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A discrete-time parasite-host systemwith bifurcation is investigated in detail in this paper.The existence and stability of nonnegative
fixed points are explored and the conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation are derived by
using the center manifold theorem and bifurcation theory. And we also prove the chaos in the sense of Marotto. The numerical
simulations not only illustrate the consistence with the theoretical analysis, but also exhibit other complex dynamical behaviors,
such as bifurcation diagrams, Maximum Lyapunov exponents, and phase portraits. More specifically, when the integral step size is
chosen as a bifurcation parameter, this paper presents the finding of period orbits, attracting invariant cycles and chaotic attractors
of the discrete-time parasite-host system. Specifically, we have stabilized the chaotic orbits at an unstable fixed point by using the
feedback control method.

1. Introduction

In the theory of ecology, population dynamics are generally
governed by continuous-time and discrete-time systems. In
recent years, more and more attention is being paid to
discrete-time population models [1–20]. We can get more
accurate numerical simulation results and richer dynamical
behaviors from discrete-time models. In addition, many
scholars are interested in how to discretize continuous pop-
ulation dynamical models and study their dynamical prop-
erties [21–24]. The recent years, a number of articles which
investigated the flip bifurcation, fold bifurcation, pitchfork
bifurcation and in the sense of Marotto’s chaos of the discrete
system were present in [25–29].

We investigate the discrete-time parasite-host system
in this paper. In some cases, parasites can reduce host
density and induce host population extinction. Ebert et al.
[30] formulated the following epidemiological microparasite
model: �̇� (𝑡) = 𝑎 (𝑥 + 𝜃𝑦) (1 − 𝑥 + 𝑦𝐾 ) − 𝑑𝑥 − 𝛽𝑥𝑦,

�̇� (𝑡) = 𝛽𝑥𝑦 − (𝑑 + 𝛼) 𝑦, (1)

to understand how six microparasites regulate Daphnia
populations and drive the populations to extinction, where𝑥(𝑡) and 𝑦(𝑡) denote uninfected (susceptible) and infected
(infected) hosts densities at time 𝑡, respectively; 𝑎 is the
maximum per capita birth rate of uninfected hosts; 𝜃(0 ⩽𝜃 ⩽ 1) is the relative fecundity of an infected host; 𝐾 is the
carrying capacity of for the host population; 𝑑 is the parasite-
independent host background mortality; 𝛽 is the constant
infection rate and 𝛼 is the parasite-induced excess death rate;
all parameters are positive.

In this model, the microparasite transmission is assumed
via a mass action process, the fecundity of uninfected host
is density-dependent, and the fecundity of infected host may
be reduced due to being infected compared with that of
uninfected host. Here, 0 ≤ 𝜃 ≤ 1means that the fecundity of
infected hosts is reduced, but they still have certain fecundity,𝜃 = 0 means that infected hosts completely lose fecundity;𝜃 = 1 means that the fecundity of infected hosts is not
affected by parasite infection. For model (1), when 𝑎 > 𝑑,
there is always equilibrium (0, 0) which is a saddle. This
implies that extinction of host is impossible when 𝑎 > 𝑑,
that is to say, when 𝑎 > 𝑑 host always persists. But, in
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this model, the simulation for the stochastic model indicates
that extinction of host likely occurs in certain parameter
regions.

Rescaling system (1) by the following as [21, 31],

𝑥 = 𝑥𝐾,
𝑦 = 𝑦𝐾,
𝑡 = 𝑎𝑡

(2)

and removing the bars, then system (1) becomes in the
following form:

�̇� (𝑡) = (𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦,
�̇� (𝑡) = 𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦, (3)

where 𝑠 = 𝛽𝐾/𝑎, 𝛿 = 𝑑/𝑎, and 𝛾 = 𝛼/𝑎 are positive constants.
Applying the forward Euler discrete scheme to system (3),
we obtain the following discrete-time parasite-host system as
follows:

𝐹 : (𝑥𝑦)
→ (𝑥 + ℎ [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦]𝑦 + ℎ [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) , (4)

where ℎ is the integral step size.The fixed points of system (4)
satisfy the following equations:

𝑥 + ℎ [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦] = 𝑥,
𝑦 + ℎ [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] = 𝑦, (5)

and then (𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦 = 0,
𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦 = 0. (6)

In our paper, we apply the forward Euler Scheme to
discrete the parasite-past model and mainly focus on the
existence and stability of nonnegative fixed points and flip
bifurcation, Neimark-Sacker bifurcation, and possible chaos
in the sense of Marotto’s definition [32] in the discrete-time
parasite-host system by using the center manifold theorem
[33] and the bifurcation theory [17–20, 33–36]. When the
integral step size ℎ is taken as a bifurcation parameter, the
detailed existence conditions of flip bifurcation andNeimark-
Sacker bifurcation are given in a very strict mathematical

way. Numerical simulations are shown, including maxi-
mum Lyapunov exponents, bifurcation diagrams, and phase
portraits, to verify theoretical analyses, and display some
new and interesting nonlinear dynamical behaviors of the
parasite-host system. In particular, one of our investigations
demonstrates that the integral step size makes difference
with respect to nonlinear dynamical behaviors of the discrete
parasite-host system when the integral step size is taken into
account as a bifurcation parameter.

The organization of this paper is as follows. In Section 2,
the theorem on the existence and stability of fixed points
for system (4) is proved. In Section 3, we give the sufficient
conditions of existence for flip bifurcation and Neimark-
Sacker bifurcation by using the center manifold theorem and
bifurcation theory. In Section 4, we first rigorously prove
the existence of chaos in the sense of Marotto’s definition.
Numerical simulations are presented not only to verify
the theoretical analysis but also to exhibit other complex
dynamics in Section 5. In Section 6, chaos is controlled to
an unstable fixed point using the feedback control method.
Finally, we conclude this paper with comments and discuss
the future work.

2. The Existence and Stability of
Fixed Points

In this section, we discuss the existence and stability of the
fixed points. It is clear that the fixed points of system (4)
satisfy the following equations:

𝑥 = 𝑥 + ℎ [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦] ,
𝑦 = 𝑦 + ℎ [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] . (7)

By calculation of the above system, we get the following
results: system (4) has three fixed points (0, 0), (1 − 𝛿, 0) and
the positive fixed point (𝑥∗, 𝑦∗), where (𝑥∗, 𝑦∗) satisfy

(𝑥∗ + 𝜃𝑦∗) (1 − 𝑥∗ − 𝑦∗) − 𝛿𝑥∗ − 𝑠𝑥∗𝑦∗ = 0,
𝑥∗ = 𝛿 + 𝛾𝑠 . (8)

Now we study the stability of these fixed points. Note that
the modules of eigenvalues of the characteristic equation at
the fixed point determine the local stability of a fixed point(𝑥, 𝑦).

The Jacobian matrix 𝐽 of system (4) at any point (𝑥, 𝑦) is
given by

𝐽 (𝑥, 𝑦) = (1 + ℎ [1 − 2𝑥 − (𝜃 + 1 + 𝑠) 𝑦 − 𝛿] ℎ [𝜃 (1 − 𝑥 − 𝑦) − (𝑥 + 𝜃𝑦) − 𝑠𝑥]ℎ𝑠𝑦 1 + ℎ (𝑠𝑥 − 𝛿 − 𝛾) ) . (9)
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Let

𝑎11 = 1 + ℎ (1 − 𝑥 − 𝑦 − 𝑥 − 𝜃𝑦 − 𝛿 − 𝑠𝑦) ;
𝑎12 = ℎ [𝜃 (1 − 𝑥 − 𝑦) − (𝑥 + 𝜃𝑦) − 𝑠𝑥] ;𝑎21 = ℎ𝑠𝑦;
𝑎22 = 1 + ℎ (𝑠𝑥 − 𝛿 − 𝛾) ,

(10)

and then

𝐽 (𝑥, 𝑦) = (𝑎11 𝑎12𝑎21 𝑎22) . (11)

The characteristic equation of 𝐽(𝑥, 𝑦) is
𝜆2 + 𝑝 (𝑥, 𝑦) 𝜆 + 𝑞 (𝑥, 𝑦) = 0, (12)

where

𝑝 (𝑥, 𝑦) = − (𝑎11 + 𝑎22) ,𝑞 (𝑥, 𝑦) = 𝑎11𝑎22 − 𝑎12𝑎21. (13)

Then we will discuss the local dynamics of three fixed
points (0, 0), (1−𝛿, 0) and the positive fixed point (𝑥∗, 𝑦∗). In
order to discuss the stability of the fixed points of system (4),
we get the following existence proposition of the fixed points
by simple analysis [17–20].

