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Arterial pressure waves have been described in one dimension using several approaches, such as lumped (Windkessel) or
distributed (using Navier-Stokes equations) models. An alternative approach consists of modeling blood pressure waves using a
Korteweg-de Vries (KdV) equation and representing pressure waves as combinations of solitons. This model captures many key
features of wave propagation in the systemic network and, in particular, pulse pressure amplification (PPA), which is a
mechanical biomarker of cardiovascular risk. The main objective of this work is to compare the propagation dynamics described
by a KdV equation in a human-like arterial tree using acquired pressure waves. Furthermore, we analyzed the ability of our
model to reproduce induced elastic changes in PPA due to different pathological conditions. To this end, numerical simulations
were performed using acquired central pressure signals from different subject groups (young, adults, and hypertensive) as input
and then comparing the output of the model with measured radial artery pressure waveforms. Pathological conditions were
modeled as changes in arterial elasticity (E). Numerical results showed that the model was able to propagate acquired pressure
waveforms and to reproduce PPA variations as a consequence of elastic changes. Calculated elasticity for each group was in
accordance with the existing literature.

1. Introduction

Pulse pressure amplification (PPA) is conventionally under-
stood in clinical practice as the increase of pulse pressure
(PP) amplitude as pressure waves propagate distally in the
systemic network. Yet, PPA should rather be described as a
distortion rather than an amplification of PP waves, repre-
sented by morphological alterations of pressure waveforms.
Moreover, changes in PPA are associated with traditional
cardiovascular risk factors, such as aging and hypertension
[1, 2]. Indeed, a substantial decrease in mean diastolic

pressure (perfusion) and a systolic central pressure increase
(afterload) are observed in patients over 60 years old as a
result of a progressive increase in arterial stiffness [3]. Con-
sequently, a greater myocardial oxygen demand in the left
ventricle and an impaired coronary perfusion are observed
due to the decrease in mean arterial diastolic pressure [3].
Furthermore, in hypertensive patients, the decrease in large
artery compliance (i.e., high values of arterial stiffness) is
considered one of the major causes of PP increase. Addition-
ally, hypertension is responsible for an increase in pulse wave
velocity (PWV).
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The study of PP propagation is therefore a major medi-
cal challenge and is essential to understand the dynamics of
the circulatory system under normal or pathological condi-
tions. Two different approaches have been used to efficiently
describe the hemodynamics in the systemic network [4]. On
the one hand, lumped parameter or 0D models [5–7] are
particularly relevant when modeling interactions between
the systemic network and other major systems (nervous,
respiratory, and digestive) but are unable to describe pulse
wave propagation. On the other hand, distributed 1D
models [4] enable an efficient description of pulse wave
propagation without the computational cost associated to
2D or 3D models.

In this work, we choose an alternative approach where
long wave and perturbation theories allow us to derive a non-
linear dispersive and/or diffusive equation, like Korteweg-de
Vries (KdV) equation, starting from the Navier-Stokes equa-
tions [8–11]. Behind this model is the idea that blood pres-
sure (BP) waves can be considered as combinations of
solitons. Laleg et al. [9] described this combination in details,
through the nonlinear overlapping of two or three solitons.
This model captures many of the phenomena observed in
BP propagation, such as peaking (increase in amplitude),
steepening (decrease in width), and changes in wave prop-
agation velocity. Furthermore, McDonald found that an
amplitude increase of arterial pulse is concomitant with
a decrease in pulse width during the propagation of flow
and pressure waveforms from the aorta to the saphenous
artery in dogs [3], indicating a nonlinear rather than a
linear behavior.

In previous works of our group [12, 13], a 1D arterial net-
work was constructed in order to simulate the behavior of
synthesized pulse pressure waveforms as a combination of
solitons throughout the arterial tree. To this end, the pressure
in each segment was computed using the KdV equation
(KdVe), where vascular dimensions and elastic constants
were obtained from the existing literature [14].

The main objective of this work is to use the arterial net-
work previously described and the KdVe to compute the
propagation of acquired pulse pressure waves through a
human-like arterial tree and quantify the ability of our model
to capture changes in PPA due to variations in arterial elas-
ticity. To this end, numerical simulations will be performed,
using a set of previously acquired central blood pressure
(CBP) and peripheral blood pressure (PBP) waveforms from
several individuals from four different groups: young, adult,
hypertensive type I, and II.

