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This work is motivated by the need for tools for the analysis of disturbance model
uncertainty in feedback control systems. Such tools are developed in this paper for the
case where the disturbance is modeled as the output of a first-order filter which is driven
by white noise and whose bandwidth, wy, and gain, K, are uncertain. An analytical
expression for the steady-state output variance as a function of wy is derived: This
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1 INTRODUCTION

1.1 Motivation

The robustness of control system performance with respect to plant
model uncertainty has been studied in the control community for
decades (e.g., see [1-5] and the references therein). In contrast, robust-
ness of performance with respect to disturbance model uncertainty has
received far less attention. Typically, it is assumed that the disturbance
belongs to a given class of signals (e.g., signals with bounded amplitude,
or signals with bounded energy, or stochastic processes with given
power spectral density), and a controller is designed to accommodate in
a desirable manner disturbances generated by such a model. The ques-
tion of what happens if the actual disturbance violates the assumption
is, typically, ignored. Consequently, if the disturbance does indeed
violate the assumption, unsatisfactory performance may result. An
example of such a case is provided in a recent National Transportation
Safety Board report which cites an incident on January 7, 1997, in which
a jetliner cruising over the Atlantic Ocean encountered unexpected
turbulence, resulting in six injured persons (one serious) and minor
aircraft damage [6]. Our interpretation of the root cause of this incident
is that the encountered turbulence was of a different nature than the
turbulence model used in the autopilot design and evaluation.

The main goal of this paper is to introduce measures of performance
robustness with respect to disturbance model uncertainty and to use
these measures for control systems analysis. “Performance” here refers
to the disturbance rejection ability of a controller. The particular issues
addressed include the following:

e How does disturbance rejection performance vary with changes in
the disturbance model?

e How can disturbance rejection robustness be quantified?

e Are there fundamental limits on disturbance rejection robustness?

The significance of these questions can be illustrated as follows.

Example 1.1 Consider the design of an airplane autopilot for the
regulation of the airplane’s vertical velocity in the presence of wind. A
very simple model of the airplane, wind, and controller is provided in
Fig. 1. The plant is the airplane, modeled as a point mass subject to
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standard white noise
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FIGURE 1 Model used in Example 1.1.

atmospheric drag. The plant input is the sum of the net vertical force
applied by the plane’s lifting surfaces (x) and the force due to the wind
(d). The plant output is the plane’s vertical velocity (y). The wind
disturbance is modeled as the output of a first-order low-pass filter that
is driven by standard white noise, that is, Gaussian white noise with
unit power spectral density. Suppose that experimental measurements
indicate that a “typical” wind disturbance can be described by such a
model with a bandwidth of 1rad/s. In this case the disturbance filter
bandwidth, wy, is set to 1 and is regarded as a fixed parameter.

The design objective is to find a controller that decreases the effect of
wind disturbances on the output y by a factor of at least ten when
compared with open-loop performance. Assume that wind attenuation
is measured by the steady-state variance of y; a calculation indicates
that the open-loop steady-state variance is 25, so this specification
corresponds to a desired closed-loop steady-state variance of no more
than 2.5. Two controllers that satisfy this specification are

C] (S) and CQ(S) = 0.86.

_0.5(s+2)
B s
The gains have been chosen so that the controllers satisfy the design
specification equally well: in both cases, the steady-state variance of y
is 0.49. Therefore, with respect to nominal disturbance rejection, the
controllers are equally good.

Suppose now that the wind bandwidth is actually 20% higher than
modeled, that is, wq=1.2rad/s. The same controllers now result in
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significantly different disturbance rejection behavior: The output
steady-state variance with C; in place is 0.64, whereas the output
steady-state variance with C, in place is 0.58. In other words, a 20%
increase in wind bandwidth results in a 31% degradation in perfor-
mance for Cy, but only a 18% degradation in performance for C,. This
shows that the disturbance robustness properties of C; and C, are
significantly different. Other calculations confirm this conclusion. For
instance, with controller C; in place, the disturbance bandwidth can
increase to 3.7 rad/s before the performance specification is violated.
For C,, the equivalent figure is much higher, at 8.9 rad/s. Therefore,
with respect to robust disturbance rejection, controller C, is superior to
controlier C;. More complete analysis of the disturbance rejection
robustness of C; and C, is carried out when this example is revisited in
Section 6.

1.2 Problem Formulation

The single-input single-output system under consideration is shown in
Fig. 2. Transfer function C is the controller and transfer functions Py,
P,, and P; comprise the plant. Signal r is the command reference signal,
u is the control signal, y is the output, and d is the disturbance, modeled
as the output of the filter KF, where K> 0 is an uncertain parameter

standard white noise

|

KF
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P,
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FIGURE 2 System model.
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(with nominal value K*) and F is the filter

A Wd
F(s) = ——, 1
()2 (M)
where wq>0 is an uncertain parameter (with nominal value wj).
Parameter wq can be interpreted as the disturbance bandwidth, and
parameter K determines the low-frequency power spectral density
(PSD). Indeed, the PSD of d is

2,2
Saw) = KF () = 50

The performance measure which will be used to evaluate the
disturbance rejection ability of a given controller is the steady-state
variance of y. This performance measure is useful in many engineering
applications. For example, there is a relationship between the variance
of vertical acceleration and the comfort of passengers in airplanes [7,8]
and in automobiles [9—12]. As another example, variance is closely
related to the notions of probability of exceedence and residence time,
concepts that are important in several fields of study, including aiming
control (which includes telescope pointing, missile terminal guidance,
robot arm pointing, etc.) [13—18], aircraft gust load analysis [19,20],
and ship stabilization in waves [21]. It also turns out that steady-state
variance (hereafter just called variance) is easy to compute. Indeed,
denote the closed-loop transfer function from d to y in Fig. 2 by G:

__ P3(s5)Ps(s)
G(s) = 1+ P3(s)P1(s)C(s) @)

Then it is a standard result (e.g., see [22]) that, if GF is stable and
strictly proper,' then the variance of y is
1 o0

7 |G(jw)KF(jw)|* dw = K*|GF |13, 3)

where || - || is the H,-norm.

! A rational transfer function is proper if the degree of the numerator is no larger than
the degree of the denominator; it is strictly proper if the degree of the numerator is less
than the degree of the denominator; it is biproper if the degrees are equal; it is improper if it
is not proper.
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The assumptions associated with Fig. 2 are collected below. Assump-
tions 2 and 3 were previously introduced, Assumptions 1 and 4 are
made for simplicity, and Assumptions 5 and 6 are introduced, respec-
tively, to ensure well-posedness and to ensure the existence of an
internally-stabilizing controller:

Assumption 1 Transfer functions P, P,, P3, and C are rational and
proper.

Assumption 2 Disturbance d is the output of the filter KF (where
F(s) = wq/(s + wq)), which, in turn, is driven by standard white noise.
The disturbance is not measurable for control purposes.

Assumption 3 The output variance is used as a measure of the
influence that the disturbance has on the closed-loop system.

Assumption 4 There is no sensor noise.
Assumption 5 Transfer function P;P; is strictly proper.

Assumption 6 There are no unstable pole-zero cancelations in PPy,
and P, is stable.

The problem is to address, under the above assumptions, the three
issues stated earlier. Specifically:

e investigate how the variance of y behaves as a function of wy and K,

e quantify disturbance rejection robustness, and

e determine if there are limitations on the achievable performance
robustness.

Remark 1.1 The results in this paper are easily adapted to other forms
of the disturbance filter F. For example, if the filter is of the form

wd
S+ wg’

S (wa) (4)

where f'is a known function of wy, then the output variance is simply
scaled by the factor f*(wq). One case that has been found to be useful
is f(wq) = v/2/wq: In this specific case, it can be shown (using, for
example, Theorem 4.1 given below) that the variance of dis K> (i.e., it
is independent of wy).
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1.3 Literature Review

The literature review has three components. First, several examples of
models representing disturbances of practical importance are given,
and the associated model uncertainty is discussed. Second, a brief
review of how disturbance model uncertainty is handled in the control
literature is given. Lastly, since it is possible to rearrange the system in
Fig. 2 so that the disturbance model becomes part of the plant, the
relevant literature on plant model uncertainty is summarized.

1.3.1 Instances of Uncertain Disturbance Models

Three instances of random disturbances which have uncertain statistics
have been researched, namely, wind turbulence models, water wave
models, and road roughness models.

Wind Turbulence Models Wind is obviously a significant disturbance
in aircraft control problems, but it also can be significant in auto-
mobile, ship, and telescope pointing systems, for example. For sim-
plicity, the discussion here is limited to models of turbulence at
altitudes greater than several thousand feet; see [7], [23], or [24] (and
the references therein) for discussion on low-altitude turbulence. Sim-
ilarly, the discussion is limited to continuous turbulence models; see, for
example, [7], [19], or [24] for discrete models, that is, models used to
represent single large gusts such as those due to buildings, aircraft
wakes, or shear layers.

According to [24], experimental data indicates that continuous
turbulence takes the form of individual patches. In each patch the
turbulence is essentially random, homogeneous (i.e., the statistical
properties are the same at every point) and isotropic (i.e., the statistical
properties are independent of axis translation, rotation, and reflection).
Furthermore, it is usually assumed that the turbulence is stationary and
that the turbulence patches are “frozen” in space. These turbulence
properties are, of course, idealizations; see [7] for a discussion of
deficiencies with the homogeneous and isotropic assumptions and see,
for example, [25] for a discussion of nonstationary turbulence models.

It is common to decompose the turbulence velocity vector into three
components, corresponding to the longitudinal, lateral, and vertical
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directions. Since the three components are handled in essentially the
same way and since Ref. [24] indicates that the vertical component is
the most important turbulence component at high altitude flight, only
the vertical component is considered here. Experimental and theoreti-
cal results indicate that wind turbulence spectra roll off as w™>'3; the so-
called Von Karman spectrum satisfies this property and has become a
standard turbulence model. The Von Karman spectrum for the vertical

turbulence velocity component is [20,24,26—28]:

S(w) ,L 1+8(1.339Lw/V)?
W) =0,= .
" V14 (1.339Lw/V) "/

(5)

In this expression, o‘% is the turbulence variance, L is the so-called
turbulence scale, and V is the aircraft airspeed. There is usually not
much uncertainty associated with ¥; however, both o,, and L vary with
altitude and the characteristics of the turbulence, and, consequently,
there is uncertainty as to what the “correct” values are. This uncer-
tainty arises since the parameters must be determined experimentally,
and all measurements have errors, but, more significantly, the turbu-
lence characteristics at a given altitude are not invariant. Indeed, in
practice o, is often treated as a random variable whose distribution is
dependent on altitude [7,8,19,20]. It is also common to assign a par-
ticular value of o, to each altitude under different degrees of
turbulence: Table 9.62 in [24] plots o, versus altitude in clear air
turbulence (with typical values between 4.5ft/s and 6.5ft/s in the
altitude range 1000—30 000 ft); the same reference advising using 21 ft/s
in thunderstorm turbulence for altitudes up to 40 000 ft. In contrast to
the treatment of o, uncertainty in L does not appear to be explicitly
considered, even though uncertainty in L is recognized. Indeed, for
the Von Karman model it is recommended that, in both clear air
turbulence (for altitudes greater than 2500ft) and thunderstorm
turbulence, L be set to 2500 ft [24], but values of L from as small as
490 ft to as large as 4900 ft have been proposed [7]. As more evidence
of the uncertainty in L, Ref. [27] goes so far as to assign a probability
distribution to L; the mean value is in the range 500—700 ft. Moreover,
Ref. [20] mentions that L probably varies considerably from patch to
patch, and, more significantly, “more often than not, the PSD of a
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particular patch of turbulence does not fit the (Von Karman model)
very well for any value of L.” In a discussion about accidents due to
turbulence and wind shear, the author of [7] acknowledges that “even
something as basic as the ‘correct’ value of the integral scale of
atmospheric turbulence eludes us.”

