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This study considers a multilevel assembly system with several components in each sublevel. It is assumed that actual lead time for
all components is probabilistic; and periodic order quantity (POQ) policy for ordering is utilized. If at a certain level a job is not
received at the expected time, a delay is incurred at the delivery of production at this level and this may result in backorders of
the finished product. It is assumed in this case that a fixed percentage of the shortage is backlogged and other sales are lost. In the
real situation, some but not all customers will wait for backlogged components during a period of shortage, such as for fashionable
commodities or high-tech products with the short product life cycle.The objective of this study is to find the planned lead time and
periodicity for the total components in order to minimize the expected fixed ordering, holding, and partial backlogging costs for
the finished product. In this study, it is assumed that a percentage of components at each level are scrap. A general mathematical
model is suggested and the method developed can be used for optimization planned lead time and periodicity for such an MRP
system under lead time uncertainties.

1. Introduction

Material requirements planning (MRP) is a computer-based
set of planning technique that looks at future requirement
for a finished product in terms of a master production
schedule and utilizes this, together with the bill of materials,
inventory status data, and lead time information, to generate
the requirements for all the subassemblies, components, and
raw materials that make up a finished product [1].

The first computer programs that attempted to perform
MRP calculations were produced in the late 1950s and early
1960s in theUnited States, at a timewhen business computing
was at its infancy. A lot of previous studies on the MRP
systemhave been carried out on the deterministic framework.
Nevertheless, in the natural and industrial context, various
parameters affect production processes. Material Require-
ment Planning (MRP) is a systems approach utilized in
production processes for planning. Several forms of uncer-
tainty affect the production process such as machine break-
downs, transport delays, and customer demand variations,

and different approaches have been advocated for MRP with
uncertainty.

In real life situation, the deterministic assumptions
embedded in MRP are often too limited [2]. Lead time is a
very vital parameter in production and inventory costs.Many
literatures on production planning and inventory control
assume that lead time is constant or planned to zero but in
fact, lead time is hardly constant. In most cases, fluctuations
of the lead time greatly decrease the system’s performance.
To reduce the effects of random factors, companies utilize
safety stock (safety lead time), but these stores are expensive.
In contrast, if there is no adequate storage, system will have
a corresponding shortage and shortage costs. So, the aim of
this study is to minimize total costs that include backorders
and holding costs. Murthy and Ma [3] consider a review
on MRP with uncertainty because of quality variations in
the production process. They started with a brief overview
of deterministic MRP and then went on to discuss MRP
with uncertainty and the alternate approaches proposed for
planning with uncertainty. Yeung et al. [4] propose a review
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on parameters having an impact on the effectiveness of MRP
systems under stochastic environments. Guillaume et al. [5]
concluded that taking into account the uncertainty of real
data in the planning process is a real challenge for companies
nowadays. They suggested that, in this communication, the
demand uncertainty should be taken into account, alongside
the uncertainty on the lead times, for deciding which quanti-
ties of components should be released and when.

The research on the uncertainty lead time bias on MRP
approach used lot-for-lot or periodic order quantity for
ordering the products.The lot-for-lot method places an order
for each period in which there is a net requirement. Hence,
no inventory is carried from period to period. This method
is utilized when setup costs are low or inventory carrying
costs are high. The periodic order quantity (POQ) lot sizing
method is based on the economic order quantity (EOQ).The
POQmethod is an adjustment to the EOQmethod for time-
phased demand [6].

There are several publications on one level with multi-
components assembly system. Researcher utilized different
method for finding optimal solution such as minimizing
the sum of total costs. Song [7] studied a basic continuous-
time single-item inventory model where demands form a
compound Poisson process and lead times are stochastic.
They focused on the behavior of the optimal base-stock level
in response to stochastically larger ormore variable lead times
and reveal that a stochastically larger lead time needs a higher
optimal base-stock level.The effect of lead-time variability on
optimal policies depends on the inventory cost structure: A
more variable lead time needs a higher optimal base-stock
level if and only if the unit penalty (holding) cost rate is high
(low). Yano [8] utilized an analytic approach to determine
optimal planned lead times in serial production systems,
in which the actual procurement and processing times may
be stochastic, demand is deterministic, and the lot-for-lot
policy is utilized. The distribution of lead times is supposed
stationary. The considered cost is the sum of inventory
holding and job tardiness costs.The author presents a general
solution procedure for two-stage serial systems. Chu et al.
[9] considered single period model by utilizing lot-for-lot
order policy and the objective was to determine planned lead
time, to minimize the sum of holding and tardiness costs.
The model gives optimal values of the component planned
lead times for such a one-level assembly system with random
component procurement times.

Ould-Louly and Dolgui [10] utilized Markovian’s model
for a dynamic multiperiod planning and one-level assembly
system with the aim of finding safety lead time, such as
to minimize the sum of holding and backlogging costs.
Chauhan et al. [11] consider one-level product assembly
scenario where some components cannot be stocked because
of high component cost and risk. Component lead times
are stochastic and associated distribution function is known
in advance. The objective is to determine the ordering
time for each component so as to minimize the sum of
expected holding and backlogging costs. An approach to
solve this problem is proposed and the algorithm is tested on
a randomly generated data set.

Louly et al. [12] considered one-level assembly system
again and utilized a Branch and Bound method for finding
optimal planned lead time with lot-for-lot order policy. The
goal was to find the optimalMRPoffsetting, so as tominimize
the sum of setup cost and average holding costs. Sadeghi et
al. [13] considered a multiperiod serial production system
when lead times for all components are uncertainties. They
assumed that lead times for all stages have same distribution
and the goal is to minimize the sum of fixed ordering,
holding, and backlogging costs. They suggested a general
mathematical model and then find optimal planning lead
time, ordering quantity, and periodic time.