2. Materials and Methods

In this section, we present the simple nonlinear model
(KdVe) describing blood pulse pressure propagation in an
artery. We then introduce a computational framework allow-
ing us to use acquired CBP-PBP as inputs-outputs of our
model. Next, we design a numerical experiment to assess
the ability of our model to reproduce changes in PPA due
to changes in vessel elasticity (E). Finally, using a set of
CBP/PBP-acquired signals, we perform a global parameter

estimation of the arterial elasticity (E) value for each patient
and then perform a statistical analysis.

2.1. 1D KDV-Based Model Formulation. To explain BP wave-
forms and interpret the different phenomena that arise as
they propagate along the arterial network, like the increase
in amplitude and the decrease in width called “peaking”
and “steepening” phenomena, respectively, this work intro-
duces BP waves as a soliton combination. To understand
the main behavior of soliton propagation, it is important to
point out the following:

(i) Solitons have a bell shape and maintain their shape
as they propagate.

(ii) When solitons interact, they remain unchanged after
the “collision,” except possibly for a phase shift.

(iii) During interaction, the resulting shape is wider, and
the amplitude is between the peak of the taller and
the smaller one.

(iv) Wave velocity and amplitude are dependent of E.

(v) Each soliton has its own velocity, because of this, the
waves separate as they propagate to the periphery.

With the above attributes considered, it is then easy to
explain phenomena like peaking, steepening, and PPA. Due
to the different velocities (which depends on E), when the
waves arrive at the periphery, the initial separation has chan-
ged. The different solitons are now more separated from each
other creating a taller waveform. In young’s (low E), this sep-
aration is bigger, adopting their respective original form: a
taller and thinner one and a smaller and wider one, like the
two typical bell shapes observed in the femoral artery.

In order to obtain the equations describing the dynamics
of BP propagation along an elastic arterial segment, several
authors [8, 11, 15, 16] propose:

(a) That large arteries are to be considered as elastic
tubes and the fluid as incompressible

(b) For large arteries, the continuum approach for blood
is valid and that viscosity can be neglected [8, 17, 18].
Following these authors, the evolution of pressure (P)
in an arterial segment can be described as follows:

Pz + d0Pt + d1PPt + d2Pttt = 0, 1

where z and t are the corresponding space and time
variables and the subscripts of z and t indicate spatial
and temporal derivatives. The equation coefficients
are defined as follows:

d0 =
1
c0
,

d1 = − α + 1
2

1
ρc03

,

d2 = −
ρwhR
2ρc03

,

2
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where the constant c0 = Eh0/2ρR0 determines the
typical Moens-Korteweg velocity of a wave propagat-
ing in an elastic tube, when all nonlinear terms are
neglected [19, 20], E is the elastic modulus (arterial
stiffness), h is the wall thickness, R is the mean tube
radius, ρ is the blood density, ρw is the wall density,
and α is the moment flux correction coefficient.

2.2. Arterial System Model. In this work, a previously arterial
network model was used [12]. This model consists of one
long tapering artery, composed of constant parameter vessels,
placed in a simple cascading order. In each of these segments,
the pulse pressure wave dynamics were modelled by (1)
describing only forward soliton interactions. At the inlet of
the network (aorta), an acquired CBP is imposed. The com-
puted PBP at the outlet of the final segment constitutes the
output of the model (Figure 1).

The arterial network starts from the ascending aorta
(A), continuing through the subclavian (S), axillary (X),
and brachial arteries (B), and finally ending in the radial
artery (R) (Figure 1).

The length, radius, thickness, and elastic values used to
describe each segment are shown in Table 1. The wall density
(ρw) and fluid density (ρ) are 1.06 g/cm3 and 1.05 g/cm3,
respectively. The moment-flux correction coefficient α is set
as 1 in accordance with the inviscid assumption and with
experimental findings.

