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This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set
of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first
introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode
models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated
optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle
swarm optimizer (CNT-CPSO) is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology
is developed.This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional
methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing
features of the proposedmethod.Thepaper also considers an extension of theCNT-CPSO-based identification scheme thatmakes it
possible to simultaneously obtain both the optimal parameters of themultiple submodels and a certain decision parameter involved
in the mode transition criteria. Finally, an experimental setup using a DCmotor system is established to demonstrate the practical
usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression
model.

1. Introduction

The derivation of reasonable mathematical models is the
most important part of designing and analyzing control
systems; thus, many theoretical and applied studies have been
devoted to this research subject [1–6]. Since the early 1940s,
linear time-invariant models have garnered considerable
attention [7] and are widely used, because they are considered
mathematically easy to analyze and characterize, compared
to nonlinear or time-varying systems. However, it is obvious
that many real-world mechanical systems involve several
types of nonlinearities, such as friction [8] and backlash [9],
which affect the behavior of systems. Further, there may exist
another type of nonlinearity that results from changing the

operating point of the system. Therefore, advanced model-
ing schemes that address the practical difficulties faced by
engineers in capturing the complex behavior of systems have
received significant research interest.

One attractive approach is to introduce switched linear
and piecewise affine (PWA) models (see [10, 11] and the
references therein). The development of such models is of
considerable importance; thus, manymodeling schemes have
been widely studied over the last decade in the control system
literature. A variety of research trends and methodologies
for this topic can be found in the studies by Bako [12] and
Ohlsson and Ljung [13]. This increasing interest is mainly
due to the universal approximation properties of PWA maps
for some classes of nonlinear systems [14, 15]. The essential
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feature of a switched linear system is that it has multiple
modes corresponding to the response resulting from switch-
ing among a finite set of linear subsystems, which enables
simple representation of a wide range of practical systems
(see [16] and the references therein). However, at the same
time, key difficulties in the system identification processes
arise frommultiple-mode nature of a switched linear system.

Inferring a multiple-mode model from a set of finite
input-output measurements is a highly complex process that
requires simultaneous estimation of both the mode transi-
tions and the linear subsystems.Theunderlying identification
problem is inherently nonconvex and admits multiple local
solutions, so the formulated optimization problem is not
well posed [12]. As mentioned in Ohlsson and Ljung [13],
most conventional schemes can be said to be based on local
searches, in which inferring an accurate model depends
strongly on good initialization of the optimization.Therefore,
convex reformulation of the identification problem to indi-
rectly avoid the drawback related to local searching has been
extensively studied in recent years (see, e.g., [12, 13, 17]). This
approach usually introduces a relaxation of the nonconvex
identification problem; however, the equivalence of optimal
solutions to the original nonconvex and transformed convex
problems is guaranteed only under certain conditions on the
data. Note that the usual difficulty of verifying or obtain-
ing those conditions may limit the practicality of such an
approach [18]. Conversely, it is worth mentioning that many
existing approaches are often based on prior knowledge of
the mode transition. Against this backdrop, efforts have been
made for many years to develop efficient modeling methods
that do not require such impractical prior knowledge and
guarantee that a global optimum is found. One of the very
few methods available for achieving these modeling objec-
tives is the mixed integer quadratic programming approach
proposed by Roll et al. [19]. However, this programmay result
in an NP-hard problem, which is quite difficult to solve and
tends to be computationally very expensive. This approach is
therefore practically applicable only to very small problems
with relatively few data [13].

This paper studies the metaheuristic optimization-based
identification of a multiple-mode system, which consists of
a finite set of linear regression representations of subsystems,
froma collection of input-output data.Note that themultiple-
mode linear regression model is simple to describe and
captures essential properties of multiple-mode models. In
addition, its identification problem is identical to parameter
estimation of the subsystems included in PWA systems,
without any prior knowledge of their mode transition.There-
fore, the investigation of the multiple-mode linear regression
model can play an essential role in a variety of control
engineering problems. This paper first shows how to reduce
the identification problem for amultiple-modemodel into an
optimization problem. Then, the cyclic-network-topology-
based constrained particle swarm optimizer (CNT-CPSO)
is applied to solve the formulated nonconvex optimization
problem, with no prior knowledge regarding the mode
transitions between subsystems. Note that compared to the
standard PSO, the CNT-CPSO scheme exhibits improved
performance when searching for the global optimum [20],