There are some publications for modelling and solving
two levels and multicomponent assembly system. Li et al.
[14] studied a two-echelon supply chain inventorymodel with
controllable lead time and service level constraint in fashion
supply chains and assume that the unit cost of compressing
lead time follows exponential distribution and investigate
the optimal ordering quantity and production quantity in
the fashion supply chain by minimizing the joint total cost.
Hnaien et al. [15] considered two-level assembly systems and
utilized genetic algorithm to find the release dates for the
components at level 2. Sakiani et al. [16] demonstrated that
some reconsideration for the Hnaien et al. research [17] is
unavoidable andproved that themain problem in that study is
due to wrongmathematical model.This model was corrected
by solving a new model through a new approach based on
NSGA-II called Guided NSGA-II. Sadeghi et al. [18] consider
two-level production and assembly system and proposed a
method for finding a planned lead time and periodic order
quantity (POQ).

Sadeghi et al. [19] considered supply planning for mul-
tiperiod and multiobjective serial production systems under
lead-time uncertainties. The objective of this model is to find
the planned lead time and periodicity for the total items so
as to minimize the expected fixed ordering, holding, and
partial backlogging costs and to maximize the customer
service level for the finished product. Sadeghi et al. [20]
consider a three-level assembly system with various types of
components withmultiperiod ordering system.The lead time
of all components is uncertain and periodic order quantity
(POQ) policy is utilized for the planning of components.
They modelled three-level assembly system and used Monte-
Carlo simulation to solve this model. Table 1 summarizes the
existing models for assembly systems. Ben Ammar et al. [21]
suggest a mathematical model for multilevel assembly sys-
tems under a fixed demand and uncertainty of components
lead times.The cost function in this study included fixed unit
inventory cost, finished product cost, and a backlogging. A
mathematical model was suggested for supply planning of
multilevel assembly system by using lot-for-lot order policy,
but they did not suggest a solution method for this model.
Then in a similar research, Ammar et al. [22] utilized genetic
algorithm (GA) method to minimize the sum of the average
total costs.This reserch does not consider partial backlogging
costs and does not consider scrapping for components at each
level and order policy is not POQ.

Moreover, in reality, for fashionable commodities and
high-tech products with short life cycles, the backorder rate
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is diminishing with the length of waiting time. Customers
who experience stock-out will be less likely to buy again from
the suppliers; they may turn to another store to purchase
the goods. The sales for the product may decline due to
the introduction of more competitive product or the change
in consumers’ preferences. The longer the waiting time, the
lower the backlogging rate. This leads to a larger fraction of
lost sales and a less profit. As a result, taking the factor of
partial backlogging into account is necessary [23].

At the current research multilevel assembly system with
partial backlogging, components scrap, and POQ policy is
considered. In Table 1, it is obvious that the research for
multilevel assembly system is also limited.

In this study, a multilevel assembly system with various
types of components in each level is considered. The system
costs are sum of fixed ordering cost and holding and partial
backordering costs. It is assumed that, in each level, a percent-
age of components at each level are scrap. A general model is
utilized for multilevel MRP under uncertainty components
lead times that apparently have not been previously studied.
This model utilized MRP approach with periodic order
quantity (POQ) policy utilized for the supply planning of
components. Table 1 summarizes the existing models for
assembly systems under uncertainty lead time.

2. Notation and Assumptions

In this study, multiperiod and multilevel production sys-
tems under lead-time uncertainties, periodic order quantity
(POQ) policy, and partial backordering were considered.The
product should be sent at delivery time for customer. If these
products were produced before delivery time, they should be
held until being delivered to customers and if products were
produced after delivery time, then backordering is accrued.

Lead time for each component is uncertain; so, there are
three states for each component:

(a) Planned lead time and actual lead time are the same
(Figure 1).

(b) Planned lead time is greater than actual lead time
(Figure 2).

(c) Planned lead time is smaller than actual lead time
(Figure 3).

If actual lead time is equal to planned lead time, there
will be no extra cost for the system and if production of a
component is finished before planned time, holding cost for
this component is added to the system cost.

In each production cycle, the production for needs of 𝑃
periods should be produced, because the ordering system is
POQ. Table 2 shows amultiperiod assembly system for𝑃 = 4.

The assumption of this model is as follows:

(i) A percentage of components at each level are scrap.
(ii) The demand at each period is constant.
(iii) Ordering policy is POQ.
(iv) Lead time for each component is uncertainty.
(v) Shortage is allowed and it is partial backlogging.

Planned lead time

Delivery

Actual lead time

Start of
production time

Figure 1: Planned lead time and actual lead time are the same.

Planned lead time

Actual lead time

Start of
production

Delivery
time

Figure 2: Planned lead time is bigger than actual.

Planned lead time

Actual lead time

Delay

Start of
production

Delivery
time

Figure 3: Planned lead time is smaller than actual lead time.

The aim is finding planned lead time for each component and
periodicity (𝑃) for minimizing the sum of the holding costs
for the components and backordering cost, lost sale cost, and
holding cost for the finished product.