Case 1. For (0, 0), we have
𝐽 (0, 0) = (1 + ℎ (1 − 𝛿) ℎ𝜃0 1 − ℎ (𝛿 + 𝛾)) . (14)

Since two eigenvalues of 𝐽(0, 0) are 𝜆1 = 1 + ℎ(1 − 𝛿) > 1 and𝜆2 = 1 − ℎ(𝛿 + 𝛾) < 1, then (0, 0) is a saddle.
Case 2. A simple calculation shows the local dynamics of the
fixed point (1 − 𝛿, 0).
Proposition 1. The eigenvalues of the fixed point (1 − 𝛿, 0) are𝜆1 = 1 + ℎ(𝛿 − 1), 𝜆2 = 1 + ℎ[𝑠(1 − 𝛿) − 𝛿 − 𝛾]:

(i) (1 − 𝛿, 0) is a source if 0 < 𝛿 < 1, 𝛿 + 𝛾 > 𝑠(1 − 𝛿) andℎ > max{2/(1 − 𝛿), 2/(𝛿 + 𝛾 − 𝑠(1 − 𝛿))};
(ii) (1 − 𝛿, 0) is a sink if 0 < 𝛿 < 1, 𝛿 + 𝛾 > 𝑠(1 − 𝛿) and0 < ℎ < min{2/(1 − 𝛿), 2/(𝛿 + 𝛾 − 𝑠(1 − 𝛿))};
(iii) (1−𝛿, 0) is not hyperbolic if 0 < 𝛿 < 1, 𝛿+𝛾 > 𝑠(1−𝛿)

and ℎ = 2/(1 − 𝛿) or ℎ = 2/(𝛿 + 𝛾 − 𝑠(1 − 𝛿));
(iv) (1−𝛿, 0) is a saddle except for any values of parameters

as (i) to (iii).

Case 3. The characteristic equation of the Jacobian matrix 𝐽
of system (4) at the positive fixed point (𝑥∗, 𝑦∗) is written as

𝜆2 + tr 𝐽 (𝑥∗, 𝑦∗) 𝜆 + det 𝐽 (𝑥∗, 𝑦∗) = 0, (15)

where

tr 𝐽 (𝑥∗, 𝑦∗) = −2 − ℎ𝑀,
det 𝐽 (𝑥∗, 𝑦∗) = 1 + ℎ𝑀 + ℎ2𝑁,
𝑀 = 1 − 2𝑥∗ − (𝜃 + 1 + 𝑠) 𝑦∗ − 𝛿,
𝑁 = 𝑠𝑦∗ [(𝑥∗ + 𝜃𝑦∗) + 𝑠𝑥∗ − 𝜃 (1 − 𝑥∗ − 𝑦∗)] .

(16)

Let

𝐹 (𝜆) = 𝜆2 − (2 + ℎ𝑀) 𝜆 + (1 + ℎ𝑀 + ℎ2𝑁) , (17)

and then

𝐹 (1) = ℎ2𝑁 > 0,
𝐹 (−1) = 4 + 2ℎ𝑀 + ℎ2𝑁. (18)

Proposition 2. Let (𝑥∗, 𝑦∗) be the positive fixed point of (4):
(i) it is a sink if one of the following conditions holds:

(i.1) −2√𝑁 ⩽ 𝑀 < 0 and 0 < ℎ < −𝑀/𝑁;
(i.2) 𝑀 < −2√𝑁 and 0 < ℎ < (−𝑀−√𝑀2 − 4𝑁)/𝑁;

(ii) it is a source if one of the following conditions holds:

(ii.1) −2√𝑁 ⩽ 𝑀 < 0 and ℎ > −𝑀/𝑁;
(ii.2) 𝑀 < −2√𝑁 and ℎ > (−𝑀 + √𝑀2 − 4𝑁)/𝑁;
(ii.3) 𝑀 ⩾ 0;

(iii) it is a saddle if the following condition holds:

𝑀 < −2√𝑁,
−𝑀 − √𝑀2 − 4𝑁𝑁 < ℎ < −𝑀 + √𝑀2 − 4𝑁𝑁 ; (19)

(iv) it is nonhyperbolic if one of the following conditions
holds:

(iv.1) 𝑀 < −2√𝑁 and ℎ = (−𝑀±√𝑀2 − 4𝑁)/𝑁 and𝛿 ̸= −2/𝑀, −4/𝑀;
(iv.2) −2√𝑁 ⩽ 𝑀 < 0 and ℎ = −𝑀/𝑁.

From the above discussion, we can easily obtain that if (iv.1)
of Proposition 2 holds, then one of the eigenvalues of the positive
fixed point (𝑥∗, 𝑦∗) is −1 and the other is neither 1 nor −1.

Let

𝐹1 = {(𝜃, 𝛿, 𝑠, 𝛾, ℎ) : 𝑀 < −2√𝑁, ℎ
= −𝑀 − √𝑀2 − 4𝑁𝑁 , 𝜃, 𝛿, 𝑠, 𝛾, ℎ > 0} (20)
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and

𝐹2 = {(𝜃, 𝛿, 𝑠, 𝛾, ℎ) : 𝑀 < −2√𝑁, ℎ
= −𝑀 + √𝑀2 − 4𝑁𝑁 , 𝜃, 𝛿, 𝑠, 𝛾, ℎ > 0} . (21)

When parameters vary in a small neighborhood of 𝐹1 or 𝐹2,
there may be flip bifurcation of the fixed point (𝑥∗, 𝑦∗).

Then we can get that the eigenvalues of the positive fixed
point (𝑥∗, 𝑦∗) are a pair of conjugate complex numbers with
modulus 1 if (iv.2) of Proposition 2 holds.

Let

𝐹3 = {(𝜃, 𝛿, 𝑠, 𝛾, ℎ) : −2√𝑁 < 𝑀 < 0, ℎ
= −𝑀𝑁 , 𝜃, 𝛿, 𝑠, 𝛾, ℎ > 0} . (22)

Thefixed point (𝑥∗, 𝑦∗)may undergo Neimark-Sacker bifurca-
tion when parameters vary in a small neighborhood of 𝐹3.
3. Bifurcation Analysis

Based on the above analysis, we will mainly focus on the flip
bifurcation of the positive fixed point (𝑥∗, 𝑦∗) if parameters
vary in a small neighborhood of 𝐹1 or 𝐹2 and the Neimark-
Sacker bifurcation of (𝑥∗, 𝑦∗) if parameters vary in a small
neighborhood of 𝐹3, respectively, to investigate the local and
global stability of system (4). We choose parameter ℎ as a
bifurcation parameter for studying the flip bifurcation and

Neimark-Sacker bifurcation of (𝑥∗, 𝑦∗) by using the center
manifold theorem and bifurcation theory in [17–20, 33–36].

3.1. Flip Bifurcation. Taking parameters (𝜃, 𝛿, 𝑠, 𝛾, ℎ1) arbi-
trarily from 𝐹1, we consider system (4) with (𝜃, 𝛿, 𝑠, 𝛾, ℎ1),
which is described by

(𝑥𝑦)
→ (𝑥 + ℎ1 [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦]𝑦 + ℎ1 [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) . (23)

The map (23) has a unique positive fixed point (𝑥∗, 𝑦∗),
whose eigenvalues are 𝜆1 = −1, 𝜆2 = 3 + 𝑀ℎ1 with |𝜆2| ̸= 1
by Proposition 2.