As the KdVe is a stiff equation, classical numerical
methods are numerically unstable unless an extremely small
step size is used [21]. We therefore chose a spectral numerical
scheme to perform the numerical integration of the KdVe, as
recommended in [22, 23]. A 4th order exponential time
differencing Runge-Kutta (etd4rk), developed by Cox and
Matthews [24], was selected, and its efficiency was previously
evaluated by our group [25].

2.3. Clinical Measurements. Radial artery BP was acquired
using the tonometry technique (Millar Inc., Houston, Texas,
USA), in a baseline state at a supine position, and cali-
brated using sphygmomanometric measurements. CBP
was determined by means of a transfer function using a pre-
viously validated algorithm (SphygmoCor, Atcor Medical,

Illinois, USA). Obtained BP waveforms were separated into
four groups:

(i) “Young group” aged 20 to 29 years (n = 15)
(ii) “Adult group” aged 40 to 69 years (n = 13) with

normal BP

(iii) “Hypertension type I (HTI) group” aged 40 to 69
years (n = 15)

(iv) “Hypertension type II (HTII) group” aged 40 to 69
years (n = 13)

HTII group was composed of fully developed hyperten-
sive patients while HTI subjects were only in an initial stage
of hypertension.

It is worth mentioning that for a person in a supine posi-
tion, diastolic and mean pressures are considered constant
throughout the arterial system [3].

2.4. Modeling in Health or Disease. It is well known that, in a
disease condition, systolic PBP changes due to vascular
changes in the E, h, and R values. Nevertheless, we simplified

A S X B R

E

Figure 1: Diagram of the discrete compartmental model and the path used in this work. The path starts from the ascending aorta (A),
continues through the subclavian (S), axillary, and brachial arteries (X and B), and ends in the radial artery (R).

Table 1: Arterial segments and their coefficients used for
simulations, taken from [14].

Segment
Length
(L, cm)

Radius
(R, cm)

Wall
thickness
(h, cm)

Elasticity
(E, 106 Dyn/cm2)

Ascending aorta 4.000 1.450 0.163 4

Aortic arch 2.000 1120 0.132 4

Subclavian 3.400 0.420 0.067 4

Axillary 6.100 0.360 0.062 4

Axillary 5.600 0.310 0.057 4

Brachial 6.300 0.280 0.055 4

Brachial 6.300 0.260 0.053 4

Brachial 6.300 0.250 0.052 4

Brachial 4.600 0.240 0.050 4

Radial 11.700 0.160 0.043 8

Radial 11.700 0.160 0.043 8
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the analysis and focused only on the influence of changes in
E. To verify the validity of this hypothesis, a typical acquired
CBP waveform was introduced as the initial condition, and
the elastic values of the cascade model were increased and
decreased by 25% (for further details, see Results). Later,
using the acquired CBP wave of each subject, we reproduced
the measured PPA using the global parameter estimation
strategy described below.

2.5. The Global Fitting Procedure. Two different parameter
estimation strategies can be used to evaluate the parameters
of an arterial network. A local approach would search for
the best set of parameters in each segment independently of
the other segments. Such a strategy would require an
acquired wave at the end of each segment. On the other hand,
a global approach modifies the parameters of each tube by
the same percentage. Therefore, only a couple of acquired
signals is necessary.

In this work, we chose the latter approach and used a sin-
gle global parameter to uniformly modify the E value in each
segment of the arterial tree model.

Because of the nature of the pressure wave, the global
parameter estimation strategy can be of two types: morpho-
logical, where the coefficients (only E in this case) are modi-
fied to obtain a wave whose morphology properly fits the
shape of the acquired signal; or parametric, where a set of
parameters is calculated from the acquired signal and the
model output is modified to match those parameters. We
decided to use a global parametric estimation approach, with
the systolic peak pressure as the reference parameter and a
tolerance less than 1mmHg for the error between the
acquired and computed systolic peak pressure.

The fitting procedure was based on an algorithm similar
to the bisection search, knowing that increasing E will
decrease the systolic peak and vice versa. Physiological lower
and upper limits were imposed for E variations, and a maxi-
mum iteration counter for nonconverging cases was added.
Finally, different indices, like goodness of fit (GOF) in time

and frequency, cross-correlation (XCOR), cross-coherence
(COH), and cross-phase coherence were calculated in order
to quantify the similarity between computed and acquired
pressure signals (Figure 2).