Notation
Notations are as follows:

𝑡, 𝑖, 𝑗: index of period’s 𝑡 = 1, 2, 3, . . .,
𝑁: total level of assembly system,
𝑚
𝑖𝑗
: total number of components in level 𝑖 with up-

level 𝑗,
𝐴: fixed ordering cost,
𝑥
0
: planned lead time in level 1,

𝑥
𝑖
: planned lead time for component 𝑖 in level 1,

𝑥
𝑖𝑗𝑘
: planned lead time of component 𝑗 in level 𝑖 with

up-level 𝑘,
ℎ
𝑖𝑗𝑘
: unit holding cost of component 𝑗 in level 𝑖 per

unit of time with up-level 𝑘,
𝑎
𝑖𝑗𝑘
: set of the required components to assemble

component 𝑗 in level 𝑖 with up-level 𝑘,
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Table 1
Type of
system Author(s) Order policy Criteria Solution methods

One-level

Chu et al. (1993) [9] Lot-for-lot Holding and backlogging cost Iterative algorithm
Proth et al. (1997) [24] Lot-for-lot Holding and backlogging cost Heuristic algorithm
Dolgui et al. (2002) [25] Lot-for-lot Holding and backlogging cost Markovian model

Ould-Louly and Dolgui
(2004) [10] Lot-for-lot Holding and backlogging costs

Markovian and Newsboy
model for a dynamical
multiperiod planning

Louly et al. (2008) [26] Lot-for-lot
Minimized holding cost with

keeping a high customer service
level

Optimization

Louly and Dolgui (2011)
[27] POQ holding, finished product

backlogging, and setup costs Branch and Bound

Louly et al. (2012) [12] POQ Setup and holding costs Optimization

Sadeghi et al. (2013) [13] POQ Minimized fixed ordering, holding,
and backlogging costs Optimization

Sadeghi et al. (2015) [19] POQ Minimized fixed ordering, holding,
and backlogging costs Optimization

Two-level

Yano (1987) [8] Lot-for-lot Sum of holding and tardiness costs Nonlinear programming
Tang and Grubbström

(2003) [28] Lot-for-lot Stock-out and inventory holding
costs

Laplace transform
procedure

Axsäter (2006) [29]
Approximate

decomposition technique,
continuous distributions

Hnaien et al. (2009) [15] Lot-for-lot Holding and backlogging cost Genetic algorithm
optimization

Hnaien et al. (2010) [17] Lot-for-lot Holding costs to maximize the
customer service level Genetic algorithms

Sakiani et al. (2012) [16] POQ Minimized holding cost and
maximized customer service

NSGA-II algorithm,
multiobjective, tournament

selection

Sadeghi et al. (2015) [18] POQ Minimized sum of fixed ordering,
holding, and backlogging costs Optimization

Multi-Level

Ammar et al. (2014) [22] Lot-for-lot Holding, backlogging, and
inventory holding cost

Simulation, mathematical
model, GA

Current paper POQ

Minimized expected fixed ordering,
holding, and partial backlogging

cost with a percentage of
components at each level are scrap

Optimization

Table 2: An example of MRP for POQ policy (𝑃 = 4).

Period 1 2 3 4 5 6 7 8
Demand D D D D D D D D
Initial inventory 0 0 0 0 0 0 0 0
Planned order receipts 4D 0 0 0 4D 0 0 0

𝐷: demand for final product at period 𝑡,

ℎ: unit holding cost for final product,

𝑏: unit backorder for final product,

�̂�: backlogging costs for each component in each
period,

𝐵: lost sales for each component in each period,

𝛽: the percentage of backordering which is backlog-
ging,
𝛼
𝑖
: the present of west for level 𝑖,

𝑙
𝑖𝑗𝑘
: actual lead time of component 𝑗 in level 𝑖 with

parent 𝑘,
𝑃(𝑙
𝑖𝑗𝑘

): the probability distribution of lead time of
component 𝑗 in level 𝑖 with parent 𝑘,
�̂�(𝑥, 𝑃): average of total cost in each period.

Variables
Variables are as follows:

𝑃: periodic order quantity,
𝑋: planned lead time for components (𝑥 = (𝑥

0
,

𝑥
1
, 𝑥
2
, . . .)).
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Figure 4: Schematic view of planned and actual lead time action on the sublevel𝑁.
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∏ i
�=1(1 − 𝛼�)

D

(1 − 𝛼1)(1 − 𝛼2)

D

(1 − 𝛼1)

Figure 5: Percentage of waste for components at each level.

3. Model Development

Due to uncertain component’s lead time, difference compo-
nents on each sublevel do not arrive at the same time, so the
components which arrive earlier than others should be held
until all components arrive at this level. Difference between
actual and planned lead time is used for finding the delivery
time, and its valuemay be equal to zero or positive or negative.
The largest difference between actual and planned lead time
shows the latest arrived component. If 𝑙

𝑖𝑗𝑘
is actual lead time

and 𝑥
𝑖𝑗𝑘

is planned lead time, then𝑅
𝑖𝑗
= Max

𝑘
(𝑙
𝑖𝑗𝑘

−𝑥
𝑖𝑗𝑘

) is the
difference timewith planned delivery time for level 𝑖. Figure 4
illustrates a schematic view of planned and actual lead time
action on the same sublevel.

In this system, at each level, a percentage of components
are scrap. Figure 5 shows the percentage of waste for compo-
nents at each level.

According to Figures 4 and 6, it is obvious that the
components which arrive earlier than others should be held
until all components arrive at this level. A percentage of
components at this level are scrap. If 𝛼

𝑖
is a percentage of

component’s scrap at level 𝑖, then the cost for sublevel 1 to 𝑁

is as follows:
Cost for sublevel𝑁:

Cost (𝑥
𝑁𝑗

, 𝑃) =
𝐷 × 𝑃

∏
𝑁−1

𝑞=1
(1 − 𝛼

𝑞
)

× [ℎ
𝑁1

(𝑥
𝑁1

+ 𝑅
𝑁

− 𝐿
𝑁1

) + ℎ
𝑁2

(𝑥
𝑁2

+ 𝑅
𝑁

− 𝐿
𝑁2

)

+ ⋅ ⋅ ⋅ + ℎ
𝑁𝑚𝑁

(𝑥
𝑁𝑚𝑁

+ 𝑅
𝑁

− 𝐿
𝑁𝑚𝑁

)]

=
𝐷 × 𝑃

∏
𝑁−1

𝑞=1
(1 − 𝛼

𝑞
)

×

𝑚𝑁

∑

𝑗=1

[ℎ
𝑁𝑗

(𝑥
𝑁𝑗

+ 𝑅
𝑁

− 𝐿
𝑁𝑗

) | 𝐿
𝑁𝑗

− 𝑥
𝑁𝑗

≤ 𝑅
𝑁
] .