Since (𝜃, 𝛿, 𝑠, 𝛾, ℎ1) ∈ 𝐹1, ℎ1 = (−𝑀 − √𝑀2 − 4𝑁)/𝑁.
Choose ℎ∗ as a bifurcation parameter, we consider a pertur-
bation of (23) as follows:

(𝑥𝑦)
→ (𝑥 + (ℎ1 + ℎ∗) [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦]

𝑦 + (ℎ1 + ℎ∗) [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) , (24)

where |ℎ∗| ≪ 1, which is a small perturbation parameter.
Let𝑋 = 𝑥 − 𝑥∗, 𝑌 = 𝑦 − 𝑦∗. Then we transform the fixed

point (𝑥∗, 𝑦∗) of map (24) into the origin. By calculating we
have

(𝑋𝑌)
→ (𝑎11𝑋 + 𝑎12𝑌 + 𝑎13𝑋2 + 𝑎14𝑋𝑌 + 𝑎15𝑌2 + 𝑏1𝑋ℎ∗ + 𝑏2𝑌ℎ∗ + 𝑏3𝑋2ℎ∗ + 𝑏4𝑋𝑌ℎ∗ + 𝑏5𝑌2ℎ∗ + 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3)𝑎21𝑋 + 𝑎22𝑌 + 𝑎23𝑋𝑌 + 𝑐1𝑋ℎ∗ + 𝑐2𝑌ℎ∗ + 𝑐3𝑋𝑌ℎ∗ + 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3) ) , (25)

where

𝑎11 = 1 + ℎ (1 − 2𝑥∗ − (𝜃 + 1) 𝑦∗ − 𝛿 − 𝑠𝑦∗) ,
𝑎12 = ℎ [𝜃 (1 − 𝑥∗ − 𝑦∗) − 𝑥∗ − 𝜃𝑦∗ − 𝑠𝑥∗] ,𝑎13 = −ℎ,𝑎14 = −ℎ (1 + 𝜃 + 𝑠) ,𝑎15 = −𝜃ℎ,
𝑏1 = [1 − 2𝑥∗ − (𝜃 + 1) 𝑦∗ − 𝛿 − 𝑠𝑦∗] ,
𝑏2 = [𝜃 (1 − 𝑥∗ − 𝑦∗) − 𝑥∗ − 𝜃𝑦∗ − 𝑠𝑥∗] ,𝑏3 = −1,

𝑏4 = − (1 + 𝜃 + 𝑠) ,𝑏5 = −𝜃,
𝑎21 = ℎ𝑠𝑦∗,
𝑎22 = 1 + ℎ𝑠𝑥∗,𝑎23 = ℎ𝑠,
𝑐1 = 𝑠𝑦∗,
𝑐2 = 𝑠𝑥∗,𝑐3 = 𝑠,

(26)

and ℎ = ℎ1.
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We construct an invertible matrix 𝑇 as follows:

𝑇 = ( 𝑎12 𝑎12−1 − 𝑎11 𝜆2 − 𝑎11) , (27)

and for (25), use the translation

(𝑋𝑌) = 𝑇(�̃̃�𝑦) , (28)

and then the map (25) becomes

(�̃̃�𝑦) → (−1 00 𝜆2)(�̃̃�𝑦) + (𝑓 (𝑋, 𝑌, ℎ∗)𝑔 (𝑋, 𝑌, ℎ∗)) , (29)

where

𝑓 (𝑋, 𝑌, ℎ∗) = 𝑎13 (𝜆2 − 𝑎11)𝑎12 (𝜆2 + 1) 𝑋2
+ 𝑎14 (𝜆2 − 𝑎11) + 𝑎12𝑎23𝑎12 (𝜆2 + 1) 𝑋𝑌
+ 𝑎15 (𝜆2 − 𝑎11)𝑎12 (𝜆2 + 1) 𝑌2
+ 𝑏1 (𝜆2 − 𝑎11) − 𝑎12𝑐1𝑎12 (𝜆2 + 1) ℎ∗𝑋
+ 𝑏2 (𝜆2 − 𝑎11) − 𝑎12𝑐2𝑎12 (𝜆2 + 1) ℎ∗𝑌
− 𝜆2 − 𝑎11𝑎12 (𝜆2 + 1)ℎ∗𝑋2
+ 𝑏4 (𝜆2 − 𝑎11) − 𝑎12𝑐3𝑎12 (𝜆2 + 1) ℎ∗𝑋𝑌
+ 𝑏5 (𝜆2 − 𝑎11)𝑎12 (𝜆2 + 1) ℎ∗𝑌2+ 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3) ,

𝑔 (𝑋, 𝑌, ℎ∗) = 𝑎13 (𝑎11 + 1)𝑎12 (𝜆2 + 1) 𝑋2
+ 𝑎14 (𝑎11 + 1) + 𝑎12𝑎23𝑎12 (𝜆2 + 1) 𝑋𝑌
+ 𝑎15 (𝑎11 + 1)𝑎12 (𝜆2 + 1) 𝑌2
+ 𝑏1 (𝑎11 + 1) + 𝑎12𝑐1𝑎12 (𝜆2 + 1) ℎ∗𝑋
+ 𝑏2 (𝑎11 + 1) + 𝑎12𝑐2𝑎12 (𝜆2 + 1) ℎ∗𝑌
− 𝑎11 + 1𝑎12 (𝜆2 + 1)ℎ∗𝑋2
+ 𝑏4 (𝑎11 + 1) + 𝑎12𝑐3𝑎12 (𝜆2 + 1) ℎ∗𝑋𝑌
+ 𝑏5 (𝑎11 + 1) (𝜆2 − 𝑎11)𝑎12 (𝜆2 + 1) ℎ∗𝑌2
+ 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3) ,

(30)

and 𝑋 = 𝑎12�̃� + 𝑎12�̃�,𝑌 = − (1 + 𝑎11) �̃� + (𝜆2 − 𝑎11) �̃�. (31)

From the centermanifold theorem [33], we can determine
the center manifold𝑊𝑐(0, 0, 0) of (29) at the fixed point (0, 0)
in a small neighborhood of ℎ∗ = 0, and then we obtain
that there exists a center manifold 𝑊𝑐(0, 0, 0), which can be
approximately represented as follows:

𝑊𝑐 (0, 0, 0) = (�̃�, �̃�, ℎ∗) ∈ 𝑅3:
�̃� = 𝑎1�̃�2 + 𝑎2�̃�ℎ∗ + 𝑎3ℎ∗2

+ 𝑂 ((|�̃�| + ℎ∗)3) ,
(32)

where𝑂((|�̃�| + |ℎ∗|)3) is a function with order at least 3 in the
variables, and

𝑎1 = −𝑎12𝑎13 (𝑎11 + 1) − 𝑎12 (𝑎11 + 1)2 [𝑎14 (𝑎11 + 1) − 𝑎12𝑎23] − 𝑎15 (𝑎11 + 1)3𝑎12 (1 − 𝜆22) ,
𝑎2 = (𝑎11 + 1)2 𝑏2 + (𝑎11 + 1) 𝑎12𝑐2 − (𝑎11 + 1) 𝑎12𝑏1 − 𝑎212𝑐1(𝜆2 + 1)2 𝑎12 ,
𝑎3 = 0.