Water Wave Models Water waves act as disturbances on every
surface-traveling ship, but are also important for submarines traveling
near the surface and for fixed sea platforms (e.g., oil drilling rigs). For
simplicity, the discussion here is limited to fully developed ocean waves.
Furthermore, the effects of swell and wave spreading are also ignored,
even though both can be important [29].

Despite appearances at the shoreline, ocean waves are chaotic in the
open ocean. Reference [30] includes a variety of photographs showing
the wide range of wave systems that occur. Indeed, it was thought early
on that modeling such wave systems was not possible, but, to improve
the success of amphibious operations in World War II, the first
scientific theory of water wave forecasting was developed in 1942—-1947
[31,32]. The theory was found to be inadequate, and a new theory based
on stochastic processes was developed in the following two decades.
An often cited spectrum for open ocean wave amplitudes is the
Bretschneider or ITTC (International Towing Tank Conference)
2-parameter spectrum [29]:

A
S(w) = = exp(—B/w4), (6)
where
H? 1949
A=48731 =L B=——. 7
87.31 T4 and T (7

Here, T, is the modal period of the spectrum and H,; is the
characteristic wave height as defined in [29]. (For our purposes, the
precise definitions of these quantities are not important.) The variance
of the amplitude is completely determined by Hj; for fixed H,, the
spectrum resembles a single hump whose peak value and peak
frequency vary with 7.

The literature has several variations of spectrum (6). For example,
Refs. [33,35] refer to (6) with 4 and B defined in terms of a single
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parameter. A generalization of (6) is also mentioned in [33]:
A
S(w) = o exp(—B/w*).

Here, m is an integer to be chosen based on “the experience and
judgment of engineers” and the constants 4 and B are now complicated
expressions, omitted for brevity. Finally, Ref. [33] cites a paper which
describes a detailed six-parameter ocean wave spectrum.

The spectra mentioned above apply to stationary objects in the
water. For moving objects (e.g., ships), it is necessary to modify the
spectrum, or, equivalently, to modify the frequency w. As shown in
[29,34], the frequency encountered by a ship moving at speed ¥ and
angle of encounter y is

wv
We =w— e cos(u),

assuming deep water. Both references describe how to determine the
wave spectra in terms of we.

Even under the simplifying assumptions above, there is considerable
uncertainty in the wave spectra:

e Since several different spectra have been proposed in the literature,
and there is not a consensus as to which one is “correct,” it is reason-
able to conclude that the statistics of ocean waves are variable.
Therefore, there is uncertainty as to whether any particular spec-
trum (computed based on data from a particular location and a
particular time) is suitable for another location or another time.

e The determination of the spectrum parameters (e.g., 4 and B) is
ultimately based on experimental data, and all experimental mea-
surements involve uncertainty. Measuring wave characteristics is
particularly difficult [29,36]. There is also measurement error asso-
ciated with finding ¥ and p to determine the encountered spectrum.

Perhaps even more significant than the above sources of uncertainty,
the underlying assumptions add uncertainty:

e In the presence of swell, the wave spectrum can change dramati-
cally. Reference [33] states that there are essentially no models of
swell because observational data is so scarce.
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e Wave spreading has been ignored above (as is often done in the
literature) even though almost all open ocean waves do, in fact,
exhibit wave spreading (i.e., they are “short-crested”) [29]. Unlike
swell, it is at least possible to (partially) compensate for wave
spreading by appropriate modification of the spectrum [29,33], but
the study of short-crested waves is a current research area.

e The spectra change significantly in shallow water or in limited-fetch
(coastal) areas. References [29,33,34] discuss these issues.

e Nonlinear and nonstationary effects have been ignored. However,
there is evidence that nonlinear effects play a significant role [33,36].

Road Roughness Models The roughness of roads is important because
it affects ride quality, rate of road deterioration, and vehicle operating
cost [11,37]. It is argued in [38] that road roughness is also a major
variable in the economic evaluation of highway systems and [39] uses
cost data to conclude that “reducing vehicle operating costs by even a
fraction of a percent will do more to reduce the total transportation
costs than anything that can be done to reduce the cost of constructing
or maintaining pavements.” To reduce vehicle operating costs, the
roads can be made smoother or the vehicles can be designed to better
handle the roughness. In the latter case, modifying suspension systems
(passively or actively) is the most obvious way of improving vehicle
tolerance to rough roads and, simultaneously, improving ride comfort.
The authors of [40] argue that a good road roughness model is needed
for theoretical analysis and design purposes, and they conclude that the
major source of error in predicting ride quality is an inadequate
description of road roughness.

Several assumptions about road roughness are usually made for
simplicity. Generally, models are based on continuous road roughness,
that is, they exclude occasional large irregularities such as potholes. It is
also usually assumed that the road surface is two-dimensional (i.e., the
left and right side of the car experience the same bumps); Ref. [41]
considers a full three-dimensional model and shows that typical road
surfaces can indeed be considered to be realizations of homogeneous
and isotropic two-dimensional Gaussian random processes. Usually
other types of forces (e.g., braking or turning forces, wind gusts) are
ignored when considering road roughness; Ref. [9] states that road
roughness is the most relevant type of force for ride studies, so ignoring
these other forces is reasonable.
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Several references indicate that it is important to have an accurate
road profile model. For instance, the author of [10] states that the
“dynamical interaction between the road and vehicle changes drasti-
cally depending on road surface and vehicle velocity.” As another
example, the authors of [40] show by comparing experimental and
theoretical data that “the major source of error in predicting ride
quality will come from an inadequate description of roadway rough-
ness.” (They are referring in particular to the inadequacies of spectrum
(8), given below.)

There are several road roughness spectra in the literature. The
following spectra are for road displacement:

e The simplest, and probably the most commonly used, spectrum
has the form

cV
Sw) =<3, ®)
where ¢ is a constant called the road roughness coefficient, rough-
ness parameter, or roughness constant, and where V' is the vehicle’s
speed. The value of ¢ varies by several orders of magnitude
depending on the road conditions [9,40]. The authors of [40]
carried out experimental studies and concluded that model (8) is
inadequate for road roughness spectra unless the frequency range
of concern is very limited. Other presentations of experimental
data (e.g., [41,42]) also show that the constant —2 slope is not very
accurate for some road surfaces.

e A generalization of (8) often mentioned (e.g., see [9]) is

cVn—l

wn

S(w) =

, ©)

where n > 0 is a second parameter usually close to 2. The author of [9]
states that (9) (and therefore, (8)) is not always a good approxima-
tion; he includes several experimental spectra as evidence.

e An even more general form of (8) mentioned in [40,41,43,44] is

{(a/V)(wo/w)"‘ if w < wy,
= (10)

e/ (wo/w)? ifw > w,
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where «, n;, and n, depend on the properties of the road; the
particular values vary significantly with road conditions [41,43,44].
Generally, wy is set to V for all road surfaces [41], i.e., the
corresponding “spatial frequency” is assumed to be 1rad/m.

e A third generalization of (8) has the form [43]

cV 022
S(w) =;—2(1+ 3)2 ) (11)

where ¢ is the road roughness coefficient and € is the cutoff
frequency. The reference suggests using 29=0.16(27)rad/m for
bituminous roads and Q¢=0.07(27)rad/m for portland cement
concrete roads.

o Reference [45] uses the following spectrum:

,  2aV

S = v (12
where o is the variance of the road irregularities and a is a coefficient
dependent on the type of road surface.

e In many of the references, small peaks are evident in the
experimentally determined spectra, but none of the spectra given
above include such peaks. (These peaks are especially significant for
terrain road surfaces, as opposed to smooth roads.) The spectrum
given in [10] does include these peaks, but is, consequently, fairly
complicated. It is given by

S(w) = o? 220(11: +o? 2a2V(w2+a22V22+ﬁ2V2) ’
w*+afV (W2 +adV? - B2V2)° 4 4a}p2V4

(13)

where oy, ay, B, 01, and o, are tabulated in [10] according to the
surface type (asphalt, paved, or dirt).

Based on the collection of models given above, it can be concluded that
road roughness models vary greatly. Therefore, no single fixed spec-
trum is suitable for all road surfaces. Moreover, even for a specific type
of surface (e.g., asphalt), the models differ, especially at low frequencies.
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It follows that, even for a fixed surface type, the road roughness spectra
are uncertain. Note that, conceptually, road roughness is very similar
to wind turbulence (under the frozen patch assumption). Also note that
road roughness is an issue for not only vehicles, but also for aircraft [46]
and, slightly modified, for trains [47,48].

1.3.2 Disturbance Model Uncertainty in the Control Literature

In the control literature, it is common to model random disturbances
as filtered white noise where the filter is a rational transfer function.
The disturbance filters used are often very simple. For example, it is
common to use a simple gain, i.e., to model the disturbance as white
noise. Although white noise is a purely mathematical artifact, this
approach can often be justified because the designer is not using the
disturbance filter to model a true disturbance, but, rather, as a “tuning
knob” for the design process. In cases where an attempt is made to
model a real disturbance, first-order filters are often used; such simple
filters are used instead of more detailed models since the PSD of the
disturbance is “rarely known precisely” [49]. However, there are cases
where second or higher-order filters are used. For example, it is
common to approximate the irrational Von Karman turbulence
spectrum (5) by the so-called Dryden spectrum [24,28]

_ 2L 1+3(w/vy
S = O Ly v

which can be generated by passing white noise through a second-order
filter. Other higher-order rational approximations to the Von Karman
spectrum exist [20]. Examples of high-order rational approximations to
ocean wave spectra are found in [50,51].