(1)

Cost for sublevel 𝑖 (𝑖 = 2, 3, . . . , 𝑁 − 1):

Cost
𝑖
(𝑥
𝑖𝑗
, 𝑃) =

𝐷 × 𝑃

∏
𝑖−1

𝑞=1
(1 − 𝛼

𝑞
)

× [ℎ
𝑖1,1

(𝑥
𝑖1,1

+ 𝑅
𝑖,1

− 𝑅
𝑖+1,1

− 𝐿
𝑖1,1

) + ℎ
𝑖2,1

(𝑥
𝑖2,1

+ 𝑅
𝑖,1

− 𝑅
𝑖+1,1

− 𝐿
𝑖2,1

)

+ ⋅ ⋅ ⋅ + ℎ
𝑖𝑚𝑖 ,𝑘

(𝑥
𝑖𝑚𝑖 ,𝑘

+ 𝑅
𝑖,𝑚𝑖

− 𝑅
𝑖+1,𝑚𝑖

− 𝐿
𝑖𝑚𝑖 ,𝑘

)]

=
𝐷 × 𝑃

∏
𝑖−1

𝑞=1
(1 − 𝛼

𝑞
)

×

𝑚𝑖

∑

𝑗=1

𝑚𝑖,𝑗

∑

𝑤=1

[ℎ
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

− 𝐿
𝑖𝑗𝑤

) | 𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

≤ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

] .

(2)
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Item
322

Item
32m

Item
3m1

Item
3m2

Item
3mm

Item
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Level 1

Level 2

Level 3

Level i − 1

Level i

Item i, (i − 1), j

Item i, (i − 1), 2

Item i, (i − 1), 1

· · ·

· · ·· · ·· · ·
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Figure 6: Schematic view of planned and actual lead time action on the sublevel 𝑖.

The total holding cost for 𝑖 (𝑖 = 1, 2, . . . , 𝑁 − 1) can be
formulated as

Cost (𝑥
𝑖
, 𝑃) =

𝑁−1

∑

𝑖=2

𝐷 × 𝑃

∏
𝑖−1

𝑞=1
(1 − 𝛼

𝑞
)

×

𝑚𝑖

∑

𝑗=1

𝑚𝑖,𝑗

∑

𝑤=1

[ℎ
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

− 𝐿
𝑖𝑗𝑤

) | 𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

≤ 𝑅
𝑖,𝑗
] ,

(3)

where 𝑅
𝑖,𝑗

= Max
𝑤=1,2,...,𝑚𝑖𝑗

(𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖+1,𝑗,𝑤

).

By summarizing (1) and (3), total holding cost can be
formulated as follows:

Cost
1
(𝑥
𝑖
, 𝑃) =

𝑁−1

∑

𝑖=1

𝐷 × 𝑃

∏
𝑖−1

𝑞=1
(1 − 𝛼

𝑞
)

×

𝑚𝑖

∑

𝑗=1

𝑚𝑖,𝑗

∑

𝑤=1

[ℎ
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

− 𝐿
𝑖𝑗𝑤

) | 𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

≤ 𝑅
𝑖,𝑗
] ,

(4)

where
𝑅
𝑖,𝑗

= Max
𝑤=1,2,...,𝑚𝑖𝑗

(𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖+1,𝑗,𝑤

) , 𝑅
𝑁+1,𝑗

= 0. (5)
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R

Figure 7: Schematic view of planned and actual lead time action on
level one.

After all components are produced at level 𝑖 + 1, the
component at level 𝑖 will be started. If at a certain level, a job
is not received at the expected time, a delay is incurred at the
delivery of production at this level and results in backorders
of the finished product. In this case, it is assumed that a fixed
percentage of the shortage is backlogged and other sales are
lost. In this level, if production is carried out before delivery
time, product should be held until delivery time and then sent
to the customer and if production is carried out after delivery
time, the products are sent to the customer by delay. Figure 7
illustrates a schematic view of planned and actual lead time
action on level one.

Before producing a multilevel production system, the
production system should be scheduled and planned lead
time for all components should be determined. At each
production cycle, all order is produced for 𝑃 period; then
at each production cycle, 𝑃 × 𝐷 units product is produced.
When production product is initiated, actual lead time may
be equal or bigger than or small than planned lead time.
Therefore, to calculate the cost, these three stats should be
considered.

State 1. If planned delivery time is equal to actual delivery
time for first level, then 𝑃 × 𝐷 units of product are achieved
according to planned schedule and sent to the customer
period by period (Figure 8). At each period, 𝐷 unit of this
product is sent to the customer and others are held. A
percentage of components at this level are scrap. If 𝛼

1
is a

percentage of component’s scrap in this level, then the cost
for this state is as follows:

Cost
2 (𝑥, 𝑃)

=
1

1 − 𝛼
1

[(𝑃 − 1) × 𝐷 + (𝑃 − 2) × 𝐷 + ⋅ ⋅ ⋅ + 𝐷]

× 𝑃 (𝐿
0
= 𝑥
0
)

=
𝑃 × (𝑃 − 1)

2 × (1 − 𝛼
1
)
× ℎ × 𝐷 × 𝑃 (𝐿

0
= 𝑥
0
− 𝑅) .