(33)
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Therefore, the map (29) which is restricted to the center
manifold𝑊𝑐(0, 0, 0) is defined:𝐹 : �̃� → −�̃� + 𝑘1�̃�2 + 𝑘2�̃�ℎ∗ + 𝑘3�̃�2ℎ∗ + 𝑘4�̃�ℎ∗2

+ 𝑘5�̃�3 + 𝑂 ((|�̃�| + ℎ∗)4) , (34)

where

𝑘1 = (𝜆2 − 𝑎11) 𝑎13𝜆2 + 1
+ (𝑎11 + 1) [𝑎12𝑎23 − 𝑎14 (𝜆2 − 𝑎11)]𝜆2 + 1
+ (𝑎11 + 1)2 (𝜆2 − 𝑎11) 𝑎15(𝜆2 + 1) 𝑎12 ,

𝑘2 = (𝜆2 − 𝑎11) 𝑏1 − 𝑎12𝑐1𝜆2 + 1
− (𝑎11 + 1) [𝑏2 (𝜆2 − 𝑎11) − 𝑎12𝑐2](𝜆2 + 1) 𝑎12 ,

𝑘3 = (𝜆2 − 𝑎11) 𝑏1 − 𝑎12𝑐1𝜆2 + 1 𝑎1
+ 𝑏2 (𝜆2 − 𝑎11) − 𝑎12𝑐2(𝜆2 + 1) 𝑎12 (𝜆2 − 𝑎11) 𝑎1
+ (1 + 𝑎11)2 (𝜆2 − 𝑎11) 𝑏5𝑎12 (𝜆2 + 1) + 2𝑎13𝑎12𝑎1𝜆2 + 1
− 4𝑎15𝑎2 (1 + 𝑎11 (𝜆2 − 𝑎11)2)𝑎12 (𝜆2 + 1)
+ (𝜆2 − 𝑎11) 𝑎14 − 𝑎12𝑎23𝑎12 (𝜆2 + 1) [𝑎12 (𝜆2 − 𝑎11)
− 𝑎11 (1 + 𝑎11)] 2𝑎2,

𝑘4 = (𝜆2 − 𝑎11) 𝑏1 − 𝑎12𝑐1𝜆2 + 1 𝑎1
+ 𝑏2 (𝜆2 − 𝑎11) − 𝑎12𝑐2(𝜆2 + 1) 𝑎12 (𝜆2 − 𝑎11) 𝑎2,

𝑘5 = 2𝑎13𝑎12𝑎1𝜆2 + 1
+ (𝜆2 − 𝑎11) 𝑎14 − 𝑎12𝑎23𝑎12 (𝜆2 + 1) [𝑎12 (𝜆2 − 𝑎11)
− 𝑎11 (1 + 𝑎11)] 𝑎1 − 2𝑎15𝑎1 (1 + 𝑎11 (𝜆2 − 𝑎11)2)𝑎12 (𝜆2 + 1) .

(35)

For map (34) in order to undergo a flip bifurcation, we
require that two discriminatory quantities 𝛼1 and 𝛼2 are not
zero, where

𝛼1 = ( 𝜕2𝐹𝜕�̃�𝜕ℎ∗ + 12 𝜕𝐹𝜕ℎ∗ 𝜕2𝐹𝜕�̃�2)
(0,0) = 𝑘2 (36)

and

𝛼2 = (16 𝜕3𝐹𝜕�̃�3 + (12 𝜕2𝐹𝜕�̃�2)
2)(0,0) = 𝑘5 + 𝑘21. (37)

On the basis of the above analysis and the theoremof [34–
36], we obtain the following result.

Theorem 3. If 𝛼2 ̸= 0, then map (4) undergoes a flip
bifurcation at the fixed point (𝑥∗, 𝑦∗) when the parameter ℎ
varies in a small neighborhood of ℎ1. Moreover, if 𝛼2 > 0 (resp.,𝛼2 < 0), the period-2 orbits that bifurcate from (𝑥∗, 𝑦∗) are
stable (resp., unstable).

3.2. Neimark-Sacker Bifurcation. In this section, we can give a
similar argument with the flip bifurcation. Taking parameters(𝜃, 𝛿, 𝑠, 𝛾, ℎ2) arbitrarily from 𝐹3, we consider system (4) with(𝜃, 𝛿, 𝑠, 𝛾, ℎ2), which is described by

(𝑥𝑦)
→ (𝑥 + ℎ2 [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦]𝑦 + ℎ2 [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) . (38)

The map (38) has a unique positive fixed point (𝑥∗, 𝑦∗).
Since (𝜃, 𝛿, 𝑠, 𝛾, ℎ2) ∈ 𝐹3, ℎ2 = −𝑀/𝑁. We give a

perturbation ℎ∗ at ℎ2. Then (38) becomes into the following
form:

(𝑥𝑦)
→ (𝑥 + (ℎ2 + ℎ∗) [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦]𝑦 + (ℎ2 + ℎ∗) [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) , (39)

where |ℎ∗| ≪ 1, which is a small perturbation parameter.
Let𝑋 = 𝑥 − 𝑥∗, 𝑌 = 𝑦 − 𝑦∗. Then we transform the fixed

point (𝑥∗, 𝑦∗) of map (39) into the origin, and we have
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(𝑋𝑌) → (𝑎11𝑋 + 𝑎12𝑌 + 𝑎13𝑋2 + 𝑎14𝑋𝑌 + 𝑎15𝑌2 + 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3)𝑎21𝑋 + 𝑎22𝑌 + 𝑎23𝑋𝑌 + 𝑂((|𝑋| + |𝑌| + ℎ∗)3) ) , (40)

where 𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑎21, 𝑎22, 𝑎23 are given in (26) by
substituting ℎ for ℎ2 + ℎ∗.

Note that the characteristic equation associated with the
linearization of the map (40) at (𝑋, 𝑌) = (0, 0) is following

𝜆2 + 𝑝 (ℎ∗) 𝜆 + 𝑞 (ℎ∗) = 0, (41)

where

𝑝 (ℎ∗) = −2 − (ℎ + ℎ∗)𝑀,
𝑞 (ℎ∗) = 1 + (ℎ + ℎ∗)𝑀 + (ℎ + ℎ∗)2𝑁. (42)

Since parameters (𝜃, 𝛿, 𝑠, 𝛾, ℎ2) ∈ 𝐹3, the eigenvalues of(0, 0) are a pair of complex conjugate numbers 𝜆 and 𝜆 with
modulus 1 by Proposition 2, where

𝜆, 𝜆 = −𝑝 (ℎ∗)2 ± 𝑖2√4𝑞 (ℎ∗) − 𝑝2 (ℎ∗)
= 1 + 𝑀(ℎ2 + ℎ∗)2 ± 𝑖 (ℎ2 + ℎ∗)2 √4𝑁 −𝑀2,

(43)

and we have

|𝜆| = √𝑞 (ℎ∗),
𝑙 = d |𝜆|

dℎ∗
ℎ∗=0 = −𝑀2 > 0. (44)

Moreover, it is required that when ℎ∗ = 0, 𝜆𝑚, 𝜆𝑚 ̸= 1
(𝑚 ̸= 1, 2, 3, 4) which is equivalent to 𝑝(0) ̸= −2, 0, 1, 2. Note
that (𝜃, 𝛿, 𝑠, 𝛾, ℎ2) ∈ 𝐹3. Thus, 𝑝(0) ̸= −2, 2. We only need to
require that 𝑝(0) ̸= 0, 1, which leads to

𝑀2 ̸= 2𝑁, 3𝑁. (45)

Hence, the eigenvalues 𝜆, 𝜆 of fixed point (0, 0) of (40) do
not lie in the intersection of the unit circle with the coordinate
axes when ℎ∗ = 0 and (45) holds.

Next, we discuss the normal form of (40) at ℎ∗ = 0.
Let ℎ∗ = 0, 𝜇 = 1 +𝑀ℎ2/2, 𝜔 = (ℎ2/2)√4𝑁 −𝑀2,

𝑇 = ( 𝑎12 0𝜇 − 𝑎11 −𝜔) , (46)

and then 𝑇 is invertible and use the translation

(𝑋𝑌) = 𝑇(�̃̃�𝑦) (47)

for (40); then model (40) becomes the following form:

(�̃̃�𝑦) → (𝜇 −𝜔𝜔 𝜇 )(�̃̃�𝑦) + (�̃� (�̃�, �̃�)�̃� (�̃�, �̃�)) , (48)

where

�̃� (�̃�, �̃�) = 𝑎13𝑎12𝑋2 + 𝑎14𝑎12𝑋𝑌 + 𝑎15𝑎12𝑌2+ 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3) ,
�̃� (�̃�, �̃�) = 𝑎13 (𝜇 − 𝑎11)𝑎12𝜔 𝑋2

+ (𝑎14 (𝜇 − 𝑎11)𝑎12𝜔 − 𝑎23𝜔 )𝑋𝑌
+ 𝑎15 (𝜇 − 𝑎11)𝑎12𝜔 𝑌2
+ 𝑂 ((|𝑋| + |𝑌| + ℎ∗)3) ,𝑋 = 𝑎12�̃�,𝑌 = (𝜇 − 𝑎11) �̃� − 𝜔�̃�.