It appears that wuncertainty in disturbance (or noise) filters is not
considered in the control literature very often. However, there are
several relevant threads of research:

e In [52] it is recognized that disturbance model uncertainty is a
significant issue when dealing with the problem of state estimation
under process and measurement noise. The authors study cases
where the PSD of one of the noise sources is uncertain and where
the other is white noise with known PSD. In the scalar-state case,
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the authors also mention the spectral band noise model, in which the
PSD of the fixed-power noise signal is assumed to lie between known
lower and upper bounds. However, in the multivariable-state case,
they constrain themselves to white noise with uncertain PSD
matrices. The approach of the paper is to optimize the worst-case
mean-square error by forming a minimax optimization problem.
Earlier state estimation papers of a similar nature include [53-56].

e There are several studies of the LQG problem under disturbance and
noise model uncertainty [57—60]. However, in all cases, the noise
sources are assumed to be white with uncertainty only in the
magnitude of the PSD.

e In [61-64], problems where the covariance sequence of the dis-
turbance belongs to a prespecified set are considered. For both
control and filtering problems, the author develops minimax design
procedures, although the tools used are completely different than the
minimax schemes used in the previously cited references.

e The use of bounding filters is an alternative strategy for treating
estimation problems with uncertain plant state-space matrices and
uncertain noise statistics [65—67]. The idea is to design for a spectrum
that bounds the possible noise spectra. As discussed in [54], this
simple approach can be useful, but it also can lead to conservative
designs and, moreover, it is not applicable if the noise spectra cannot
be bounded. Reference [68] uses a bounding approach in an optimal
control problem.

e One of the original motivating factors of H..-theory was the obser-
vation that quadratic-norm methods generally ignore uncertainty in
disturbance power spectra [69,70]. H.-theory accounts for dis-
turbance power spectrum uncertainty in a minimax sense; however,
the method can be very conservative since, effectively, no informa-
tion other than the disturbance power is used.

e Several papers that deal with the notion of uncertain disturbance
models in a nonstochastic framework have been found. For example,
Ref. [71] considers the effect of nonperiodic disturbances on
repetitive control systems, that is, systems where it is assumed that
the disturbances are periodic.

Most of the above papers take a minimax approach to design, that is,
the authors essentially assume conditions that ensure the existence of a
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worst-case disturbance, then they design for that disturbance. Alter-
natively, an adaptive approach is possible (e.g., see [72,73]). The authors
of [73] discuss in fairly general terms how parameter uncertainty (in
both the plant and disturbance models) can be accommodated by
having the controller adapt to the changing parameters. Paper [74] cites
several references that discuss the advantages and disadvantages of
minimax and adaptive schemes. Since the focus of this paper is on
robust disturbance rejection, adaptive disturbance rejection will not be
considered further.

1.3.3 Treating Disturbance Model Uncertainty
as Plant Model Uncertainty

In the feedback structure of Fig. 2, there is a clear distinction between
plant and disturbance models, and, therefore, a clear distinction
between plant and disturbance model uncertainty. A recent trend is
to combine the plant and disturbance models (along with any per-
formance weights) into a single generalized plant. This is the approach
taken in H,, Hoo, and u synthesis techniques (e.g., see [3,5,75]). The
question arises as to whether the vast literature on H,, Heo, and p
techniques applies to our problem. Since the uncertainties in question
are parametric and the performance measure is computed by a H,-
norm, only the H,-literature that deals with parametric uncertainty in
the generalized plant is relevant. Because the H,-problem can be posed
as an LQG problem [76], this includes any LQG literature that deals
with parametric plant uncertainty. This literature can be roughly
classified according to the method of treatment of the uncertain
parameters, and includes the random variable approach (e.g., [77-79]),
the minimax approach (e.g., [79,80)), the artificial multiplicative noise
approach [81], the “parameter robust LQG” approach [82,83], and the
“guaranteed cost control” approach (e.g., [84—-86]).

Intuitively, the problem of parameter uncertainty in the disturbance
model is much simpler than the problem of parameter uncertainty in
the (nongeneralized) plant model. Indeed, it is impossible for any
variation of the disturbance filter to affect any loop characteristic,
including stability. (This is not true if adaptive disturbance rejection is
used or if the disturbance is measurable, however.) Thus, one expects
that treatment of parameter uncertainty in the disturbance model alone
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should be easier than the treatment of parameter uncertainty in the
generalized plant, and, therefore, there should be no need to invoke the
rather complicated mathematical machinery required for the latter.
Because of this, and since it is not immediately evident that any of the
methods described in the above references can solve our problem,?
none of the material presented in this paper relies on the above
references.

1.4 Paper Outline

In Section 2 we introduce the basic tool that is used to investigate how
the variance of y behaves as a function of the disturbance bandwidth,
wq. We call this tool the V-transform. In Section 3, quantitative
measures of disturbance rejection robustness are defined in terms of
V-transforms; they are similar to phase margin and gain margin, the
classical measures of stability robustness. Section 4 then investigates
mathematical properties of V-transforms. For example, it is shown that
the variance of y is a rational function of wy whose “state-space
realization” has the same poles as those of the closed-loop system.
Other properties studied include the continuity, convexity, monoto-
nicity, and asymptotic behavior of the V-transform. In Section 5, we
consider the problem of designing a controller to achieve a given level
of disturbance rejection robustness, as measured by the V-transform. It
is shown that there is a limitation on disturbance rejection robustness in
the nonminimum-phase case, but no such limitation in the minimum-
phase case. Finally, Section 6 presents two simple examples, and
Section 7 concludes the paper. All proofs are given in the Appendix.

2 THE V-TRANSFORM

Denote by RH, and RH, the set of stable rational transfer functions
that are, respectively, proper and strictly proper. (Every transfer
function in R'H, has finite H,-norm, and every transfer function in

2 For example, no references could be found that address the basic issue of determining
how the performance index varies with the uncertain parameters.
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‘R'H, has finite H,-norm [5].) Also introduce the following notation: for
scalar g (real or complex) and matrices A4, B,C,D of appropriate
dimensions, define

A B A -1
=D+ C(qgl—A) B.
A+2]@2 0+ clar-a
Lastly, denote by R, the set of nonnegative real numbers. Then the
V-transform is defined as follows:

DEFINITION 2.1 Let G be an element of RH,, and let F be the filter
wy/(s +wq). The V-transform of G, denoted V(G), is the function
mapping R . into itself defined by

V(G)(wa) = IGF 3.

In other words, V(G)(wq) is the variance of y, explicitly as a function
of wq, when K= 1. For general K, the output variance is V(KG)(wq) =
K*V(G)(wq). This relationship is shown pictorially in Fig. 3.

The “V” in V-transform stands for “variance”; this is appropriate
since V(G )(wq) has an interpretation as variance for each wy. The word
“transform” is also appropriate since V(G) transforms G, a function of
5, into a function of wy. Indeed, V(G) is formed by integrating |G(jw)|?,
weighted by a rational kernel:

s Ly Wl
V@) = 6P = [ 166 52

This has a similar structure to other transforms, such as the Laplace
transform (except the Laplace transform is based on a transcendental
kernel). The mathematical properties of V-transforms are explored in
Section 4.

standard d

white KF G y variance of y = K2 - V(G)(wa)
noise

FIGURE 3 Relationship between G and V(G).
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Note that V(G) is a global transformation of G in the sense that the
computation of V(G )(wq) requires knowledge of |G(jw)| forallweR,.
It is therefore not surprising that it can be difficult to make conclusions
about the robustness of closed-loop disturbance rejection by examining
only the Bode plot of G, as the following example illustrates.

Example 2.1 Consider the system in Fig. 2 with

K=1, Pi(s) =1, Py(s) =1, P3(s) =

It can be verified that the proportional controller C(s)=k inter-

nally stabilizes the system for —1 <k < 8. Consider three particular
controllers:

C1 (S) = 1, Cz(S) = 4, C3(S) =17.25.
The corresponding closed-loop transfer functions from d to y are

e G2) = 5 5r
s34 352435427 2 T 352435+ 5°

Gi(s)

1
T s34 3524354+ 8.25°

G3 (S)

The Bode magnitude plots of G, G, and G5 are shown in Fig. 4. (The
phase plots are not included since the variance is completely
determined by the magnitude of G.) The frequency axis has been
partitioned into four regions, denoted R1, R2, R3, and R4 in the figure.
The relative ability of the controllers to reject particular frequency
components of disturbance d depends on which region the frequency
component is in. Table I summarizes the results. Observe that
controller Cj is the best of the three controllers at rejecting frequencies
in regions R1 and R2 (corresponding to frequencies less than 1.3 rad/s);
hence, a reasonable hypothesis is that for low wq (i.e., when d has low
bandwidth), controller C; results in the lowest variance. Unfortunately,
it is difficult to predict anything more than this based solely on the
Bode plots.
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FIGURE 4 Bode magnitude plots of Gj, G, and G3 in Example 2.1. The relative
ability of the controllers to reject a particular frequency component of the disturbance
depends on which region the frequency is in.

TABLEI Comparison of the relative abilities of the three controllers in Example 2.1 to
reject a single frequency component of disturbance d

Frequency Frequency Frequency Frequency

region R1 region R2 region R3 region R4
Best controller C; Cs C C,
Middle controller C, C, Cy C,
Worst controller C, C, C, C;

To determine precisely how the controllers compare with respect to
wq, Fig. 5 shows V(G,), V(G>), and V(Gs);’ for clarity the horizontal
scale is logarithmic. The relative performance of the three controllers
differs in each of the regions marked R1’, R2’, and R3’ in the figure.
Table IT summarizes the results, and Fig. 6 shows regions R1’, R2’, and
R3’ superimposed on the Bode magnitude plots from Fig. 4. As
hypothesized earlier, controller Cj is the best of the three controllers for
low wq, but only in region R1’, corresponding to wg < 0.23 rad/s. For

3 All V-transforms are computed using Theorem 4.1.
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FIGURE 5 V-transforms of oy, G, and G3 in Example 2.1. The relativex performance
of the three controllers at rejecting disturbances depends on which region the disturbance
bandwidth is in.

TABLE II Comparison of the relative abilities of the three controllers in
Example 2.1 to reject disturbances of bandwidth wy

wgq region R1' wq region R2' wq region R3'
Best controller (e C, C,
Middle controller C, Cs (o
Worst controller C Cy Cs

wq > 0.23 rad/s, controller C, is the best. Controller C; is never the best
controller from the viewpoint of output variance. It is claimed that,
without explicit use of the V-transform, such conclusions could not be
drawn.

This section is concluded with some observations:

e Example 2.1 shows that the examination of the Bode plot of G
may be insufficient to draw conclusions about the disturbance
rejection robustness capabilities of a controller. Since the loop gain
L = P3P,C includes no information about P, or the location of
where the disturbance is injected, it is reasonable to expect that
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~1
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FIGURE 6 Bode magnitude plots of G;, G,, and G; in Example 2.1. The relative
performance of the controllers at rejecting disturbances depends on which region the
disturbance bandwidth is in. In particular, controller C; is the best at rejecting
disturbances if the disturbance bandwidth is in region R1’, and controller C, is the best
otherwise.

examination of the Bode plot of L will be even less useful than the
examination of the Bode plot of G.

e A key issue in comparing V-transforms is whether or not the
V-transforms cross (since the controller which is superior on one
side of the crossing is necessarily inferior on the other side). It is easy
to show that if the Bode magnitude plots of G, and G, (correspond-
ing to two different controllers) do not cross, then V(G) and V(G,)
do not cross either; however, if the Bode magnitude plots of G; and
G, do cross, then it cannot be concluded whether or not V(G,) and
V(G,) cross.

e The “G” in the expression V(G) need not arise from (2); indeed, V(G)
is well defined and meaningful for any stable transfer function G. In
particular, the variance of any signal (or filtered version thereof) in
Fig. 2, not just that of y, can be expressed in terms of V-transforms.
Similarly, the robustness margins defined in the next section apply to
any signal. It is only for simplicity that the focus of the paper rests
only on the variance of signal y.
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3 ROBUSTNESS MARGINS

Let v >0 denote the threshold of the variance of y that determines
acceptable performance. Assume that

V(K*G)(wg) <

that is, nominal performance is achieved. It is natural to ask how
much K and wy can vary from their nominal values before (if ever)
performance becomes unacceptable. The following scalars are
measures of robustness with respect to these types of variations:

o Define the disturbance gain margin (DGM.,) to be the largest
increase in K (as a multiple of its nominal value) that can be
tolerated until performance becomes unacceptable:

A Y
PEM, =\ 7o)y

e Define the disturbance bandwidth margin (DBM,)) as the largest
increase in wg (as a multiple of its nominal value) that can be
tolerated until performance becomes unacceptable:

*

DBM,, 2 sup{?: wg > wy and Ywy € (i, @d], V(K*G)(wg) < fy}.
d
(For convenience define the supremum of an unbounded set of
positive real numbers to be infinity.)