(6)

State 2. If planned delivery time is greater than actual delivery
time for first level, then 𝑃 × 𝐷 units of product are achieved
before planned schedule, so all products should be held until
planned delivery time and then sent to customer period

by period (Figure 9). Therefore, the cost for this state is as
follows:

Cost
3 (𝑥, 𝑃) =

1

(1 − 𝛼
1
)
[ℎ × 𝐷 × 𝑃 × (𝑥

0
− 𝐿
0
+ 𝑅)

+
𝑃 × (𝑃 − 1)

2
× ℎ × 𝐷] × 𝑃 (𝐿

0
< 𝑥
0
− 𝑅) .

(7)

State 3. If planned delivery time is smaller than actual delivery
time for first level, then 𝑃 × 𝐷 units of product are achieved
after planned schedule; then the customer’s order is carried
out with delay and backordering is accrued (Figure 10). A
fixed percentage of the shortage is backlogged and other sales
are lost. Therefore, the cost for this state is as follows:

Cost
4 (𝑥, 𝑃) =

1

(1 − 𝛼
1
)
× [ℎ × 𝐷 × 𝑃 × (𝑥

0
− 𝐿
0
+ 𝑅)

+
(𝑃 + 𝑥

0
− 𝐿
0
− 𝑅) × (𝑃 − 1 + 𝑥

0
− 𝐿
0
− 𝑅)

2
× ℎ

× 𝐷] × 𝑃 (𝐴𝐿
0
> 𝑃𝐿
0
− 𝑅) +

1

(1 − 𝛼
1
)

× [
(𝐿
0
− 𝑥
0
+ 𝑅) × (𝐿

0
− 𝑥
0
+ 𝑅 + 1)

2
× 𝛼 × �̂�

× 𝐷] × 𝑃 (𝐴𝐿
0
> 𝑃𝐿
0
− 𝑅) +

1

(1 − 𝛼
1
)

× [
(𝐿
0
− 𝑥
0
+ 𝑅) × (𝐿

0
− 𝑥
0
+ 𝑅 + 1)

2
× (1 − 𝛼)

× 𝐵 × 𝐷] × 𝑃 (𝐿
0
> 𝑥
0
− 𝑅) .

(8)

Total costs are expressed as follows:

Cost (𝑥, 𝑃) = Start up cost + Cost
1 (𝑥, 𝑃) + Cost

2 (𝑥,

𝑃) + Cost
3 (𝑥, 𝑃) + Cost

4 (𝑥, 𝑃) = 𝐴

+

𝑁−1

∑

𝑖=1

𝐷 × 𝑃

∏
𝑖−1

𝑞=1
(1 − 𝛼

𝑞
)

×

𝑚𝑖

∑

𝑗=1

𝑚𝑖,𝑗

∑

𝑤=1

[ℎ
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

− 𝐿
𝑖𝑗𝑤

) | 𝐿
𝑖𝑗𝑤

− 𝑥
𝑖𝑗𝑤

≤ 𝑅
𝑖,𝑗
] +

1

(1 − 𝛼
1
)
× [ℎ × 𝐷 × 𝑃 × (𝑥

0
− 𝐿
0

+ 𝑅) +
(𝑃 + 𝑥

0
− 𝐿
0
− 𝑅) × (𝑃 − 1 + 𝑥

0
− 𝐿
0
− 𝑅)

2

× ℎ × 𝐷] × 𝑃 (𝐴𝐿
0
> 𝑃𝐿
0
− 𝑅) +

1

(1 − 𝛼
1
)
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Figure 8: Planning problem when planned delivery time is equal to actual delivery time.
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Figure 10: Planned lead time is smaller than to actual lead time for first level.
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× [
(𝐿
0
− 𝑥
0
+ 𝑅) × (𝐿

0
− 𝑥
0
+ 𝑅 + 1)

2
× 𝛼 × �̂�

× 𝐷] × 𝑃 (𝐴𝐿
0
> 𝑃𝐿
0
− 𝑅) +

1

(1 − 𝛼
1
)

× [
(𝐿
0
− 𝑥
0
+ 𝑅) × (𝐿

0
− 𝑥
0
+ 𝑅 + 1)

2
× (1 − 𝛼)

× 𝐵 × 𝐷] × 𝑃 (𝐿
0
> 𝑥
0
− 𝑅) .

(9)
By simplifying (9), the total cost is as follows:

Cost (𝑥, 𝑃) = 𝐴 + [

[

𝑃 (𝑃 − 1)

2 (1 − 𝛼
1
)
ℎ × 𝐷 +

ℎ × 𝑃 × 𝐷

(1 − 𝛼
1
)

× 𝐸 (𝑥
0
− 𝐿
0
− 𝑅) + 𝑃 × 𝐷

×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝐿
𝑖𝑗𝑤

− 𝑘
𝑖+1,𝑗

)

∏
𝑖

V (1 − 𝛼V)

+
𝐷

2 × (1 − 𝛼
1
)
× (ℎ)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)] × 𝑃 (𝑙

0
≥ 𝑥
0
− 𝑅)

+ 𝛽 ×
𝐷

2 × (1 − 𝛼
1
)
× (�̂�)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)] × 𝑃 (𝑙

0
≥ 𝑥
0
− 𝑅)

+ (1 − 𝛽) ×
𝐷

2 × (1 − 𝛼
1
)
× (𝐵)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)]

× 𝑃 (𝑙
0
≥ 𝑥
0
− 𝑅)]

]

.