(49)

In order to undergo Neimark-Sacker bifurcation for (48),
we require that the following discriminatory quantity is not
zero [34–36]:

𝑏 = [−Re((1 − 2𝜆) 𝜆21 − 𝜆 𝜉20𝜉11) − 12 𝜉112 − 𝜉022
+ Re (𝜆𝜉21)]ℎ∗=0 ,

(50)

where

𝜉20 = 18 [(�̃��̃��̃� − �̃��̃��̃� + 2�̃��̃��̃�) + 𝑖 (�̃��̃��̃� − �̃��̃��̃� − 2�̃��̃��̃�)] ,
𝜉11 = 14 [(�̃��̃��̃� + �̃��̃��̃� ) + 𝑖 (�̃��̃��̃� + �̃��̃��̃�)] ,
𝜉02 = 18 [(�̃��̃��̃� − �̃��̃��̃� − 2�̃��̃��̃�) + 𝑖 (�̃��̃��̃� − �̃��̃��̃� + 2�̃��̃��̃�)] ,
𝜉21 = 116 [(�̃��̃��̃��̃� + �̃��̃��̃��̃� + �̃��̃��̃��̃� + �̃��̃��̃��̃�)+ 𝑖 (�̃��̃��̃��̃� + �̃��̃��̃��̃� − �̃��̃��̃��̃� − �̃��̃��̃��̃�)] .

(51)
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Thus, some complicated calculation gives

𝑏 = − 132 ((1 − 𝜇)2 + 𝜔2) [𝑚(�̃�2�̃��̃� − �̃�2�̃��̃� + �̃�2�̃��̃�
+ 2�̃��̃��̃��̃��̃��̃� + 2�̃��̃��̃��̃��̃��̃� + �̃��̃��̃��̃��̃��̃�) + 𝑛 (2�̃��̃��̃��̃��̃��̃�
− 2�̃��̃��̃��̃��̃��̃� + 2�̃��̃��̃��̃��̃��̃� + 2�̃��̃��̃��̃��̃��̃�)] − 164 [3�̃�2�̃��̃�
+ 3�̃�2�̃��̃� + 3�̃�2�̃��̃� + 4�̃�2�̃��̃� + 4�̃�2�̃��̃� − 4�̃��̃��̃��̃��̃��̃�
− 4�̃��̃��̃��̃��̃��̃� + 4�̃��̃��̃��̃��̃��̃� + 2�̃��̃��̃��̃��̃��̃� − 4𝜇 (�̃��̃��̃��̃�
+ �̃��̃��̃��̃�) − 4𝜔 (�̃��̃��̃��̃� + �̃��̃��̃��̃� − �̃��̃��̃��̃�)] ,

(52)

where

𝑚 = 𝜇2 − 3𝜇3 + 2𝜇4 − 𝜔2 + 𝜇𝜔2 − 2𝜔4,
𝑛 = −𝜔 (𝜔2 + 5𝜇2 − 2𝜇 − 4𝜇3 − 4𝜇𝜔2) ,
�̃��̃��̃� = 2 [𝑎12𝑎13 + 𝑎14 (𝜇 − 𝑎11) + 𝑎15𝑎12 (𝜇 − 𝑎11)2] ,
�̃��̃��̃� = 𝑎14𝜔 − 2𝑎15𝜔 (𝜇 − 𝑎11)𝑎12 ,
�̃��̃��̃� = 2𝑎15𝜔2𝑎12 ,
�̃��̃��̃��̃� = �̃��̃��̃��̃� = �̃��̃��̃��̃� = �̃��̃��̃��̃� = 0,
�̃��̃��̃� = 2[𝑎12𝑎13 (𝜇 − 𝑎11)𝜔

+ 𝑎12 (𝜇 − 𝑎11) (𝑎14 (𝜇 − 𝑎11)𝑎12𝜔 − 𝑎23𝜔 )
+ 𝑎15 (𝜇 − 𝑎11)3𝑎12𝜔 ] ,

�̃��̃��̃� = −𝑎14 𝜇 − 𝑎11𝑎12𝜔 + 𝑎23𝑎12 − 2𝑎15 (𝜇 − 𝑎11)2𝑎12 ,
�̃��̃��̃� = 2𝑎15 (𝜇 − 𝑎11) 𝜔𝑎12 ,
�̃��̃��̃��̃� = �̃��̃��̃��̃� = �̃��̃��̃��̃� = �̃��̃��̃��̃� = 0.

(53)

Therefore, from the above analysis and the theorem in
[34–36], we have the following result.

Theorem 4. If condition (45) holds and 𝑏 ̸= 0, then map
(4) undergoes Neimark-Sacker bifurcation at the fixed point(𝑥∗, 𝑦∗) when the parameter ℎ varies in a small neighborhood
of ℎ2.Moreover, if 𝑏 < 0, (resp., 𝑏 > 0), then an attracting (resp.,
repelling) invariant closed curve bifurcates from the fixed point
for ℎ > ℎ2 (resp., ℎ < ℎ2).

4. Existence of Marotto’s Chaos

In this section, we rigorously provemap (4) possesses chaotic
behavior in the sense of Marotto’s definition [32].

We first present Marotto’s chaos definitions and theorem
which are quoted from [32].

For any map 𝐹 : 𝑅𝑛 → 𝑅𝑛, and any positive integer 𝐾,
let 𝐹𝐾 represent the composition of 𝐹 with itself 𝐾 times.
For a differentiable function𝐹, let𝐷𝐹(𝑍) denote the Jacobian
matrix of 𝐹 evaluated at the point 𝑍 ∈ 𝑅𝑛, and |𝐷𝐹(𝑍)| its
determinant. Let 𝐵𝑟(𝑍) denote the closed ball in 𝑅𝑛 of radius𝑟 centered at the point 𝑍 and 𝐵0𝑟(𝑍) its interior. Also let ‖𝑍‖
be the usual Euclidean norm of 𝑍 in 𝑅𝑛.
Definition 5. Let𝐹 be differentiable in𝐵𝑟(𝑍0).The point𝑍0 ∈𝑅𝑛 is an expanding fixed point of 𝐹 in 𝐵𝑟(𝑍0), if 𝐹(𝑍0) = 𝑍0
and all eigenvalues of 𝐷𝐹(𝑍) exceed 1 in norm for all 𝑍 ∈𝐵𝑟(𝑍0).
Definition 6. Assume that 𝑍0 is an expanding fixed point of𝐹 in 𝐵𝑟(𝑍0) for some 𝑟 > 0; then 𝑍0 is said to be a snap-back
repeller of 𝐹 if there exists a point 𝑍 ∈ 𝐵𝑟(𝑍0) with 𝑍 ̸= 𝑍0,𝐹𝑀(𝑍) = 𝑍0 and |𝐷𝐹𝑀(𝑍)| ̸= 0 for some positive integer𝑀.

Theorem 7. [32] If 𝐹 possesses a snap-back repeller, then the
map 𝐹 is chaotic. That is, there exist

(i) a positive integer 𝑁 such that for each integer 𝑃 ⩾ 𝑁,𝐹 has a point of period 𝑃;
(ii) a “scrambled set” of 𝐹, that is, an uncountable set 𝑆

containing no periodic points of 𝐹 such that

(a) 𝐹[𝑆] ⊂ 𝑆,
(b) for every𝑋,𝑌 ∈ 𝑆 with𝑋 ̸= 𝑌

lim
𝑘→∞

sup 𝐹𝑘 (𝑋) − 𝐹𝑘 (𝑌) > 0, (54)

(c) for every𝑋 ∈ 𝑆 and any periodic point 𝑌 of 𝐹
lim
𝑘→∞

sup 𝐹𝑘 (𝑋) − 𝐹𝑘 (𝑌) > 0, (55)

(iii) an uncountable subset 𝑆0 of 𝑆 such that for every𝑋,𝑌 ∈𝑆0
lim
𝑘→∞

inf 𝐹𝑘 (𝑋) − 𝐹𝑘 (𝑌) = 0. (56)

Now we theoretically give the condition of existence of
chaotic phenomena for map (4) in the sense of Marotto’s
definition of chaos.