The concepts of disturbance gain margin and disturbance bandwidth
margin appear to be new. The following example illustrates that DGM,,
and DBM,, are easily determined graphically; the example also shows
that DGM,, and DBM,, are independent of several classical measures of
merit.

Example 3.1 Consider the system in Fig. 2 with

Pi(s)=1, Py(s)=1, Ps(s)=1/s, K*=1, wj=2rad/s, v=04,
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and consider the following two internally stabilizing controllers:

_ /100 + 1
- s/10+1

(s/15+1)2

€ils) (s/100 + 1)

and Cy(s) =

The controllers have very similar gain margins (both infinite), phase
margins (85° and 96°, respectively), gain cross-over frequencies
(0.995rad/s and 1.004rad/s, respectively), and low-frequency refer-
ence tracking characteristics (see Fig. 7). Indeed, the loop gain Bode
plots are essentially the same up to 1rad/s (see Fig. 8). It follows that
neither controller is superior than the other at rejection of low-
frequency components of the disturbance, and one might therefore
conjecture that, as measured by variance, the rejection properties of
the two controllers are essentially the same. However, inspection of the
V-transforms (see Fig. 9) reveals that the robustness properties with
respect to uncertainty in K and wy are actually quite different. Indeed,
the previously defined robustness margins are, for Cj,

0.4 2.90

DGM, = {/535c=106 and DBM, === 145,

-

0 5 10 15 20 25 30 35 40
Time (s)

FIGURE 7 Tracking behavior for C; (solid) and C, (dashed) in Example 3.1. The
dotted curve is the reference signal:
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10
Frequency (rad/s)

FIGURE 8 Bode plots of the loop gain for C| (solid) and C, (dashed) in Example 3.1.
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FIGURE 9 V-transforms for C; (solid) and C, (dashed) in Example 3.1.
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and, for C,,

0.4 7.25
ETT 1.13 and DBM, =—=3.63.

DGM, = 2.0

(The numbers in these equations are all taken from Fig. 9.) The
conclusion is that C, has superior disturbance rejection robustness than
that of C;.

Remark 3.1 1t is well known that stability gain and phase margins do
not always capture the system’s true stability robustness. (See [5] for
examples of contrived systems with good gain and phase margins, but
poor stability robustness.) Similarly, the disturbance gain and band-
width margins are not always a good measure of a system’s disturbance
rejection robustness. Examples can be constructed where DBM, is
infinite, yet a slight perturbation in the V-transform causes DBM,, to
become finite. Similarly, it is possible that DGM., changes significantly
(although it is always finite) by a slight system perturbation. In each
case, the examples are contrived, and it has been found that, typically,
DGM,, and DBM,, appear to be good robustness measures.

4 V-TRANSFORM PROPERTIES

Two types of properties of V(G)(wq) are described, namely, properties
that arise by treating wy as an independent variable (for fixed G), and
those that arise by treating G as an independent variable.

4.1 Properties of V(G)(wq) as a Function of wy

4.1.1 V-Transform Realizations

The theorem in this subsection states that V(G)(wq) is a rational
function of wgy, and it presents two realizations of V(G) in terms of a
realization of G. The following lemma, used in the proof of the
theorem, gives a standard way to compute H,-norms [5]:

LEMMA 4.1 Given M € R'H, with realization

A | B
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let L denote the observability Grammian of (C, A), that is, L is the
unique solution of the Lyapunov equation AL+ LA+ CYC=0. Then
IMI3 = BTLB.

Note that solving the Lyapunov equation for L is a standard linear
computation, easily performed, for example, by MATLAB.

THEOREM 4.1 Given G € RH, with realization
A B
C D
let L, be the observability Grammian of (C, A). Define

N A1 N
0 0

A=A4, B=B, C=(B'Ly+DC)4, D= (B'L,+ DC)B.

/) 14
V(G) (wa) = [;H—f;] (a) +5waD?. (15)

COROLLARY 4.1 If D=0 in Theorem 4.1, that is, if G is strictly proper,
then realizations (14) and (15) simplify to

A" | A7'B 1) J A B
—1 an .
—BL, | 0 |\w BT 4 | B'L,B|"“*

Remark 4.1 If realization (15) is interpreted as a dynamical system (in
wyq instead of s), then the “poles” of V(G) are seen to be the same as the
poles of G. Why the dynamics of G and the “dynamics” of V(G)
coincide is not clear. Furthermore, it is not clear how the “zeros” of
V(G) are related to G, or even what it means to interpret (15) as a
dynamical system.

(5),

A7'B

, €
10?

[-(B"Lo + DO) 1],

Then two realizations of V(G) are

V(G)(wa) = l

Oy,
(=] w>

and
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Remark 4.2 The fact that V(G) is rational in wq also follows from [87],
where it is shown that the square of the H,-norm of

Alq) | Blg) )

C(q) 0
is rational if 4(g), B(q), and C(g) are affine functions of ¢. (The fact that
the state-space matrices of G(s)F(s) are affine in wy is apparent from
Eq. (34) in the Appendix.)
4.1.2 Analyticity of V(G)

It is not unexpected that V(G)(wq) is an analytic function of wy:

THEOREM 4.2 For all G€ RH., V(G) is an analytic function of

wq € R+. U
A B
3]
is a realization of G and if A, B, and C are defined as in Theorem 4.1, then
4 V(G)(wq) = —C(wal — A) 2B + Ipe
dwc[ d) — d 2 B
and, for all integers m > 2,
a” VR T =)
——V(G)(wa) = (—1)"m!C(wql — 4) B.
dwj

4.1.3 Initial and Final Values

THEOREM 4.3  For all G € RH ., V(G) satisfies the following:

(G)(0)=0.

o dV(G)(0)/dwq = G(0)*/2.

If G is not identically zero then V(G) is a strictly increasing function of
wyq € R+.

o Let
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be a realization of G, and let L, be the corresponding observability
Grammian. Then, as wq — 00, V(G)(wq) approaches

B"LoB+ DCB +1wyD?. (16)

Theorem 4.3 has a natural interpretation in terms of variance. Recall
that V(G)(wyq) is the variance of the output of the filter GF when GF is
driven by standard white noise. The first property in Theorem 4.3
simply says that the output variance is zero when the filter F has zero
bandwidth, an obvious result. The second result states that, as wy is
increased from zero, the rate of increase of variance is proportional to
the square of the DC gain of G. In other words, for very small wy, the
higher the DC gain of G, the more sensitive the output variance is to
changes in wq. The third property states that, as wq increases, the output
variance increases; this is expected since increasing wq corresponds to
increasing the bandwidth of F. The last property in Theorem 4.3 is best
considered in two cases: First, if G is strictly proper, i.e., D=0, then
Theorem 4.3 indicates that V(G)(ws) — BTLoB = ||G|j3. This is
expected since, as wq — 00, F tends to a unity gain filter, so the noise
is filtered only by G. On the other hand, if G is biproper, i.e., D # 0, then
Theorem 4.3 indicates that V(G)(wq) is unbounded, and that it
approaches the asymptote given in (16). Since G is biproper, it can be
decomposed into the parallel connection of a low-pass filter (i.e.,
C(sI— A)~'B) and a nonzero constant gain (i.e., D). The noise that is
processed by the low-pass filter makes a bounded contribution to the
output variance, but the noise that is “filtered” by the constant gain
makes a contribution to the output variance that is proportional to wy.

4.1.4 Invertibility

The above results immediately lead to the following:

THEOREM 4.4  For every G € RHo, the inverse function [V(G)] ™" is well
defined. If G € R'H,, then the domain of [V(G)]™" is [0, |]G||§], otherwise,
the domain is [0, 00).

Note that it is generally not possible to give a closed-form expression
for [V(G)]™" since the required computation involves finding the roots
of a polynomial whose order equals the number of poles of G.
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Remark 4.3 An equivalent definition of DBM,, (see Section 3) is

V(G () if G € RHo — RHy OR,
DBM,, = if G € RH, and ||G|)5 > ~,
00 if G € RH, and ||G|)5 < ~.

4.2 Properties of V(G)(wq) as a Function of G

4.2.1 Scaling

A simple result is that the V-transform is homogeneous of degree two:
THEOREM 4.5  For all G € RH and for all o€ R, V(aG) = a*V(G).

Remark 4.4 If F has the form of (4), then it follows from Theorem 4.5
that the output variance, as a function of wg, is f*(wa) - V(G)(wq).
Theorem 4.1 can still be applied to give an analytical expression for the
output variance in this case; however, many of the other properties in
this section need to be modified (e.g., the variance may not be a strictly
increasing function of wy).

4.2.2 Continuity

The theorem below shows, in two senses, that V(G) is a continuous
transformation of G. Since there is always uncertainty in G (due to both
modeling uncertainty and numerical approximations), continuity of the
V-transform is a necessary condition for the V-transform to be
practically useful. In other words, if arbitrarily small changes in G
could lead to large changes in V(G), the usefulness of the V-transform
(and, more fundamentally, the usefulness of variance as a performance
measure) would be severely limited.