(10)

The cost function is a random variable; therefore, to study
the considered multiperiod problem, explicit closed forms
should be obtained for the average cost and the average
number of shortages on the infinite horizon according to the
following expressions:

�̂� (𝑥, 𝑃) = lim
𝑟→∞

𝑟

∑

𝑡=1

𝐶 (𝑥, 𝑃)

𝑃 × 𝑟
⇒ . (11)

Then by using (10), the expressed unit cost will be as follows:

Cost (𝑥, 𝑃) =
𝐴

𝑃
+ [

[

(𝑃 − 1)

2 (1 − 𝛼
1
)
ℎ × 𝐷 +

ℎ × 𝐷

(1 − 𝛼
1
)

× 𝐸 (𝑥
0
− 𝐿
0
− 𝑅) + 𝐷

×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝐿
𝑖𝑗𝑤

− 𝑅
𝑖+1,𝑗

)

∏
𝑖

V (1 − 𝛼V)

+
𝐷

2 × 𝑃 × (1 − 𝛼
1
)
× (ℎ)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)] × 𝑃 (𝑙

0
≥ 𝑥
0
− 𝑅)

+ 𝛽 ×
𝐷

2 × 𝑃 × (1 − 𝛼
1
)
× (�̂�)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)] × 𝑃 (𝑙

0
≥ 𝑥
0
− 𝑅)

+ (1 − 𝛽) ×
𝐷

2 × 𝑃 × (1 − 𝛼
1
)
× (𝐵)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)]

× 𝑃 (𝑙
0
≥ 𝑥
0
− 𝑅)]

]

.

(12)

According to (12), actual lead time is defined for one period,
but planned lead time is defined for 𝑃 period. Then planned
lead time for one period is equal to 𝑥

𝑃
/𝑃, where 𝑥

𝑃
is planned

lead-time 𝑃 period.
The total cost should be minimized, to find the optimal

solution; the function cost is separated into three parts
comprising constant, linear, and nonlinear parts as shown
below:

Constant part:

([Ĉost (𝑃𝐿, 𝑃)]
1
) =

𝐴

𝑃
+

(𝑃 − 1)

2 (1 − 𝛼
1
)
ℎ × 𝐷. (13)

Linear part:

([Ĉost (𝑃𝐿, 𝑃)]
2
) = 𝐷

×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝐿
𝑖𝑗𝑤

− 𝑅
𝑖+1,𝑗

)

∏
𝑖

V (1 − 𝛼V)
.

(14)

Nonlinear part:

([Ĉost (𝑃𝐿, 𝑃)]
3
)

=
ℎ × 𝐷

(1 − 𝛼
1
)
× 𝐸 (𝑥

0
− 𝐿
0
− 𝑅) +

𝐷

2 × 𝑃 × (1 − 𝛼
1
)

× (ℎ) × [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)]

× 𝑃 (𝑙
0
≥ 𝑥
0
− 𝑅) + 𝛽 ×

𝐷

2 × 𝑃 × (1 − 𝛼
1
)
× (�̂�)

× [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)]

× 𝑃 (𝑙
0
≥ 𝑥
0
− 𝑅) + (1 − 𝛽) ×

𝐷

2 × 𝑃 × (1 − 𝛼
1
)

× (𝐵) × [(𝑙
0
− 𝑥
0
+ 𝑅)
2
+ (𝑙
0
− 𝑥
0
+ 𝑅)]

× 𝑃 (𝑙
0
≥ 𝑥
0
− 𝑅) .

(15)
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The part is not dependent on lead time and linear parts
depended on the value of the lead time in the level 𝑖 (𝑖 =

2, 3, . . . , 𝑁) and it is clear that optimal solution is 𝑥
𝑖𝑗𝑤

=

−𝑅
𝑖,𝑗

+ 𝐿
𝑖𝑗𝑤

+ 𝑅
𝑖+1,𝑗

.
The main parts of the cost function are nonlinear parts.

The part of the cost is convex; hence the optimal solution is
computable for this part.

Theorem 1. Linear part is minimalized when 𝑥
𝑖𝑗𝑤

is equal to
medium of −𝑅

𝑖,𝑗
+ 𝐿
𝑖𝑗𝑤

+ 𝑅
𝑖+1,𝑗

. Consider

𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

(𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝐿
𝑖𝑗𝑤

− 𝑅
𝑖+1,𝑗

)

∏
𝑖

V (1 − 𝛼V)

= 𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

∫ (𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝐿
𝑖𝑗𝑤

− 𝑅
𝑖+1,𝑗

) × 𝑓 (𝐿
𝑖𝑗𝑤

) 𝑑
𝐿 𝑖𝑗𝑤

∏
𝑖

V (1 − 𝛼V)

= 𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

∫ (𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

) × 𝑓 (𝐿
𝑖𝑗𝑤

) 𝑑
𝐿 𝑖𝑗𝑤

∏
𝑖

V (1 − 𝛼V)
− 𝐷

×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

∫ (𝐿
𝑖𝑗𝑤

) × 𝑓 (𝐿
𝑖𝑗𝑤

) 𝑑
𝐿 𝑖𝑗𝑤

∏
𝑖

V (1 − 𝛼V)

= 𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

× (𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑘
𝑖+1,𝑗

)

∏
𝑖

V (1 − 𝛼V)
− 𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

× 𝐸 [𝐿
𝑖𝑗𝑤

]

∏
𝑖

V (1 − 𝛼V)

= 𝐷 ×

𝑁

∑

𝑖=1

∑
𝑚𝑖

𝑗=1
∑
𝑚𝑖𝑗

𝑤=1
ℎ
𝑖𝑗𝑘

𝑎
𝑖𝑗𝑤

× (𝑥
𝑖𝑗𝑤

+ 𝑅
𝑖,𝑗

− 𝑅
𝑖+1,𝑗

− 𝐸 [𝐿
𝑖𝑗𝑤

])

∏
𝑖

V (1 − 𝛼V)
.