Suppose 𝑍0(𝑥0, 𝑦0) be the fixed point of map (4). We firstly
give the conditions such that the𝑍0 is a snap-back repeller. The
eigenvalues associated with the fixed point 𝑍0 are given by

𝜆1,2 = −𝑝 (𝑥0, 𝑦0) ± √𝑝2 (𝑥0, 𝑦0) − 4𝑞 (𝑥0, 𝑦0)2 , (57)
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where𝑝 (𝑥, 𝑦) = −2 − ℎ [1 − 2𝑥 − (𝜃 + 1 + 𝑠) 𝑦 − 𝛿 + 𝑠𝑥 − 𝛿
− 𝛾] ,

𝑞 (𝑥, 𝑦) = 1 + ℎ [1 − 2𝑥 − (𝜃 + 1 + 𝑠) 𝑦 − 𝛿 + 𝑠𝑥 − 𝛿
− 𝛾]
+ ℎ2 {[1 − 2𝑥 − (𝜃 + 1 + 𝑠) 𝑦 − 𝛿] (𝑠𝑥 − 𝛿 − 𝛾)
− 𝑠𝑦 [𝜃 (1 − 𝑥 − 𝑦) − (𝑥 + 𝜃𝑦) − 𝑠𝑥]} .

(58)

According to Definition 5, we begin to find a neighborhood𝐵𝑟(𝑍0) of 𝑍0 in which the norms of conjugate complex
eigenvalues exceed 1 for all 𝑍 ∈ 𝐵𝑟(𝑍0), which are equivalent
to

𝑝2 (𝑥, 𝑦) − 4𝑞 (𝑥, 𝑦) < 0,
𝑞 (𝑥, 𝑦) − 1 > 0. (59)

Let 𝑠1(𝑥, 𝑦) = 𝑝2(𝑥, 𝑦) − 4𝑞(𝑥, 𝑦).
It is easy to see that 𝑠1(𝑥, 𝑦) = ℎ2[𝐴1𝑦2 +𝐵1𝑦+𝐶1], where

𝐴1 = (𝜃 + 1 + 𝑠)2 − 8𝑠𝜃,
𝐵1 = 2 (𝜃 + 1 + 𝑠) (2𝑥 − 𝛾 − 1 − 𝑠𝑥) + 4𝑠𝜃,
𝐶1 = (1 − 2𝑥 − 𝛿 − 𝑠𝑥 − 𝛿 − 𝛾)2 .

(60)

If Δ 1 = 𝐵21 − 4𝐴1𝐶1 = (4𝑠𝜃)2 + 16𝑠𝜃(𝜃 + 1 + 𝑠)(2𝑥 − 𝛾 − 1 −𝑠𝑥) + 32𝑠𝜃(1 − 2𝑥 − 𝑠𝑥 + 𝛾)2 ⩾ 0,
then the equation 𝑠1(𝑥, 𝑦) = 0 has one real root with

multiplicity 2 or two real roots denoted as 𝑦1 = (−𝐵1 −√𝐵21 − 4𝐴1𝐶1)/2𝐴1 and 𝑦2 = (−𝐵1 + √𝐵21 − 4𝐴1𝐶1)/2𝐴1.
And Δ 1 ⩾ 0; we can get

(𝜃 + 𝑠 + 1)2 − 8𝑠𝜃 > 0
𝑠𝜃 + (2𝑥 − 𝛾 − 1 − 𝑠𝑥)

⋅ [𝜃 + 1 + 𝑠 + 2 (2𝑥 − 𝛾 − 1 − 𝑠𝑥)] ⩾ 0.
(61)

And 𝑠1(𝑥, 𝑦) < 0 for 𝑥 ∈ 𝐾1 = {𝑥 | 𝑠𝜃 + (2𝑥 − 𝛾 − 1 −𝑠𝑥)[𝜃 + 1 + 𝑠 + 2(2𝑥 − 𝛾 − 1 − 𝑠𝑥)] ⩾ 0} and 𝑦 ∈ 𝐷1 = (𝑦1, 𝑦2).
Let 𝑠2(𝑥, 𝑦) = 𝑞(𝑥, 𝑦) − 1 = ℎ(𝐴2𝑦2 + 𝐵2𝑦 + 𝐶2) where𝐴2 = 2ℎ𝑠𝜃,𝐵2= ℎ [𝑠2𝑥 + 𝑠𝑥 − 𝑠𝜃 (1 − 𝑥) − (𝜃 + 1 + 𝑠) (𝑠𝑥 − 𝛿 − 𝛾)]
− (𝜃 + 1 + 𝑠) ,𝐶2= 1 − 2𝑥 − 𝛿 + 𝑠𝑥 − 𝛿 − 𝛾
+ ℎ (1 − 2𝑥 − 𝛿) (𝑠𝑥 − 𝛿 − 𝛾) .

(62)

Under the conditions

𝑥 ∈ 𝐾2 = {𝑥 | (2 + 𝑠) 𝛿 + 2𝛾 − 𝑠 > 0, 𝑥 > 𝛿 + 𝛾𝑠 , 𝑥
< 1 − 𝛿2 𝑜𝑟 (2 + 𝑠) 𝛿 + 2𝛾 − 𝑠 < 0, 𝑥 > 1 − 𝛿2 , 𝑥
< 𝛿 + 𝛾𝑠 }

(63)

and Δ 2 = 𝐵22 − 4𝐴2𝐶2 ⩾ 0, the equation 𝑠2(𝑥, 𝑦) = 0
has one real root with multiplicity 2 or two real roots denoted
as 𝑦3 = (−𝐵2 − √𝐵22 − 4𝐴2𝐶2)/2𝐴2 and 𝑦4 = (−𝐵2 +√𝐵22 − 4𝐴2𝐶2)/2𝐴2.

And 𝑠2(𝑥, 𝑦) > 0 for all 𝑥 ∈ 𝐾2 and 𝑦 ∈ 𝐷2 = (−∞, 𝑦3) ∪(𝑦4, +∞).
Lemma8. If the conditions (61) and (63) hold, and the𝑦1 < 𝑦3
or 𝑦4 < 𝑦2, then𝐷1 ∩ 𝐷2 ̸= ⌀.

Moreover, if one of above conditions holds and the 𝑦-
coordinate of fixed point 𝑍0(𝑥0, 𝑦0), 𝑦0, satisfies 𝑦0 ∈ 𝐷∗𝑦0 ⊂𝐷1 ∩ 𝐷2, then 𝑍0(𝑥0, 𝑦0) is expanding fixed point of (4) in𝑈𝑍0 = {(𝑥, 𝑦)|𝑥 ∈ 𝐾1 ∩ 𝐾2, 𝑦 ∈ 𝐷∗𝑦0}.

Due to Definition 2 of snap-back repeller, we need to find
one point 𝑍 ∈ 𝐵𝑟(𝑍0) such that 𝑍 ̸= 𝑍0, 𝐹𝑀(𝑍) = 𝑍0,|𝐷𝐹(𝑍)| ̸= 0 for some positive integer𝑀.