THEOREM 4.6 The V-transform is continuous in the following senses:
(1) VGERH, and Ye>0, 36> 0 such that VG € RH,,

(IG=Gll, < 8) = (VYwaq € Ry, [V(G)(wa) — V(G)(wa)| < €). (17)
(2) VG € RHyo, Vwq € Ry, and Ve >0, 36> 0 such that VG € RHy,

(16 =Gl < 8) = (IV(G)(ws) = V(G)(wa)l <¢).  (18)
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The first type of continuity in Theorem 4.6 is uniform in wy, that is, §
can be chosen independently of wy. The second type of continuity,
however, is not uniform in wg, and it cannot be strengthened to uniform
continuity, as the following example shows:

Example 4.1 To illustrate the nonuniformity of the second type of
continuity in Theorem 4.6, consider the transfer functions

1
s+1

G(s) =

and

1 5 ~((T+8)/(1+68)s+1
Gl =557+ )T F DMy

s+1 Ts+1=(1

where 6§ and T are positive constants. Note that G and G are elements of
RH,, 50 ||G — G|, ||Gll2, and ||G|, are all well defined. In fact,

_ 5 _
16l = |7537] =& (19)

2_1/00 o
61 =2 [ e do=3. 0)

and, integrating using partial fractions (for 0 < 7'< 1),

P Y L (T+6)/(1+6)°w?+1
”Gll%_;/o i | ¢ P

T2+ TG +45+1)+6°

2T(1+1T) 1)
Apply Theorem 4.3 and (20)—(21) as follows:
Jim_ |V(G)(wa) ~ V() (wa)| = [IGI13 - 1G]
|1+ 45+ 1)+ 87 1 @)

2T(1+T) 2
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The nonuniformity of the continuity follows from (19) and (22), as
the following contradiction argument shows: Suppose § can be chosen
independently of wy in (18). Fix arbitrary >0, and fix the cor-
responding value of § > 0. Set § = §/2. By (19), ||G — G||, < é holds for
all T > 0. Therefore, by (18), it must be that, for all 7> 0 and for all
wa € R4, |V(G)(wa)—V(G)(wa)| < €. But this is impossible since (22)
becomes unbounded as T — 0. Hence, there is a contradiction.

To illustrate the nonuniformity graphically, the functions V(G) and
V(G) (for T=1, 0.1, 0.01, and 0.001) are shown in Fig. 10 for § = 0.1.
From the figure, it is apparent that |V(G)(wa) — V(G)(wa)| grows
without bound as 7— 0 and wgq — oo, even though ||G — GIIoo =0.1
holds for all 7> 0.

As a final note on Theorem 4.6, observe that neither type of
continuity is uniform in G. In fact, by considering a sequence of G’s
in RH, (respectively, RH,,) with progressively larger H, (respec-
tively, Hoo) norms, it can be proven that the first type (respectively, the
second type) of continuity cannot be strengthened to uniform
continuity in G.

Variance

g (rad/s)

FIGURE 10 V-transform of G (dashed) and, for several values of 7, the V-transform
of G (solid) for Example 4.1.
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4.2.3 Convexity
V-transforms satisfy the following convexity property:

THEOREM 4.7 The V-transform is a convex operator in the following
sense:

VGi,Gy € RHoo, VA E [0, 1], Ywq € Ry, (23)
V()\G] + (1 — )\)Gz)(wd) < /\V(Gl)(wd) + (1 - ) V(Gz\)(wd).

Remark 4.5 A useful consequence of this convexity property is that
design constraints of the form

VK >0, Vwqg € Ry, V(KG)(wq) < Bmax(wd, K)
(for given positive function By,,y), or of the form
DGM > DGM,;;, and DBM > DBM,;,

(for given positive scalars DGM,,;, and DBM,,;,) are closed-loop
convex (using the terminology of [49]). In other words, the set of Youla
parameters corresponding to controllers which satisfy either of these
constraints is convex. It follows that the convex programming
procedures described in [49] can be used to synthesize controllers
which satisfy either (or both) of these constraints.

4.2.4 Invertibility

V(G) depends on the magnitude of G(jw) for w € R, but is independent
of the phase of G(jw) for w € R. Indeed, the V-transform is invariant
under all-pass filtering: For any G€RH,, and any all-pass filter
G, € RHo, V(GG,)=V(G). This implies that the V-transform is not
invertible (with respect to G); however, it is conjectured that the
V-transform is invertible to within an all-pass factor.

5 PERFORMANCE LIMITATIONS

The material presented so far has not been dependent on where stable
transfer function G originated. For the remainder of the paper, G will
be restricted to the form (2). This section addresses the following
question: For given Py, P,, P;, K*, and w}, can the controller C be
chosen so that the closed-loop system rejects disturbances with



446 D.E. DAVISON et al.

arbitrarily good robustness (as measured by DGM,, and DBM.,,)? The
answer to this question depends on whether the plant is minimum-
phase or nonminimum-phase.* Essentially, in the minimum-phase case,
the V-transform can be pushed down by use of an appropriate high-
gain controller; in the nonminimum-phase case, there exists a lower
bound on the V-transform.

5.1 Preliminaries

The methods used to prove the theorems in this section are based on the
minimum-variance controller discussion given in [1]. The following
results and notation, also adapted from [1], are used throughout. The
first lemma gives a useful factorization of transfer functions, the second
lemma gives a parameterization of all internally stabilizing controllers
in terms of the “Youla parameter” Q, and the third lemma gives a
decomposition of transfer functions which have no poles on the
imaginary axis:

LEMMA 5.1 Let H be a rational transfer function. Then H can be
Jactored as H(s) = Hap(s)Hmp(s), where H,, € RHo, is an all-pass
transfer function and H,,, is a transfer function with no zeros in the
open right-half plane and with poles coincident with the poles of H. The
factorization is unique up to sign.

LEMMA 5.2 Given Py and P; in Fig. 2, define P = P, P3. Then there exist
transfer functions N, M, X, Y € RH, such that

P=N/M and NX+MY=1 (24)

The closed right-half-plane zeros of P are necessarily the closed right-
half-plane zeros of N, and the closed right-half-plane poles of P are
necessarily the closed right-half-plane zeros of M. Moreover, the set of all
controllers for which the system is internally stable is

{X+MQ.

Y_NQ.QeRHm} (25)

4 A rational transfer function is said to be nonminimum-phase if one or more of its
(finite) zeros is in the open right-half plane; otherwise, it is minimum-phase. In contrast to
definitions used in other papers, the concept of minimum-phasedness used here does not
depend on the transfer function poles.
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LEMMA 5.3 Recall that RH, denotes the set of strictly proper stable
rational transfer functions. Let RHy denote the set of strictly proper
rational transfer functions whose poles are all in the open right-half
plane. Then the set of all strictly proper rational transfer functions which
have no poles on the imaginary axis is RH,+ RHy, and every
H € RH, + RHy can be decomposed as

H= Hst + Hun, (26)

where Hy € RH, and Hy, € RH%. Moreover, for every Hy € RH, and
every Hy € RM., || Hi + Haly = || Hi|3 + | Hall3-

Remark 5.1 Algorithms to compute N, M, X, and Y in Lemma 5.2 are
given in [1]. The decomposition in (26) can be performed via partial
fraction expansion methods.

5.2 Minimum-Phase Case

The following theorem summarizes the results in the minimum-phase
case. The first two assumptions are introduced for technical reasons;
their removal substantially complicates the formulae without adding
any significant insight.

THEOREM 5.1 Assume Py, P,, and P5 in Fig. 2 are given and that they
satisfy the following:

e none of Py, Py, and P have zeros on the imaginary axis,
e Py has no poles on the imaginary axis, and
e Py and P3 have no zeros in the open right-half plane.

Let N, M, X, and Y be as in Lemma 5.2. Then the controller cor-
responding to the Youla parameter

s 1
0(s) = %m, (27)

where p > 0 is large enough so that Q is proper and T >0 is a tunable
parameter, satisfies the following properties:

o Arbitrarily good nominal disturbance rejection is achievable:

Vwi € Ry, Ve >0, 37 > 0 suchthat V1 € (0,7), V(G)(wg) <e. (28)



448 D.E. DAVISON et al.

o Let Q be an arbitrary bounded set in R .. Then the V-transform can be
“pushed down” arbitrarily close to zero on )

Ve > 0, 37 > 0 such that V7 € (0,7),Vwq € 2, V(G)(wq) < €.

e Let DGM,,;, and DBM i, be arbitrary positive ( finite) scalars. Then
these robustness margins are achievable, that is,
Ywj >0, Vy >0, 37 > 0 such that V7 € (0,7),
DGM,, > DGMy,;, and DBM,, > DBMp;j.

Remark 5.2 Observe that the controller corresponding to Q in (27) is
a high-gain controller: By (25),

_ X(s) + M(s)(Y(s)/N(s))(l/(Ts + 1))
Y(s) — N(s)(Y(s)/N(s)) (1/(rs + 1))

C(s)

(s + 1)’ N(s)X(s) + M(s) Y(s) ‘
s[ PP (i - 1)!)(Ts)"—1]N(s) Y(s)

_!
_’7'

In the case where P;P; is both minimum-phase and stable, it is pos-
sible to use N=P3P;, M=1, X=0, and Y=1. Then the controller
simplifies further to

1
[(TS+ l)p — 1]P3P1 ’

so the closed-loop poles are the (canceled) poles and zeros of P3P,
together with p poles at s=—1/7.

Remark 5.3 The high-gain controller in Theorem 5.1 theoretically
exhibits excellent disturbance rejection properties, but in practice there
would be problems associated with the resulting high bandwidth
system (e.g., signals may saturate, there may be stability problems
due to neglected high-frequency dynamics and time delays, sensor noise
may be amplified). Moreover, the resulting pole-zero cancelations (see
the previous remark) are often undesirable in practice.

Remark 5.4 A minimum-variance controller can also be considered to
be a maximum-DGM,, controller.
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5.3 NonMinimum-Phase Case
The following result is the nonminimum-phase version of Theorem 5.1:

THEOREM 5.2 Assume Py, P,, and P3 in Fig. 2 are given and that they
satisfy the following:

e none of Py, P,, and P3 have zeros on the imaginary axis,
e P has no poles on the imaginary axis, and
e Py or P; has zeros in the open right-half plane.

Then there are limitations on nominal disturbance rejection and on the
achievable robustness margins:

o Fix w} >0, define N, M, X, and Y as in Lemma 5.2, and define
F= w(’;/(s + wfi), V= P3P2FMY, U= P3P2FMN, and o=
(U ;pl V)un ||§ Then o> 0 and, for all internally stabilizing controllers,

V(G)(w)) > o (29)
Moreover, the controller corresponding to the Youla parameter

1

—r-lipr-1
Q(S) = Ump(Uap V)stm’ (30)
where p > 0 is large enough so that Q is proper and >0 is a

tunable parameter, satisfies the following property:
Ve >0, 37 > 0 such that V1 € (0,7), |V(G)(w)) —a|l<e (31)

e There exists a function Byn: Ry — Ry :wq— Bnin(wy) that satisfies
the following:
— Buin s a strictly increasing analytic function with By,;(0)=0.
— For all internally stabilizing controllers and for all wq€R,,
V(G)(wd) > Bmin(wd)'
— Forallw} > 0, the V-transform of the system with Youla parameter
(30) is tangent to Bpin at wg = w} in the limit T— 0.
e Forall wy > 0 and all v> 0, there exists a finite scalar DGM pay such
that, for all internally stabilizing controllers, DGM.,, < DGM yax.
o For all w} > 0, there exists ay > 0 and a finite scalar DBM yax such
that, for all internally stabilizing controllers and for all v € (0,%),
DBM.,, < DBM;ax.
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Remark 5.5 The notion that arbitrarily good performance can be
attained for minimum-phase systems but not for nonminimum-phase
systems appears in other lines of research. Examples include work on
the perfect robust servomechanism problem [88,89] and the aiming
control problem [13,17]. Other examples are cited in [89].