2.5.1. Goodness of Fit.Goodness of fit (GOF) is a measure of
the discrepancy between the observed x and the expected
xref values. It is calculated as follows:

GOF i = 1 − xref :, i − x :, i
xref :, i −mean xref :, i

2
3

2.5.2. Cross-Correlation. Cross-correlation is a measure of the
similarity between two time series, f and g, as a function of a
time lag. It is calculated as follows:

f⋆g τ ≝
∞

−∞
f ∗ t g t + τ dt, 4

where f ∗ denotes the complex conjugate of f and τ is the
time lag.

2.5.3. Coherence. Coherence indicates how well x corre-
sponds to y for each frequency. The magnitude-squared
coherence is a function of the power spectral densities,
Pxx f and Pyy f , of x and y, and the cross-power spectral
density, Pxy f , of x and y. It is calculated as follows:

Cxy f =
Pxy f 2

Pxx f Pyy f
5

2.6. Statistical Analysis. The results were obtained from
simulations. Data were expressed as mean± standard devi-
ation (SD). A statistical analysis was conducted with Mann–
Whitney and Kruskal-Wallis ANOVA tests. A value of
p < 0 05 was considered to be statistically significant.

The Kruskal-Wallis H test is a nonparametric test which
is used instead of a one-way ANOVA. It is essentially an
extension of the Wilcoxon rank-sum test to more than two
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Figure 2: Procedure performed to validate the output of the model.
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independent samples. The Kruskal-Wallis test becomes quite
useful in particular when group samples strongly deviate
from normal (generally for small sample sizes) and group
variances are quite different. Unlike ANOVA, Kruskal-
Wallis makes no assumption about distribution.

The statistical analysis was performed using SPSS
version 23 (SPSS Inc., Chicago, Illinois, USA) and Matlab®
version 2014.

3. Results

Figure 3 shows the output of the model for different E values.
As it can be seen, PPA is affected by changes of E as it
increases and decreases by 25%. Furthermore, CBP wave
morphology is affected as it propagates towards the periphery
for both peaking and steepening phenomena.

Figure 4(a) shows the measured and obtained PBP in a
typically healthy adult. We observe that the model is able to
describe the peak of the measured PBP and morphology of
the waves. This is quantified with a GOF of 0.9. Cross-
correlation between measured and computed signals is
shown in Figure 4(b). The approximated triangular shape
can be understood as a high degree of similarity. The fre-
quency response of both measured and computed PBPs is
shown in Figure 4(c), where almost no harmonic alterations
were made by the model. The GOF of the frequency response
is almost 1. Finally, coherence is shown in Figure 4(d) and we
observe that, for frequencies smaller than 2HZ, the acquired
and computed module and phase shifts are equal. For the rest
of the sample, very close results were obtained.

Figure 5 shows the acquired CBP and PBP and the model
output for a typical subject of each group. Figure 5(a) shows a
typical waveform of the adult group, with a PPA of
7.56mmHg and a calculated E of 9.16× 106Dyn/cm2. The
similarity between measured and model outputs was quanti-
fied by the GOF of 0.949. In Figure 5(b), a typical waveform
from the young group is shown. We observe that, as
expected, the PPA is significantly higher than in Figure 5(a)
and that the elastic value is a bit lower. In Figures 5(c) and
5(d), waveforms from the HTI and HTII groups are dis-
played. Waveforms in Figure 5(c) are similar to those of the
adult group presented in Figure 5(a), even though higher

PPA and E values were computed. These differences are
accentuated in Figure 5(d).

In order to analyze this trend by population, calculated
parameters are shown in Table 2 and expressed as mean
± SD. Excluding the young group, age and body mass
index (BMI) were similar for the other groups. Heart rate
(HR), weight, and height were evenly distributed between
the four groups. Systolic central blood pressure (SCBP)
and PP were significantly lower than radial SBP and PP
within all four groups. SBP and diastolic blood pressure
(DBP) for central and peripheral sites increased gradually
from the young group to HTII. PP values remain almost
identical for the first three groups, with a significant change
for the HTII group (p < 0 05).