In fact, we have

𝑥1 + ℎ [(𝑥1 + 𝜃𝑦1) (1 − 𝑥1 − 𝑦1) − 𝛿𝑥1 − 𝑠𝑥1𝑦1]= 𝑥2,𝑦1 + ℎ [𝑠𝑥1𝑦1 − (𝛿 + 𝛾) 𝑦1] = 𝑦2,
(64)

and

𝑥2 + ℎ [(𝑥2 + 𝜃𝑦2) (1 − 𝑥2 − 𝑦2) − 𝛿𝑥2 − 𝑠𝑥2𝑦2] = 𝑥0,𝑦2 + ℎ [𝑠𝑥2𝑦2 − (𝛿 + 𝛾) 𝑦2] = 𝑦0. (65)

Now a 𝐹2 map has been constructed to map the point𝑍1(𝑥1, 𝑦1) to the fixed point 𝑍0(𝑥0, 𝑦0) after two iterations if
there are solutions different from 𝑍0 for (64) and (65). By the
calculation, the solutions different from 𝑍0 for (65) satisfy the
following equation:

𝐸1𝑥42 + 𝐸2𝑥32 + 𝐸3𝑥22 + 𝐸4𝑥2 + 𝐸5 = 0
𝑦2 = 𝑦01 + ℎ (𝑠𝑥1 − 𝛿 − 𝛾) , (66)
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where

𝐸1 = ℎ3𝑠2,𝐸2 = 2ℎ2𝑠 (1 − ℎ𝛿 − ℎ𝛾) − ℎ3𝑠2,𝐸3 = ℎ (1 − ℎ𝛿 − ℎ𝛾)2 + ℎ2𝑠𝑦0 − ℎ2𝑠𝜃𝑦0 + ℎ2𝑠𝛿+ ℎ2𝑠2𝑦0 − 2ℎ2𝑠 (1 − ℎ𝛿 − ℎ𝛾) ,𝐸4 = ℎ (ℎ𝛿 + ℎ𝛾
− 1 (1 − ℎ𝛿 − ℎ𝛾 − 𝑦0 − 𝜃𝑦0 − 𝛿 − 𝑠𝑦0) − ℎ2𝑠𝜃𝑦0− 1) ,

𝐸5 = ℎ𝜃𝑦0 (1 − ℎ𝛿 − ℎ𝛾) − ℎ𝜃𝑦20 − 𝑥0.

(67)

Substituting 𝑥2 and 𝑦2 into (64) and solving 𝑥1, 𝑦1, one gets
𝐸1𝑥41 + 𝐸2𝑥31 + 𝐸3𝑥21 + 𝐸4𝑥1 + 𝐸5 = 0
𝑦1 = 𝑦21 + ℎ (𝑠𝑥1 − 𝛿 − 𝛾) (68)

where

𝐸1 = ℎ3𝑠2,
𝐸2 = 2ℎ2𝑠 (1 − ℎ𝛿 − ℎ𝛾) − ℎ3𝑠2,
𝐸3 = ℎ (1 − ℎ𝛿 − ℎ𝛾)2 + ℎ2𝑠𝑦2 − ℎ2𝑠𝜃𝑦2 + ℎ2𝑠𝛿+ ℎ2𝑠2𝑦2 − 2ℎ2𝑠 (1 − ℎ𝛿 − ℎ𝛾) ,

𝐸4 = ℎ (ℎ𝛿 + ℎ𝛾
− 1 (1 − ℎ𝛿 − ℎ𝛾 − 𝑦2 − 𝜃𝑦2 − 𝛿 − 𝑠𝑦2) − ℎ2𝑠𝜃𝑦2− 1) ,

𝐸5 = ℎ𝜃𝑦2 (1 − ℎ𝛿 − ℎ𝛾) − ℎ𝜃𝑦22 − 𝑥2.
(69)

Obviously, if the condition in Lemma 8 is satisfied, the
solutions of (64) and (65) satisfies (66) and (68). And the
condition of 𝑍1(𝑥1, 𝑦1), 𝑍2(𝑥2, 𝑦2) ̸= 𝑍0(𝑥0, 𝑦0), 𝑍1(𝑥1, 𝑦1) ∈𝑈𝑍0 , and ‖𝐷𝐹2(𝑍1)‖ ̸= 0 holds; then𝑍0 is a snap-back repeller
in 𝑈𝑍0 . Thus, the following theorem is established.

Theorem 9. Assume that 𝑍0(𝑥0, 𝑦0) is an expanding fixed
point in 𝑈𝑍0 , if the solutions (𝑥1, 𝑦1), (𝑥2, 𝑦2) of (64) and
(65) satisfy (𝑥1, 𝑦1), (𝑥2, 𝑦2) ̸= (𝑥0, 𝑦0), (𝑥1, 𝑦1) ∈ 𝑈𝑍0 and‖𝐷𝐹2(𝑍1)‖ ̸= 0. Then𝑍0(𝑥0, 𝑦0) is a snap-back repeller of map
(4), and hence map (4) is chaotic in the sense of Marotto.

Next, we give specific values of the parameters for
illustrating the existence of conditions inTheorem 9.

Example 10. For 𝜃 = 0.2, 𝑠 = 2.25, 𝛿 = 0.005, 𝛾 =0.465, ℎ = 2.5, system (4) has one fixed point 𝑍0(𝑥0, 𝑦0) =(0.376, 0.2981). Based on Lemma 8 and Theorem 9, we find
that region of 𝑍0 is 𝑈𝑍0 = {(𝑥, 𝑦)|0.4975 < 𝑥 < 2, 𝑦1 <𝑦 < 𝑦3} ⫋ {(𝑥, 𝑦)|𝑥 ∈ 𝐾1 ∩ 𝐾2, 𝑦 ∈ 𝐷1 ∩ 𝐷2}, and a point𝑍1(𝑥1, 𝑦1) = (1.19535, 0.0309312) such that 𝐹2(𝑍1) = 𝑍0 and‖𝐷𝐹2(𝑍1)‖ ̸= 0, where

𝑦1 = 1.725𝑥 + 8.3085 − √(1.725𝑥 + 8.3085)2 − 33.21 (1.465 − 4.25𝑥)216.605
𝑦3 = 5.2125 − √21.725𝑥 − 6.76354.5 .

(70)

By simple calculation, we can get 𝑍0(𝑥0, 𝑦0), 𝑍1(𝑥1, 𝑦1) ∈𝑈𝑍0 . Thus, 𝑍0(𝑥0, 𝑦0) is a snap-back repeller.
5. Numerical Simulations

In the section, we use Maximum Lyapunov exponents, the
bifurcation diagrams, and phase portraits for system (4) to
confirm the above theoretical analysis and show the new
interesting complex dynamical behaviors. The bifurcation
parameters are considered in the following three cases:

(i) varying ℎ in the range 2.7 ⩽ ℎ ⩽ 3.5, and fixing 𝜃 =0.6, 𝑠 = 0.2, 𝛿 = 0.0011, 𝛾 = 0.103,
(ii) varying ℎ in the range 1.5 ⩽ ℎ ⩽ 2.6, and fixing 𝜃 =0.2, 𝑠 = 1.25, 𝛿 = 0.005, 𝛾 = 0.465,

(iii) varying ℎ in the range 1.5 ⩽ ℎ ⩽ 1.57, and fixing 𝜃 =0.2, 𝑠 = 4.17, 𝛿 = 0.033, 𝛾 = 0.31.
For Case (i). Let 𝜃 = 0.6, 𝑠 = 0.2, 𝛿 = 0.0011, and𝛾 = 0.103, and then system (4) has only one positive fixed
point (𝑥∗, 𝑦∗) = (0.5205, 0.4220). After a simple calculation,
we obtain 𝛼1 = −0.2195 ̸= 0 and 𝛼2 = −13.4227 < 0.
We can discover that system (4) with the above coefficients(𝜃, 𝑠, 𝛿, 𝛾, ℎ) = (0.6, 0.2, 0.0011, 0.103, 2.857) ∈ 𝐹1 satisfies
all the conditions of the Theorem 3. Figure 1 shows the
bifurcation diagram in the ℎ − 𝑥 plane with the parameters
given by case (i), from which we observe that the fixed point(0.5205, 0.4220) is stable for ℎ < 2.857 and loses its stability
at ℎ = 2.857. We also observe that there is cascade of period-
doubling.ThemaximumLyapunov exponents corresponding
to bifurcation diagram are computed. Figure 2 shows the
phase portrait of period-1, 2, 4, and 8 orbits and chaotic sets
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Figure 1: Lyapunov exponents and bifurcation diagram in the ℎ-𝑥 plane with the parameters given by case (i).
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Figure 2: Phase portraits for various values of ℎ in Figure 1.

for different values of ℎ. The maximum Lyapunov exponents
corresponding to ℎ = 3.35 are larger than 0 that confirm the
existence of the chaotic sets.