Function B, in the above theorem plays the role of a performance
limitation curve. It can be characterized explicitly in several cases. For
example, in the case where P;P; has a single nonminimum-phase zero,
the following result holds; it can be assumed without loss of generality
that P, has no zeros in the open right-half-plane, and, as usual, the
imaginary axis assumptions can be weakened.

THEOREM 5.3  Assume that Py, P,, and P5 in Fig. 2 are given and they
satisfy the following:

e P, and P3 have no zeros on the imaginary axis,

e P, has no zeros in the closed right-half-plane,

e P has no poles on the imaginary axis, and

e PE P P; has exactly one nonminimum-phase zero at s =z for z> 0.

Also suppose that Py has ny > 0 unstable poles at s=p, ; fori=1,...,m
and P3 has ny > 0 unstable poles at s=p; ; fori=1,...,n3. Let N, M, X,
and Y be as in Lemma 5.2. Then the performance limitation curve has the
form

Buin(wa) = /B(Z)Fz(s)hzz’
where (3(z) is a constant that is independent of wy and is computed as

Sfollows:

o [f the nonminimum-phase zero is in P3, define the following stable
minimum-phase transfer functions:

P3(S) — [H;Zl(s _P3,i)]

- M(s)
§—z Ps(s) and M(s) = [H7i1(3 — p3)[IIL, (s — p1,)] ‘

Then

1y

B(z) = 823 [H(z +Pp1i) 2} PL(2)P2(z) M (2) Y?(2).

i=1
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o If the nonminimum-phase zero is in Py, define the following stable
minimum-phase transfer functions:

n3

P3(s) = [H(s —pgv,-)} P;3(s) and M(s)=

i=1

M(s)
T2, (s = p3 )], (s — p1,)]°

Then

ny

Blz) =2z [H(z +P1,i)2j| Pi(2)P} ()M’ (2) Y (2)-

i=1
Remark 5.6 Analogous results to Theorem 5.3 can be derived for the
multiple nonminimum-phase zero case, but the results get progressively
more complicated as the number of nonminimum-phase zeros increases.
Also, a study was performed on the effect of moving the nonminimum-
phase zero z closer to the origin. The details are omitted, but essentially
three distinct behaviors exist: The B, curve tends to zero uniformly
in z; the By, curve tends to zero pointwise, but not uniformly, in z; or the
B.in curve becomes unbounded as z— 0. Which behavior occurs
depends on the number of integrators in P; and differentiators in P,,
the way in which z enters the plant (e.g., as (s — z)/(s + z) or just (s — z)),
and whether z is a part of P, or Ps.

6 EXAMPLES

The following two academic examples illustrate application of the tools
and theory developed in this paper.

Example 6.1 Reconsider Example 1.1 in which the plant is

10

Pis)=1, Pa(s) =1, Psls) =7

and the two controllers under consideration are

_0.5(s+2)
- A

Ci(s) and Cy(s) = 0.86.

Recall that the nominal disturbance parameters are w); = 1rad/s and
K* =1, and that the performance threshold is v=2.5.
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FIGURE 11 V-transforms of G, and G, for the simple autopilot example.

To evaluate the performance of the controllers with respect to
disturbance rejection in the face of uncertainty in wq, consider the plots
of V(G,) and V(G,) in Fig. 11. Since the controller gains were selected
so that the nominal output variance corresponding to C, is the same as
that corresponding to Cy, the V-transforms are equal at wq = wj. For
wg < wj, controller Cj, the integral controller, is the better controller;
for wq > w}, controller C,, the nonintegral controller, is better. We can
quantify the superiority of the nonintegral controller (with respect to
performance in the face of increasing wq) by computing the robustness
measures: From the figure, the margins for C; are

DBM,, = %g =3.72 and DGM, = % =2.26

and the margins for C, are

DBM, = §? =8.86 and DGM, = 02—459 = 2.26.

Hence, the nonintegral controller has a significantly larger disturbance
bandwidth margin than the integral controller.

Example 6.2 Consider the following nonminimum-phase plant:
s—a

P](s) = 1, Pz(s) = 1, P3(S) = m,
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where a > 0 is the location of the nonminimum-phase zero. We consider
below the development of the minimum variance controller and per-
formance limitation curve.

The most obvious choice for N, M, X, and Y is

s—a

N(s) :a(s—l-—l)z’

M(s)=1, X(s)=0, Y(s)=1.
To compute the minimum-variance controller, (30) needs to be eval-
uated. First compute

s—a wji
a(s+1)*s +wj

V = PP, FMY =

and

(s—a)?® wi

U= P;P,FMN = 7 -
a(s+1)"stwg

Factor U as U= Uy,pUp,p, Where

2 2
= M and Ump = (s + ‘1) wd ’
(s+a) a’(s+ 1) (s +w})

ap

and decompose U'V into (Ug'V),, + (Ug' V), as follows:

(s—l—a)zwg I N I,
as—a)s+ D)2(s+wy) S—a G+ D(twy)

Ua‘p‘V:

where

Py=— 8 andT, = L
@+ D¥a+wy) aa+1)(a+w)

(Bis* + Bas + Bs),
(32)
where the constants 3;, 35, and (3; are
B = —4a?,
By = —3a’ = 3a*(w} +2) + awh + 1) +wi,

By = —a* — a3(wh +2) — a*(w}) + 1) + a(3w}).
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Then the Youla parameter corresponding to the (suboptimal) mini-
mum-variance controller is

1 __als+ 1) (8152 + Bas + B3)
(rs+1Y  (s+a)*(a+ D) (a+wy)(rs+ 1)

0(5) = Upp (U ¥yt

To make Q and the corresponding controller proper, select p=2. By
Theorem 5.2, the minimum variance, as a function of a and wy}, is

2
I

s—a

_IP_ Sawy)?

-1 2 _
[(Usp Vunllz = T2 (a+Da+wy)?

(33)

2

(Alternatively, Theorem 5.3 can be used to derive this expression.)
For a=1 and w} = 1rad/s, Figs. 12 and 13 show the Bode mag-
nitude plot of the closed-loop transfer function G and the V-transform
of G, respectively, for several values of 7. The performance limitation
curve in (33) (for a=1 and using wy in place of w}) is included in the
V-transform plot. As expected, in the limit 7 — 0, the V-transform is

o

10'
Frequency (rad/s)

10™ 10°

FIGURE 12 Bode magnitude plot of G for several values of 7 in Example 6.2. Both a
and wj; are set to one.
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10

102 107 10° 10' 10 10° 10
oy (rad/s)

FIGURE 13 V-transform of G for several values of 7 in Example 6.2. The dashed line
is the performance limitation curve in (33). Both a and W} are set to one.

tangent to the performance limitation curve at wy = w}. Also observe
that, as 7— 0, the system bandwidth becomes infinite and |G(jw)|
tends (pointwise) to a curve that is nonzero everywhere. In fact, a
calculation indicates that, as 7 — 0, G approaches the transfer function

(s—a)(s+a)’(a+ 1) (a+w)) — (s — a)(Bis* + Bas + B3)]
a(s +1)*(s+a)*(a+1)*(a +w?)

b

which is biproper (and, moreover, if a = w}, all-pass). Consequently,
V(G) tends to an unbounded function as 7 — 0 (recall the last point of
Theorem 4.3).

7 CONCLUSIONS AND FUTURE WORK

This paper introduced the V-transform as a new mathematical tool for
the robustness analysis of feedback control systems with respect to
uncertainty in the disturbance gain and bandwidth. Mathematical
properties of V-transforms were investigated, and the notions of
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disturbance gain margin and disturbance bandwidth margin were
defined. It was argued by example that the use of V-transforms and
these new margins gives insight into system behavior that is not apparent
when restricted to the classical analysis tools (Bode plots, gain and phase
margins, etc.). Finally, it was shown that there exists a robustness
performance limitation in the case where the plant is nonminimum-
phase, but no such limitation if the plant is minimum-phase.

The results from this paper have been applied to an aircraft autopilot
system to analyze system performance in the face of uncertainty in
turbulence scale [90]. Other potential applications being considered
include the control of ships (where waves, wind, and current act as
disturbances), automobiles (where wind, road roughness, and engine
vibrations act as disturbances), actively controlled buildings (where
earthquakes act as disturbances), and manufacturing systems (where
machine-wear and variations in environmental conditions act as
disturbances). Theoretical work being developed includes determina-
tion of performance limitations under practical system constraints
(e.g., constraints on the closed-loop system bandwidth and stability
margins).

APPENDIX

Proof of Theorem 4.1

Realization (14) is derived first. On noting that

F6) = /(5 + ) = | T35 | 9,

it follows that

6(0)-#0) = | 5 |- [T |

4 B 0
=0 —wi | wal(s) (34)
C D 0
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Let L denote the observability Grammian of this realization of GF.
Partition L as

_[Li L]
L_[Lz Lg]’

where L; is a scalar. Then, by the definition of V(G)(wq) and by
Lemma 4.1 applied to GF € RH,,

VO e) =IGFIE = [0 wlc] )] =wita  (9)

We now solve for L for substitution in (35). The Lyapunov equation
for the observability Grammian of

(e 2[5 2)
is
T o ot
+[c D][c D]=0.

This matrix equation is equivalent to the following three equations:

AL+ L4+ C'C =0, (36)
BTL; — wyly + LyA + DC =0, (37)
BTLT — w4y + LB — wyLs + D* = 0. (38)

Equation (36) indicates that L; is the observability Grammian of
(C, A); denote this Grammian by L, By the stability of G, wq is not an
eigenvalue of 4; hence, (4 —wyl)~! exists, and solving for L, in (37)
yields

Ly = (—B"Ly — DC)(A — wal) ™" (39)
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Next, solve for scalar L3 in (38) and substitute for L, using (39) to
obtain

1, 1
L3—ED —w—d

(B"Lo + DC)(A — wal)™'B.
Use this to substitute for L; in (35):
V(G)(wa) = fwaD? — wa(B L, + DC)(A — wal) ™' B.

Use the fact that A4 is invertible to rewrite this as
1 2 T 1 -1 B -1
V(G)(wq) = EwdD —(B'L,+ DC) w—I— A A7'B. (40)
d

Now recognize (40) as the parallel connection of

1 5, [o | D%*2](1
0= [ (&)

and
1 -1
—(BTL0+DC)(—I—A") A7'B
wd
3 47! | 4°'B (1)
| -B"Le+Dc) | o0 |\ws)
Thus,
o | pr2Y/1YN 47! | 47'B1/1
VG)wsd) = |77 ](—@)+_—(BTLO+DC)| o | \&
I A™! 0| 47'B]
= 0 0 | D22 <_) (41)
| —(BTL,+DC) 1 0 | \“
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which is formula (14). To obtain (15), manipulate (40) as follows:

-1
V(G)(wa) = -;-wdDz + (B"Lo + DC) (1— %dA) B
- %wdDZ +(B"Lo + DC)B
1 1\
+ (B"L, + DC)~—A(I—— —-A) B
wy wq

= %wdDz + (BTLo + DC)B+ (B"L, + DC)A(wyl — A)'B

A | B
(B™L,+DC)4 | (B'L,+ DC)B

(wd),

= —;—wdDz + [

where the second equality follows from the identity (I— M) '=
I+MI—-M).