A gradual increase is observed in the computed elastic
value (E) from its lowest value in the young group to the
HTII group, showing that the arterial elastic properties of
young and hypertensive type II patients are, respectively,
lower by 20% and higher by 40% with respect to those of a
healthy adult. Statistically significant differences were
observed in the systolic pressure values (CBP and PBP) and
were in accordance with group classification. Finally, the
GOF was above 80% for the young and above 90% for all
other groups. Furthermore, analysis of the PPA and E values
for women only showed that PPA results were almost the
same (10mmHg) than those of the adults, HTI, and HTII.
Moreover, E values for the HTI were also almost equal to
those of the adults.

4. Discussion

In this paper, we take a different approach than the tradi-
tional distributed 1D modeling of arterial segments. Based
on the hypothesis that soliton interactions can describe arte-
rial pressure waveforms [11], we used the KdVe to model
pressure wave dynamics in an arterial network, with the use-
ful effect of a reduced computational cost. To this end, we
used the cascade arterial tree model proposed in a previous
work by our group [12]. We first validated the model using
acquired data (radial artery and central). Secondly, we tested
the ability of the model to describe PPA dependence on E
variations. Therefore, in all the experiments, only the depen-
dence on E was accounted for, leaving more complicated
multiple-parameter estimation for a further study.

To the best of our knowledge, a KdVe model capable of
describing alterations of the arterial wall properties has not
yet been reported. The main objective of this original work
was accomplished. The propagation of acquired pulse pres-
sure waves through a human-like arterial tree was quantified
showing the ability of our model to capture changes in PPA
due to variations in arterial elasticity associated to different
pathological conditions. The model was able to reproduce
the main features of the PP propagation, including the singu-
lar PPA phenomenon: when E increases, there is a decrease in
PPA and vice versa (see Figure 3).

All the tests selected to quantify the similarities between
the acquired and computed pressures provided substantial
support for the results of the oversimplified 1D model for
the propagation of waves in a complex network. For instance,
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the goodness of fit provided by the NMSE is between 80 and
90%, which constitutes an acceptable waveform representa-
tion for the developed model (see Table 2, last column).

It is noteworthy that, unlike the traditional approach,
where the effects of PPA are described through the wave reflec-
tion phenomenon [3], this study analyzes the evolution of
nonlinear waves traveling from the aortic arch, whose interac-
tion determines the morphology of the peripheral wave. The
morphological dependence on E can be easily described by
means of the soliton theory, where waves with different
amplitudes travel at different speeds, due to an amplitude-
velocity relationship. In this sense, at low speeds (i.e., low E,
as found in young individuals with no vascular disease), the
different solitary waves that shape CBP are more separated
when they reach the periphery, where peaking and steepen-
ing phenomena are observed. Increased E, caused by aging
or hypertension, diminishes this separation and conse-
quently a smaller PPA is observed. In fact, our study showed
that PPA decreases and E increases as a result of aging or
hypertension, which is in accordance with previous results
(see Table 2) [26, 27].

By applying the Moens-Korteweg formula, the mean
pulse wave velocity was estimated as 878, 960, 1000, and
1141 cm/s for the young, adult, HTI, and HTII groups,
respectively. For the adult group, the PWV value is close to
reference values for the same population but in the carotid-
femoral arteries [28, 29]. In the HTII group, the equivalent
E modulus is 41% higher than in the adult group, which
implies an increase of 19% in PWV, close to the 18.75%

increase reported in [28]. This stiffness is linked to a 53%
increase in PPA (9.3 to 14.3mmHg), which is close to the
increase of 48% between normal and HTAII [28, 29].

The young group showed lower stiffness compared to
the adult group; in this case, the equivalent E modulus fell
by 18% to allow for a proper fit (see Figure 5). This decrease
in E represents a 9% decrease in PWV consistent with the
literature [28], concomitantly to a 113% increase in PPA,
in accordance with other works [1] in which the same trend
has been found.

Typical trends among the four groups, youth, adults,
HTI, and HTII, are presented in Figure 5 where the model
fits the input signals, reproducing the PPA with a calculated
Emodule. These typical cases faithfully represent the distinc-
tive characteristics reported in the literature.

