of off-shell supermultiplet quotients,” International
Journal of Modern Physics A, vol. 27, no. 29, Article ID 1250173,
2012.
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