Proof of Corollary 4.1
When D =0, (14) simplifies as follows:

A—l

N ~ 0 -1
[ff B} (L) ~| o o] o (_1,)
C 1O\ \Tprr 1| o |\

= [-BTL, 1] [(1/“’")3“ 4™ (1/(3%)}‘1 [A;IB]

A" | 47'B (L)
—BTL, | 0 |\wg)

When D =0, realization (15) immediately simplifies.

-1
= —BTL(,(iI— A—‘> A7 'B=
wd

Proof of Theorem 4.2

To prove the analyticity of V(G), note from Theorem 4.1 that V(G) is
the ratio of polynomials in wy, where the denominator term is nonzero



460 D.E. DAVISON et al.

for all wy € R.; all such rational functions are analytic. To derive the
given derivatives, first use Theorem 4.1 to obtain

A | B 1 - P |
V(G)(wa) = [Eﬁl‘ﬁ] (wa) +§wdD2 =D+ Clwgl— A4) 1B+§wq|D2.

The desired derivatives follow by simple matrix calculus (see [91], for
example).
Proof of Theorem 4.3

The property V(G)(0) =0 follows from the definition of V(G):

2
wy

M(G)(0) = fim, - [ 1601

wd

dw
w? + w?

oQ
T - N2
N J:I-?o 7 Jo 16 (jwa) w2 +1

do.

This limit is bounded below by zero since the integrand is nonnegative.
It is also bounded above by zero since G€RH,., implies that
|G|l oo < 00, from which it follows that

1

owd [T 2
lim — |G (jwaw)| 5T

wg—0 T 0 (:12+1

dw = 0.

wq 10
do < lim 24)|G)|2 /
wg—0 T 0

Hence, V(G)(0) = 0. (An alternative proof'is to substitute wqg = 01in (15).)
To show the next two points in the theorem, use the differentiability
of V(G)(wq) proven in Theorem 4.2 as follows: For all wg € R 4,

d _l d o0 . 2 wg
o VO = g [T 1067 %

._1 o0 . 2 d wé"
1 [C1et) a(——w2+w§ dw

) 2
- l/ |G(jw)|2_2‘*’_“’d_ dw

7 Jo (W2 +wl)
P N S

[ Y )
L ear im e @)

To justify the interchange of differentiation and integration operations
above, invoke Theorem 17.3¢ in [92]. (Essentially, the interchange is
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valid because ||G||o, < co and because

00 &-12

converges uniformly with respect to wq in every closed interval in R ;
In fact, (43) is independent of wyq and equals n/4. The notion of
uniform convergence of integrals is defined in [92].) Taking the limit as
wq— 0 in (42) yields

4 y6)0) = lim 2 / " 6 uwad) P —2— dz
JE— = — wWdw w
dwyqy wg—0 T Jo Ja (u72+1)2
2 o0 -2 2
_2/6(0) [e 452 I9OF
T Jo (@2+1) 2

which proves the second point in the theorem. (The justification for
taking the limit under the integral sign is found in Theorem 17.3c in
[92].) The third point in the theorem also follows from (42) since, for
nonzero G and all wg€R ., the integrand is positive almost every-
where. Finally, to derive the limiting behavior of V(G)(wq) as wq — oo,
use realization (15) from Theorem 4.1 to obtain V(G)(wq) — D+
wgD?/2 = B'L,B + DCB + wyD?/2.

Proof of Theorem 4.4

The result follows immediately from the following facts:

e V(G)(wq) is a strictly increasing continuous function of wy (see
Theorems 4.2 and 4.3),

e V(G)(0)=0 (see Theorem 4.3),

o If GERH, then sup,,cr, V(G)(wa) = |Gll3; otherwise, G is un-
bounded (see Theorem 4.3 and Lemma 4.1).

Proof of Theorem 4.5

From the definition of V(G), for all waeR,,

1 [® . w?
V(aG)(wo) = [ la6(i)* 3 aw
d

0 2
= lof*1 [ 166 5 dw = a2V (G) ).

w? 4+ wg
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Proof of Theorem 4.6

Introduce the following notation for the proof: For each wseR,,
define || - ||,,: RHe — R by ||M]||,, = ||MF||,. Note that VM € RH,
and Ywg € Ry, V(M)(wa) = |MF|3 =||M|2,. It is simple to verify
that, for each wq € R+, || - ||, is @ norm.

Recall that every norm is uniformly continuous: For any space V
with norm || - ||, the triangle inequality yields Vx, X € V, ||| x| — ||X]|| <
|[x — %||, which implies that

Vet >0, Vx,xeV, (Ix=xll<€e) = (x| = |Ixl] <€). (44)

Applying (44) to the norm just defined yields

Ywg € Ry, Ve >0, VG, G € RHyo,
(G -Gl <€) = (G, = G| < €). (45)

The first continuity statement will now be proved. Since RH,C
RHo, (45) implies

Vwg € R+, Ve >0, VG, G € RH,,
(16 = Gll,, <€) = (Gl — Gl <€),

or, equivalently,

Ve* >0, VG,G € RHa, Ywq € Ry,
(IG -G, <€) = (Gl = Gl < €). (46)

Next, observe that, for all M € RH; and all wg € R,

2 1 [ V) w(%
12, = 1M1 = [ MG 57 d

1

<2 [T (ol = B,
0

that is,

VM € RHy, Vwq € Ry, M|, < IM],. (47)
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Combining (46) and (47) results in

Ve' >0, ¥G, G € RH,, Ywg € Ry,
(16 -Gl, <€) = (Glly, = G| <€),

or, equivalently,

Ve* > 0, VG, G € RH,
(I6 =Gl <€) = (Ywg € Ry, Gll,, = 1G], | <€).  (48)

Now fix GERH,, fix €>0, and define both a=2||G|,+2 and
6=min(l, ¢/a). Use €* =€/ in (48) to obtain

— _ € —~ €
VG e RHy, (IG-Glh<Z) = (Vws € Ry, (G, - 161, <),
from which it follows that

_ — = €
VG € Ry, (IG =Gl <6) = (Y € Ro, G, = 1G], < )
(49)

The first continuity result follows: If G € RH, satisfies ||G — G|, < 6,
then, for all wgeR,,

[V(G)(wa) — ¥(G)(wa)l = [IGI12, - IGII2|
= IGll,, = Gl | - (IGll,,, + IGl,,)

e .

€ —
= £(IGl., +16+G - 6ll,)

€ —
< = (G, + 16l + 16 = Gll,,)

€ —
- <(lGll, + 16 - GlL,)

€ _
<=6l +IG-Gl,)

aQ

€
< QlGl +6) < ~2|Gll, + 1) <e

Q
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(The first inequality above follows from (49) and the third follows
from (47).)

The second continuity statement is proved in a similar fashion. The
key observation is that, for all M € RH,, and all wg € R,

l o0
2 _ 1 N
12, =5 [ 1o

2
Wy

dw
w? 4+ w?

||M||002 / wf ||M||c,o2 Wy wd 2
< d (—) =—||M|Z,

that is,
VM € RHeo, Vg € Ry, | M]|,, < %nan. (50)

Combining (45) and (50) results in

Vwy € Ry, Ve >0, VG, G € RHw,

_ [2 . .
(HG—GIIOO< w—de) = ([IGlluy = Gy, | < €). (51)

Now fix GERHoo, €>0, and wyq € R,. Define a=wy(2||G|lco + 2)/2
and 6§ =min(l, ¢/a). Use ¢* = \/wge/v2a in (51) to obtain

VG € RHoo,
wq €

_ € _
(166l <£) = (W € Rav 16, = 1611 < 5 5)-

from which it follows that

VG € RHoo,

. ~ wWwq €
(16 = Gl <8) = (Yo € Rev 161, ~ 161l < 15 £)- (52
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The second continuity result follows: If G € RH, satisfies
|G — G||,<$6, then

[V(G)(wa) — V(G)(wa)| = IG]|2, — IGIIZ,]
=16, =lGll.,! - (IGl., +Gll.,)

wq €
<15 = (IGl, +16ll,)

_ \/“7‘1 € (161, + 16+ G - Gll,)

wq € _
<y/5 5 UGl + 1161, + 116 = Gll,,)

=\F @Gl + 16 - Gl
\/“7\/‘7“ Gl + G - Gl

< =226l +6) < =5 206l + 1) < e

(The first inequality follows from (52) and the third follows from (50).)
Proof of Theorem 4.7

The following result is used in the proof:

LEMMA Let f: R, — R be a convex nonnegative function. Then [? is
convex.

Proof Let x;,x,€ R, and A €0, 1] be arbitrary. Since fis convex,
FOx1+ (1= X)x2) < Af () + (1= X) f(x2). (53)

Because fis nonnegative and x? is an increasing function of x for x > 0,
it follows that

FAOx+ (1= Nx2) < () + (1= N f(x2)] % (54)

Since x? is convex in x, it is also true that, for all Y1LV2€R,

Dyt + (1= Mp)> < 2+ (1= N)y3 (55)
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Evaluating (55) at y; =f(x;) and y, =f(x,) yields

Oan) + (=X fx)]> S Af2x) + (1= N f2(x).  (56)

Combining (54) and (56) yields
F2HOx1 4+ (1= 2)x2) < Af2(x1) + (1= A) f2(x2), (57)

which proves the convexity of f2.

We now proceed with the proof of Theorem 4.7. Fix wgq € R .. Define
the || -||,, norm as in the proof of Theorem 4.6. By the triangle
inequality, [ -|,, (and, in fact, every norm) is a convex operator:
VG, G, € RH o, YAEO, 1],

IAG1 + (1 = NG|, < [IAG]ly, + [I(1 = NGy,
= AGilly, + (1 = V|G|,

Since V(G)(wq) = ||G||f,d, it follows that for each wg € R4, /V(G)(wq)
is convex in G. By the Lemma, it follows that for each wg€eR,,
V(G)(wq) is convex in G.

Proof of Theorem 5.1
The following technical result, proved in [93], is needed:

LEMMA LetJ(s) = 1/(ts + 1)? where p is a nonnegative integer and where
7> 0 is a parameter. Then, for all R € RH,, lim, _, o||R(1 — J)||2=0.

To prove the theorem, fix w} € R.. The idea of the proof of the first
point in the theorem is to construct a “minimum-variance” controller,
that is, a linear time-invariant (LTI) rational controller that minimizes
the variance of y for the particular value wg = w}, then to approximate
that controller by a proper LTI rational controller. Throughout the
proof, the standard acronyms ORHP (open right-half-plane), CRHP
(closed right-half-plane), OLHP (open left-half-plane), and CLHP
(closed left-half-plane) are used.

The minimum-variance controller development has been divided
into three steps, closely following the methods used in [1]. The first step
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is to use Lemma 5.2 to parameterize all internally stabilizing controllers
in terms of the Youla parameter Q: There exist N, M, X, Y€ RH,
such that

P3Py =N/M and NX+MY=1, (58)
and every internally stabilizing controller C can be written as

_X+MQ

€= Y — NQ

(59)
for some Q€ RH,. Furthermore, every Q € RH,, generates an
interhally stabilizing controller via (59).