5. Study Limitations

In the present study, CBP and PBP waves were acquired non-
invasively. Radial artery BP waves were obtained using the
tonometry technique, and CBP was determined by means
of a transfer function using a previously validated algorithm
(SphygmoCor, Atcor Medical, Illinois, USA).

A simple 1D KDV-based model was used for wave prop-
agation. The advantage is a good approximation in amplitude
change and stiffness assessment, in addition to the reduced
computational cost in relation to typical 1D models. How-
ever, wave morphology could be improved. To this end, the
model could be extended with blood or wall viscosity and/
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measured for each subject (- -). Result of the application of the model with adjusted E (___).

Table 2: Clinical parameters.

Young Adults HTI HTII

Age (years) 26± 1 53± 9a 56± 10a 57± 11a

Sex 8F/7M 11F/2M 9F/6M 8F/5M

HR (bpm) 67± 9 72± 11 72± 10 71± 14
Weight (kg) 62± 9 74± 14 79± 7 77± 17
Height (cm) 171± 9 163± 9 166± 7 166± 10
BMI (kg/cm2) 21± 2 28± 5a 29± 4a 28± 4a

SCBP (mmHg) 104± 8 123± 10a,b 119± 9a,b 153± 12a

DCBP (mmHg) 70± 8 87± 5a 80± 9a 93± 17a

PPCBP (mmHg) 34± 6b 36± 10b 39± 9 b 61± 20
SPBP (mmHg) 124± 11b 133± 9b 131± 11b 168± 13
PPPBP (mmHg) 54± 11b 46± 10b 51± 11b 75± 22
PPA (mmHg) 19.90± 5.37 9.33± 2.34a 11.47± 4.82a 14.30± 9.44
E (106 Dyn/cm2) 8.04± 1.37 9.81± 1.97b 10.68± 1.85a,b 13.80± 2.70a

GOF 0.86± 0.06 0.90± 0.09 0.91± 0.04 0.90± 0.06
ap < 0 01 with respect to the young group. bp < 0 01 with respect to the HTII group; HR: heart rate; BMI: body mass index; PP: pulse pressure: CBP: central
blood pressure; PBP: peripheral blood pressure; SCBP and SPBP: systolic central and peripheral blood pressure, respectively; DCBP: diastolic central blood
pressure; PPA: pulse pressure amplification; E: elastic value; GOF: goodness of fit.
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or wall viscoelasticity. Moreover, it could be improved with a
continuous tapering geometry for a more relevant adaptation
of the prevailing geometry of the arterial system.

Arterial stiffness was used as estimation parameter
to assess PBP in a simple way. To this purpose, wall
thickness and vessel radius could also be used in a more
complex procedure.

Calculation of other hemodynamic parameter or
morphology-dependent risk factor should be addressed care-
fully. However, Figure 4 shows that wave dynamics are well
characterized and that the model reproduced the peak loca-
tion (used for example for augmentation index). Studies like
[30], where the relation of HR, PPA, and stiffness is assessed,
could be made with appropriate data.

6. Conclusion

In this work, a study of a nonlinear model for arterial pulse
pressure propagation was carried out under different condi-
tions on the E values. The ability to use acquired data as input
for our model was verified and good agreement was found
between measured and computational results. Moreover,
the representation of PPA variations as a consequence of
changes in E was also verified. The E value was adjusted to
recreate morphological changes, and the resulting PPA vari-
ations were in accordance with previous studies. As a result,
this model is capable of simulating aging and hypertension
and can be useful to explain the clinical implication of PPA.

With this model, and using a SphygmoCor measurement,
arterial stiffness could be assessed without using an ultra-
sound system for measuring arterial diameter and without
considering the indirect measurement of the PWV.

In clinical practice, only concepts of vascular impedance
and pulse wave velocity are widely used to assist clinical diag-
nosis and treatment, and few integrated 0D models compris-
ing the complete description of the heart and vessels have
seen use in clinical practice. Currently, some 1D models have
been successfully applied in the context of clinical diagnosis
of pathological changes in the cardiovascular system (such
as hypertension and atherosclerosis). The proposed KdV
model has proven to be a good clinical approach to assess
the hypertensive state with or without treatment, and the
results are in accordance with the literature.
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