(16)

Equation (16) is minimalized when 𝑥
𝑖,𝑗,𝑤

is equal to medium of
−𝑅
𝑖,𝑗

+ 𝐿
𝑖𝑗𝑤

+ 𝑅
𝑖+1,𝑗

.

Theorem 2. Nonlinear part ([Ĉost(𝑃𝐿, 𝑃)]
3
) of the objective

function is convex. Consider

𝜕 [Ĉost (𝑥, 𝑃)]
3

𝜕𝑥
0

=
ℎ × 𝐷

(1 − 𝛼
1
)
−

𝐷

𝑃 × (1 − 𝛼
1
)

× (ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

× (𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

(17)

𝜕
2
[Ĉost (𝑥, 𝑃)]

3

𝜕𝑥2

=
𝐷

𝑃 × (1 − 𝛼
1
)
× (ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

× 𝑃 (𝐿
0
≥ 𝑥
0
− 𝑅) .

(18)

Equation (18) is positive; then objective function is strictly
convex.

The total cost equation �̂�(𝑥, 𝑃) is convex; therefore, to find
the optimal solution, the equation 𝜕[Ĉost(𝑥, 𝑃)]

3
/𝜕𝑥 = 0 is

used. Consider

𝜕 [Ĉost (𝑥, 𝑃)]
3

𝜕𝑥
0

=
ℎ × 𝐷

(1 − 𝛼
1
)
−

𝐷

𝑃 × (1 − 𝛼
1
)

× (ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

× (𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅) = 0 ⇒

(𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

=
ℎ × 𝑃

(ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

.

(19)

To find 𝑃, the values 1, 2, . . . are utilized to obtain the total
cost by (12) and the optimal value of 𝑥.

4. Numerical Example

Let us present an example with two levels and three com-
ponents in sublevel 2. Assuming that the distribution of the
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component’s lead time is uniform, then the value of the lead
time, unit holding costs for all components, ordering cost,
and backordering cost is shown in Table 3.

Demand of this product for each period is constant and
equal to 20 units, setup cost is 100 units, percentage of
backordering is 80%, and others are lost sales.

According to (16), the optimal solution for planned lead
time for level 2 is as follows:

𝑥
1
+ 𝑅 = 𝐸[𝐿

1
] = 4.

𝑥
2
+ 𝑅 = 𝐸[𝐿

2
] = 3.5.

𝑥
3
+ 𝑅 = 𝐸[𝐿

3
] = 4.5.

Consider 𝑃 = 1.

Step 1. Find planned lead time for first level by (19):

(𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

=
ℎ × 𝑃

(ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

=
15 × 1

(15 + 0.8 × 5 + 0.2 × 4)
= 0.757576 ⇒

∫

10

𝑥0−𝑅

(𝐿
0
− 𝑥
0
+ 𝑅 + 1)

1

8
𝑑 (𝐿
0
) = 0.757576 ⇒

(𝑥
0
− 𝑅)
2
− 22 × (𝑥

0
− 𝑅) + 95.75757 = 0 ⇒

(𝑥
0
− 𝑅) = 7.37681 ⇒

𝑥
0
= 7.37681 + 𝑅.

(20)

Step 2. Calculate cost by (12):

Ĉost (𝑥, 1) =
100

1
+ [

15 × 10

(1 − 0.02)
× (7.377681 − 6)

+
10 × 1

(1 − 0.03) × (1 − 0.02)

×

𝑚

∑

𝑖=1

[ℎ
𝑖
(𝑥
𝑖
+ 𝑅 − 𝐿

𝑖
) | 𝐿
𝑖
− 𝑥
𝑖
≤ 𝑅]

⋅
10

1 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4)

× [(𝐿
0
− 7.377681)

2
+ (𝐿
0
− 7.377681)]

× 𝑃 (𝐿
0
≥ 𝑥
0
− 𝑅)] =

100

1
+ [

15 × 10

(1 − 0.02)

× (7.377681 − 6) +
10 × 1

(1 − 0.03) × (1 − 0.02)

× (5 × 0.25 + 3 × 0.375 + 2 × 0.375)

⋅
10

1 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4) × 1.181141]

= 463.0628.

(21)

Consider 𝑃 = 2.

Step 1. Find planned lead time for first level by (19):

(𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

=
ℎ × 𝑃

(ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

=
15 × 2

(15 + 0.8 × 5 + 0.2 × 4)
= 1.515152 ⇒

∫

10

𝑥0−𝑅

(𝐿
0
− 𝑥
0
+ 𝑅 + 1)

1

8
𝑑 (𝐿
0
) = 1.515152 ⇒

(𝑥
0
− 𝑅)
2
− 22 × (𝑥

0
− 𝑅) + 107.8788 = 0 ⇒

(𝑥
0
− 𝑅) = 5.975815 ⇒

𝑥
0
= 5.975815 + 𝑅.

(22)

Step 2. Calculate cost by (12):

Ĉost (𝑥, 1) =
100

2
+ [

(2 − 1)

2 × (1 − 0.02)
× 15 × 10

+
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 2

(1 − 0.03) × (1 − 0.02)

×

𝑚

∑

𝑖=1

[ℎ
𝑖
(𝑥
𝑖
+ 𝑅 − 𝐿

𝑖
) | 𝐿
𝑖
− 𝑥
𝑖
≤ 𝑅]

+
10

2 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4)

× [(𝐿
0
− 5.975815)

2
+ (𝐿
0
− 5.975815)]

× 𝑃 (𝐿
0
≥ 𝑥
0
− 𝑅)] =

100

2
+ [

(2 − 1)

2 × (1 − 0.02)
× 15

× 10 +
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 2

(1 − 0.03) × (1 − 0.02)

× (5 × 0.25 + 3 × 0.375 + 2 × 0.375)
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Table 3: Input parameters for this example.