For Case (ii). System (4) has only one positive fixed point(0.376, 0.2981) when 𝜃 = 0.2, 𝑠 = 1.25, 𝛿 = 0.005, and𝛾 = 0.465. After calculation of the positive fixed point of
system (4), the Neimark-Sacker bifurcation emerges at ℎ =1.5569 and its eigenvalues are 𝜆, 𝜆 = 0.6199 ± 𝑖0.7847.
For ℎ = 1.5569, we have |𝜆, 𝜆| = 1, 𝑙 = 0.24415 > 0,𝑏 = 0.5998. This shows the correctness of Theorem 4. From

Figure 3, we observe that the fixed point (0.376, 0.2981) of
system (4) is stable for ℎ < 1.5569, that it loses its stability
at ℎ = 1.5569, and that an invariant circle appears when
the parameter ℎ exceeds 1.5569. The maximum Lyapunov
exponents corresponding to Figure 3 are calculated and
plotted in these. For ℎ > 1.5669, some Lyapunov exponents
are bigger than 0 and some are smaller than 0, so there
exist stable fixed point or stable period windows in the
chaotic region. In general the positive Lyapunov exponent
is considered to be one of the characteristics implying the
existence of chaos [37–40]. The phase portraits which are
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Figure 3: Lyapunov exponents and bifurcation diagram in the ℎ-𝑥 space for ℎ = 1.5–2.6 with the parameters given by case (ii).

associated with Figure 3 are displayed in Figure 4, which
clearly depicts how a smooth invariant circle bifurcates from
the stable fixed point (0.376, 0.2981) and periodic orbits and
attracting chaotic sets.

For Case (iii). Vary ℎ in the range 1.5 ⩽ ℎ ⩽ 1.57, and
fix 𝜃 = 0.2, 𝑠 = 4.17, 𝛿 = 0.033, and 𝛾 = 0.31. We
know that theNeimark-Sacker bifurcation emerges only from(𝑥∗, 𝑦∗) = (0.0823, 0.2494) at ℎ = 1.5107, and its eigenvalues
are 𝜆1,2 = −0.5945 ± 𝑖0.8041. For ℎ = 1.5107, we have|𝜆1,2| = 1, 𝑙 = 0.2684 > 0, and 𝑏 = −3.3752. This shows the
correctness ofTheorem 4. From Figure 5, we observe that the
fixed point (𝑥∗, 𝑦∗) = (0.0823, 0.2494) of system (4) is stable
for ℎ < 1.5107, that it loses its stability at ℎ = 1.5107, and
that an invariant circle appears when the parameter ℎ exceeds1.5107.ThemaximumLyapunov exponents corresponding to
Figure 5 are calculated and plotted in these. Figure 6 shows
phase portraits in the 𝑠 − 𝑥 plane with the parameters given
by case (iii).

6. Chaos Control

In this section, we apply the state feedback control method
[24, 41, 42] to stabilize chaotic orbits at an unstable fixed point
of (4).

Consider the following controlled form of system (4):

𝐹 : (𝑥𝑦)
→ (𝑥 + ℎ [(𝑥 + 𝜃𝑦) (1 − 𝑥 − 𝑦) − 𝛿𝑥 − 𝑠𝑥𝑦] + 𝑢𝑦 + ℎ [𝑠𝑥𝑦 − (𝛿 + 𝛾) 𝑦] ) (71)

with the following feedback control law as the control force:𝑢 = −𝑘1 (𝑥 − 𝑥∗) − 𝑘2 (𝑦 − 𝑦∗) , (72)

where 𝑘1 and 𝑘2 are the feedback gain and (𝑥∗, 𝑦∗) is the
positive point of model (4). The Jacobian matrix 𝐽 of the

controlled system (71) and (72) evaluated at the point (𝑥∗, 𝑦∗)
is given by

𝐽 (𝑥, 𝑦) = (𝑎11 − 𝑘1 𝑎12 − 𝑘2𝑎21 𝑎21 ) , (73)

where 𝑎11, 𝑎12, 𝑎21, 𝑎22 are given in (26). The characteristic
equation of the Jacobian matrix is

𝜆2 − (𝑎11 + 𝑎22 − 𝑘1) 𝜆 + 𝑎22 (𝑎11 − 𝑘1)− 𝑎21 (𝑎12 − 𝑘2) = 0. (74)

Assume that the eigenvalues are given by 𝜆1 and 𝜆2; then𝜆1 + 𝜆2 = 𝑎11 + 𝑎22 − 𝑘1 (75)

and

𝜆1𝜆2 = 𝑎22 (𝑎11 − 𝑘1) − 𝑎21 (𝑎12 − 𝑘2) . (76)

The lines of marginal stability are determined by solving
the equation 𝜆1 = ±1 and 𝜆1𝜆2 = 1. These conditions
guarantee that the eigenvalues 𝜆1 and 𝜆2 have modulus less
than 1.

Assume that 𝜆1𝜆2 = 1, and from (76) we have

𝑙1: 𝑘1𝑎22 − 𝑘2𝑎21 = 𝑎11𝑎22 − 𝑎12𝑎21 − 1. (77)

Assume that 𝜆1 = 1, and from (75) and (76) we have

𝑙2: 𝑘1 (1 − 𝑎22) − 𝑘2𝑎21= 𝑎11 + 𝑎22 − 1 − 𝑎11𝑎22 + 𝑎12𝑎21. (78)

Assume that 𝜆1 = −1, and from (76) we have

𝑙3: 𝑘1 (1 + 𝑎22) − 𝑘2𝑎21= 𝑎11 + 𝑎22 + 1 + 𝑎11𝑎22 − 𝑎12𝑎21. (79)
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Figure 4: Phase portraits for various values of ℎ in Figure 3.

The stable eigenvalues lie within a triangular region by
lines 𝑙1, 𝑙2, and 𝑙3 (see Figure 7).

We have performed some numerical simulations to see
how the state feedback method controls the unstable fixed
point. Parameter values are fixed as 𝜃 = 0.2, 𝑠 = 1.25,𝛿 = 0.005, 𝛾 = 0.465, and ℎ = 2.3. The initial value (0.3, 0.1),
and the feedback gain 𝑘1 = 0.91, 𝑘2 = 1.5. It is shown in

Figure 8 that a chaotic trajectory is stabilized at the fixed point(𝑥∗, 𝑦∗) = (0.376, 0.2981).
7. Conclusion

In this paper, we mainly investigated the existence and
stability of the nonnegative fixed points of system (4) and
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flip bifurcation and Neimark-Sacker bifurcation under some
conditions at the unique positive fixed point (𝑥∗, 𝑦∗) by using
manifold theorem and bifurcation theory and also proved the
chaos in the sense of Marotto. Our main results are given in
Propositions 1, 2 and Theorems 3, 4, and 9 and numerical
simulations in Section 5. In the details of the result, when
the integral step size ℎ is chosen as a bifurcation parameter,
the discrete-time parasite-host system exists with much
richer nonlinear dynamical behaviors. Seen from Figures 1–
6, there exist period-1, 2, 4, and 8 orbits, attracting invariant
cycles, and even stranger chaotic attractors. These results

demonstrate that the integral step size ℎ makes differences
corresponding to the local and global stability of the discrete-
time parasite-host system. Moreover, Figure 1 shows that
the system exists in flip bifurcation, which proves the cor-
rectness of Theorem 3. In addition, Figure 1 demonstrates
the system exists with other complex dynamics including
stable coexistence, period-doubling bifurcations. Figures 3
and 5 show that the system exists with Neimark-Sacker
bifurcation, which proves the correctness of Theorem 4. The
phase portraits corresponding to Figures 1, 3, and 5 are shown
in Figures 2, 4, and 6. These figures show that, along with
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step ℎ increase, the stability properties of the equilibriumwill
be lost and the flip bifurcation, Neimark-Sacker bifurcation,
and chaos phenomenon will appear. Specifically, we have
stabilized the chaotic orbits at an unstable fixed point using
the feedback control method.

However, in this paper we only present the numerical
results. In our future work, in order to investigate the more
biological significance of system (4), we expect to obtain some
real data to illustrate the validity of our theoretical results
and to study the effect of bifurcations and chaos on a discrete
parasite-host model.
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