The second step is to write V(G)(w}) in terms of Q. Let F denote the
filter F when wg = wj: F(s) = w}/(s + w}). Then,

GF — P3P, F _ P3P, F
14+ P3PiC 14+ (N/M)((X+ MQ)/(Y — NQ))
= P3P,FMY — P3P,FMNQ. (60)
Define
V= P3P2FMY and U= P3P2FMN, (61)

and use Lemma 5.1 to factor U as U= UypUpp. Then GF = V—
UapUmpQ, and

V(G)(wy) = IGF Iy = IV — Uy UnpQll3
= |Uap(Up V = Unp Q)3 = 1U V = UmpQll3, ~ (62)
where the last equality follows because U, is an all-pass filter. This

completes the second step. To proceed further, the following six results
are needed:

Claim A U and V are stable.

Proof of Claim A Since P,, F, M, and N are stable, any unstable poles
in U = P3P, FMN must be unstable poles of P;. However, all CRHP
poles of P; are CRHP zeros of M (by (58), Lemma 5.2, and Assumption
6), so it follows that the unstable poles of P; must be canceled in
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forming P3P,FMN. Therefore, U is stable. Using similar reasoning,
V = P3P,FMY can be shown to be stable.

Claim B The following set equality holds:

{CRHP zeros of U} = {CRHP zeros of P;} U {CRHP zeros of P,}
U {CRHP zeros of P3} U {CRHP zero of P;}
U {CRHP poles of P},

where set membership includes multiplicities.

Proof of Claim B By Lemma 5.2, the CRHP zeros of N are the CRHP
zeros of P3P, and the CRHP zeros of M are the CRHP poles of P;P;.
Using these facts, the fact that F has no zeros, and Assumption 6, it
follows that the CRHP zeros of U = P3P,FMN are the members of
the set

{CRHP zeros of P3} U{CRHP zeros of P,} U{CRHP zeros of P3}
U {CRHP zeros of P, } U{CRHP poles of P3} U{CRHP poles of P;}

that are not canceled by poles in forming P P, FMN. Since P,, F, M, and
N are stable, and since, by Claim A, P3P, FMN is stable, the only CRHP
pole-zero cancelations are between the CRHP poles of P; and the
corresponding zeros of M. Thus, the CRHP zeros of U are

{CRHP zeros of P3} U {CRHP zeros of P,} U{CRHP zeros of P3}
U {CRHP zeros of P, } U {CRHP poles of P;}.

Claim C  Upp,Q € RH,.

Proof of Claim C It is necessary to show that Upy,Q is stable and
strictly proper. Stability follows from the stability of Uy, (by Claim A
and Lemma 5.1) and from the stability of Q. Strict properness follows
from the properness of Q, P3;, P,, M, and N, and from the strict
properness of F.

Claim D U, has no zeros in the CRHP.

Proof of Claim D By definition, Uy, has no zeros in the ORHP, so it
only remains to show that Uy, has no zeros on the imaginary axis.
Since U,, cannot have poles or zeros on the imaginary axis, the set of
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imaginary axis zeros of Up,, must equal the set of imaginary axis zeros
of U= U,pUpp. By Claim B, this set equals the set

{imaginary axis zeros of P} U {imaginary axis zeros of P,}
U {imaginary axis zeros of P3} U {imaginary axis zeros of P}

U {imaginary axis poles of P;},

which, by assumption, is empty.
Claim E U_'V € RH; + RH;.

Proof of Claim E 1t is necessary to show that Ua‘p1 V is strictly proper
and that it has no poles on the imaginary axis. Ua‘p1 V is strictly proper
since U,y is biproper and V' = P3P, FMY is strictly proper. (V is strictly
proper since P3, P, M, and Y are proper and Fis strictly proper.) U 'V
has no poles on the imaginary axis since V is stable (by Claim A) and
since Uy, has no zeros on the imaginary axis (because U,j, is an all-pass
filter).

Claim F  The following set equality holds:

{CRHP poles of Ua‘p1 v}
= {ORHP zeros of P} U{ORHP zeros of P3},

where set membership includes multiplicities.

Proof of Claim F By Claim E, Ua‘p1 V has no poles on the imaginary
axis, so we need only consider ORHP poles of U;,l V. Since V is stable,
any ORHP poles of U_'V must also be ORHP poles of U, ie.,
ORHP zeros of U,p,. Such zeros coincide with the ORHP zeros of U.
Therefore, the ORHP poles of Ua“p‘ V are the ORHP zeros of
U = P3P,FMN that are not also ORHP zeros of V = P;P,FMY.
These are exactly the ORHP zeros of N that are not also ORHP zeros
of Y. But N and Y have no common ORHP zeros: If they did, say at
s=sp, then, by the stability of X and M, N(so)X(so) + M(s¢) Y(so) =0,
which contradicts (58). Therefore, the ORHP poles of Uz;;‘ V are the
ORHP zeros of N = P;P;. The proof is complete on recognition that
the ORHP zeros of P3P, are {ORHP zeros of P1}U{ORHP zeros of
P3}, by Assumption 6.
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The third step in the minimum-variance control development is to
find the stable transfer function Q that minimizes (62). Use Claim E
and Lemma 5.3 to write U,' V = (UL'V) + (U V),,. Hence, by (62),

V(G (5) = (U Vgt + (Uip V)un — UnmpQll5- (63)

By Claim C, the second part of Lemma 5.3 can be applied to (63) to
yield

V(G)(wh) = (U V)l + (U V) — UmpQll3. (64)

By Claim D, Unj; is stable, so if Q is chosen to be the stable (but
possibly improper) transfer function

A _ —
im = Upp (Ui Vs (65)

then (64) is minimized, and the minimum variance is

(U ¥ )unll3- (66)

If Qi happens to be proper, then the minimum-variance controller
development is complete: use Q = Qi,,, in (59) to compute the controller.
On the other hand, if Q;, is improper, then it is necessary to find a
proper Q that is “close” to the optimal Q;n,; an appropriate choice for
Qis
1

O(s) = Qim(s) I (67)
where p>0 is an integer sufficiently large so that Q is proper, and
where 7> 0 is a small real number. This is an “appropriate” choice for
Q since the variance (64) converges to (66) as 7 — 0. (To prove this, let
J(s)=1/(rs+ 1)’ and R = (Ua"p1 V). Then the difference between (64)
and (66) is |R(1 — J )||§, which, by the Lemma at the beginning of the
proof, tends to zero as 7 —0.)

We now invoke the minimum-phase assumption (i.e., the third
assumption in the theorem statement). Since the zeros of P; and P; are
in the OLHP, it follows from Claim F that Ua‘p1 V is stable. Hence,
(Uap' V)un =0 and (U 'V), = U.'V. Thus, in the minimum-phase
case, the minimum variance (66) is zero, and the optimal Qjn,
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from (65), is

VPP, FMY Y
o —1 -1 _ —lyr—1 ___L_"‘"——
Oim = Ump(Uap Vs = Unp Uap V' = U~ PyP,FMN N’

Hence, the Youla parameter for the minimum-phase case is

_Ye) 1

R Ol

(68)
where p > 0 is a sufficiently large integer and where 7>0 is a
parameter. Given e >0, the closed-loop variance can be made less
than e by choosing sufficiently small 7. This proves the first point in the
theorem.

To prove the second point in the theorem, note that, since €2 is
bounded, there exists a wjj € R4 such that wg € @ = wy < wj. Using
this value of wj in (28) yields

Ve > 0, 37 > 0 such that V7 € (0,7), V(G)(w)) <e.

This, together with the fact that V-transforms are increasing functions
(Theorem 4.3), proves the second point.

To prove the third point, fix wj >0 and y>0. By definition of
DGM.,,, for sufficiently small V(G)(w}), DGM.,, can be made arbitrarily
large. Hence, by (28), there exists a 7 (call it 71) such that V7 € (0,7),
DGM,, > DGM,;,,. Similarly, there exists a 7, such that V7 € (0,75),
DBM,, > DBM,;n. Choose 7 = min{7, 7} to complete the proof.

Proof of Theorem 5.2

The proof proceeds exactly as the proof of Theorem 5.1 up to the end of
the paragraph that includes Eq. (67). The expression in (66) plays the
role of v in the theorem statement; it is nonzero if and only if Ua‘p1 V has
ORHP poles, which, by Claim F, occurs precisely when either P; or P;
has ORHP zeros. The Youla parameter in (30) is that in (67). Property
(31) follows by the discussion immediately following (67).

To prove the second point in the theorem, define By, : R — R, as
follows: Bp,in(0) =0, and, for all wq > 0, Bpin(wg) = a, where « is the «
from the first point in the theorem evaluated at w} = wq. It follows
immediately that B;, is a lower bound of the V-transform of any
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internally-stabilizing controller, achievable by the controller with
Youla parameter (30) in the limit 7 — 0. The fact that Bp,;,(wqg) is the
infimum of achievable variances at wq and the fact that V-transforms
are strictly increasing functions imply that By, is a strictly increasing
function. The fact that Bg;, is an analytic function follows because
Ugn'V, and, hence, [|(Ug' V), |3, is rational in w}.

The third part of the theorem follows immediately from the
definition of DGM,, and the selection of Bp,,: For fixed w} > 0 and

>0, set
Y
DGMmax = 4 [ 57—+
max Bmm (wzi)

To prove the final point, fix w} > 0. Then note that By, being non-
zero implies that there exists a4 > 0 and a scalar DBM,,,,, such that for
all internally stabilizing controllers DBM5; < DBMp,,y; in particular,
choose 4 to be any nonzero value in the range of function B,;,, and
then set DBMpax = wp/w}j, where @y > 0 satisfies Bmin(wp) = 7. The
desired result then follows because By, is an increasing function.

Proof of Theorem 5.3

The idea behind the proof is simply to compute o from Theorem 5.2.
First consider the case where the nonminimum-phase zero is in Ps.
Define, in addition to P3; and M,

1

N(s)zg% and Pl(s)=[H(s—p1,i)]P1(s).

i=1
From Theorem 5.2, we then have

]

U= (s—z)* [H(s —pl,,-)] P3P,F*MN,
i=1

11

V:(s—z)[H

i=1

(S —p17,-):| P3P2F*MY.

Therefore,

(s = 2)’[I7L (s — p1,)]
(s +2)[I7 (s + p1,0)]

ap
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and

2rm .
U—IV: (S+Z) [Hizl(s+p1,t)]P3P2F*MY:SAZ+B’

® (s—2)

where B is a stable transfer function and A4 is the residue

1y

A= 4z? [ H(z +p1,,')] P3(2)Py(2)F* (z2) M(2) Y(2).

i=1

Thus,

(Usp V)in =

s—z

Because there are no unstable pole-zero cancelations in P, P; (by
Assumption 6) and neither P nor P;3 has zeros on the imaginary axis
(by assumption in the theorem statement), it follows from Theorem 5.2
that the minimum achievable variance is

A
s—z

2_A2
, 2z

_ 8. [ﬁu +p1,,~>2] P2 P3()IF ()] M () Y(2),

o=

i=1

which is the desired result. The case where the nonminimum-phase zero
is in Py is similar.
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