Level Distribution Parameters Holding cost Partial backlogging
Backlogging cost Lost sales

1 Uniform (2, 10) 15 5 4
2 Uniform (3, 5) 5 — —
2 Uniform (2, 5) 3 — —
2 Uniform (3, 6) 2 — —

+
10

2 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4) × 3.727459]

= 376.8515.

(23)

Consider 𝑃 = 3.

Step 1. Find planned lead time for first level by (19):

(𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

=
ℎ × 𝑃

(ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

=
15 × 3

(15 + 0.8 × 5 + 0.2 × 4)
= 2.272727 ⇒

∫

10

𝑥0−𝑅

(𝐿
0
− 𝑥
0
+ 𝑅 + 1)

1

8
𝑑 (𝐿
0
) = 2.272727 ⇒

(𝑥
0
− 𝑅)
2
− 22 × (𝑥

0
− 𝑅) + 83.63636 = 0 ⇒

(𝑥
0
− 𝑅) = 4.88742 ⇒

𝑥
0
= 4.88742 + 𝑅.

(24)

Step 2. Calculate cost by (12):

Ĉost (𝑥, 3) =
100

3
+ [

(3 − 1)

2 × (1 − 0.02)
× 15 × 10

+
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 3

(1 − 0.03) × (1 − 0.02)

×

𝑚

∑

𝑖=1

[ℎ
𝑖
(𝑥
𝑖
+ 𝑅 − 𝐿

𝑖
) | 𝐿
𝑖
− 𝑥
𝑖
≤ 𝑅]

+
10

3 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4)

× [(𝐿
0
− 5.975815)

2
+ (𝐿
0
− 5.975815)]

× 𝑃 (𝐿
0
≥ 𝑥
0
− 𝑅)] =

100

3
+ [

(3 − 1)

2 × (1 − 0.02)
× 15

× 10 +
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 3

(1 − 0.03) × (1 − 0.02)

× (5 × 0.25 + 3 × 0.375 + 2 × 0.375)

+
10

3 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4) × 7.201781]

= 247.8279.

(25)

Consider 𝑃 = 4.

Step 1. Find planned lead time for first level by (19):

(𝐿
0
− 𝑥
0
+ 𝑅 + 1) 𝑃 (𝐿

0
≥ 𝑥
0
− 𝑅)

=
ℎ × 𝑃

(ℎ + 𝛼 × �̂� + (1 − 𝛼) × 𝐵)

=
15 × 3

(15 + 0.8 × 5 + 0.2 × 4)
= 3.030303 ⇒

∫

10

𝑥0−𝑅

(𝐿
0
− 𝑥
0
+ 𝑅 + 1)

1

8
𝑑 (𝐿
0
) = 3.030303 ⇒

(𝑥
0
− 𝑅)
2
− 22 × (𝑥

0
− 𝑅) + 71.51515 = 0 ⇒

(𝑥
0
− 𝑅) = 3.965453 ⇒

𝑥
0
= 3.965453 + 𝑅.

(26)

Step 2. Calculate cost by (12):

Ĉost (𝑃𝐿, 4) =
100

4
+ [

(4 − 1)

2 × (1 − 0.02)
× 15 × 10

+
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 4

(1 − 0.03) × (1 − 0.02)
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Table 4: Total cost.

P 1 2 3 4
Cost 463.0628 376.8515 247.8279 288.8142

↘ ↘ ↘ ↗

×

𝑚

∑

𝑖=1

[ℎ
𝑖
(𝑥
𝑖
+ 𝑅 − 𝐿

𝑖
) | 𝐿
𝑖
− 𝑥
𝑖
≤ 𝑅]

+
10

4 × 2 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4)

× [(𝐿
0
− 5.975815)

2
+ (𝐿
0
− 5.975815)]

× 𝑃 (𝐿
0
≥ 𝑥
0
− 𝑅)] =

100

4
+ [

(4 − 1)

2 × (1 − 0.02)

× 15 × 10 +
15 × 10

(1 − 0.02)
× (5.975815 − 6)

+
10 × 4

(1 − 0.03) × (1 − 0.02)

× (5 × 0.25 + 3 × 0.375 + 2 × 0.375)

+
10

3 × 4 × (1 − 0.02)

× (15 + 0.8 × 5 + (1 − 0.8) × 4) × 17.14291]

= 288.8142.

(27)

According to Table 4, if the ordering system is lot for lot, then
the total cost is 463.0628, which is achieved when periodic
order quantity is equal to 1. But for periodic order quantity
system, the optimal cost is 247.8279 and it is achieved when
periodic order quantity is equal to 3.

5. Conclusion

This study considers the multilevel assembly systems with
stochastic component lead times. A general model was
utilized and the main goal of this model is to minimize the
sum of inventory holding cost, backorder cost, and setup cost
so as to find the optimize solution of component planned lead
times and order periodicity for assembly systems.

An MRP approach with periodic order quantity (POQ)
policy is utilized for the supply planning of components.
A general mathematical approach is utilized for modelling
multilevel MRP under uncertainty components lead times
which has apparently not been studied before. Previous stud-
ies have considered one- or two-level assembly system but
this study considered multilevel and multiperiod assembly
system. Three theorems were utilized for finding the optimal
solutions. By using this equation, optimal solution is possible.
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