especially when the optimization problem is ill-conditioned.
Then, an experimental setup using a DC motor system
is established to verify the performance of the proposed
CNT-CPSO-based identification for multiple-mode linear
regression models. Note that DC motor systems, which are
common components in many practical control systems,
usually have nonlinear friction, the modeling of which has
always been a difficult and challenging problem (see, e.g.,
[8, 21–23]). The experimental results show that a finite set
of linear regression models, identified in a simple manner
via the proposed PSO-based scheme, reconstructs the input-
output map with acceptable accuracy; this demonstration
consequently verifies the powerful and practical applicability
of the proposed multiple-mode modeling scheme.The above
facts were examined preliminarily in Maruta et al. [24] by
some of the authors of this paper, and the superior perfor-
mance of the CNT-CPSO-basedmodelingmethod compared
to that of the conventional PSO was clearly demonstrated.
Our first study in Maruta et al. [24] aimed at exhaustively
optimizing all the unknown parameters of the subsystems
via CNT-CPSO with ease; however, its optimization results
did not directly provide any information about the mode
switching mechanism. Note that when an input-output map
must be predicted online using the identified multiple-mode
model, knowledge of thismechanism is essential in determin-
ing which one among the subsystems is active. Therefore, the
original modeling approach is extended to provide not only
the optimal parameters of multiple subsystems, but also the
decision parameters involved in the mode transition criteria.
Its effectiveness is examined using a set of finite input-output
measurements obtained from the experimental DC motor
system mentioned above. It is worth mentioning that, thanks
to the flexibility of the PSO, such an extended identification
problem can be solved without any difficulty by directly
applying the CNT-CPSO algorithm with no modification.

The remainder of this paper is organized as follows. In
Section 2, the multiple-mode linear regression model and its
identification issue are considered, and then the reduction of
the multiple-mode model identification to an optimization
problem is presented in detail. Section 3 briefly reviews the
CNT-CPSO algorithm and summarizes a concrete procedure
for CNT-CPSO-based identification of a multiple-mode lin-
ear regression model. Experimental results for a DC motor
system are presented and discussed in Section 4.This section
also examines an extended identification methodology for
simultaneously finding both the optimal parameters of the
subsystems and the decision parameters involved in themode
transition criteria suitable for a DC motor system. Finally,
concluding remarks are provided in Section 5.

2. Multiple-Mode Linear Regression Model
and Its Identification Problem

This section first introduces the concept of a multiple-
mode linear regression model and establishes the identifica-
tion issues. Then, a method for reducing the identification
problem for the multiple-mode model into an optimization
problem is described.
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(b) Two-mode linear regression model

Figure 1: Data set {𝑦(𝑘), 𝜙1(𝑘)}𝑁𝑘=1 consisting of two groups (circles) and models (lines).

2.1. Model Description and Problem Statement. Themultiple-
mode linear regression model formulated as

𝑦 (𝑘) = 𝜃𝑇 (𝑘) ⋅ 𝜙 (𝑘) ,
𝜃 (𝑘) ∈ {𝜃1, 𝜃2, . . . , 𝜃𝑛𝑚}

(1)

can be regarded as describing the linear relationship between
a measured signal 𝑦(𝑘) ∈ R, designated as the out-
put of the considered system, and the regressor vector,
𝜙(𝑘) fl [𝜙1(𝑘), 𝜙2(𝑘), . . . , 𝜙𝑛𝜙(𝑘)]𝑇 ∈ R𝑛𝜙 . Here, 𝜃𝑖 ∈ R𝑛𝜙 ,
where 𝑖 ∈ {1, 2, . . . , 𝑛𝑚} is the parameter vector of the𝑖th submodel. Assume that a collection of 𝑁 data sets {𝑦(𝑘),𝜙1(𝑘), 𝜙2(𝑘), . . . , 𝜙𝑛𝜙(𝑘)}𝑁𝑘=1 is measurable, and the number of
linear submodels 𝑛𝑚 is given a priori.

Let 𝜃̂𝑖 denote the estimate of 𝜃𝑖 for 𝑖 = 1, 2, . . . , 𝑛𝑚.
Then, our objective is stated as follows. Given the discrete
data {𝑦(𝑘), 𝜙1(𝑘), 𝜙2(𝑘), . . . , 𝜙𝑛𝜙(𝑘)} for 𝑘 = 1, 2, . . . , 𝑁 of the
switched system (1), find the estimate of the set of coefficient
vectors {𝜃̂1, 𝜃̂2, . . . , 𝜃̂𝑛𝑚}. Figure 1 is an illustrative example, in
which multiple circles denote discrete pairs of the generated
data, {𝑦(𝑘), 𝜙1(𝑘)}𝑁𝑘=1. Figures 1(a) and 1(b) show two linear
regression models corresponding to 𝑛𝑚 = 1 and 𝑛𝑚 = 2,
respectively, which are explained as follows.

(i) If 𝑛𝑚 = 1, which is the case in Figure 1(a), the model
is equivalent to the standard linear regression model.
Thus, its identification is just to estimate one approx-
imating line for a given discrete data set.

(ii) Figure 1(b) captures the key feature of a multiple-
mode linear regression model with 𝑛𝑚 = 2. In this
case, the identification of the two-mode model that
best matches the given discrete data is equivalent to
finding the two lines shown in the figure.

2.2. Formulation of Optimization Problem for Multiple-Mode
Regression Model Identification. Now suppose that a col-
lection of 𝑁 data sets {𝑦(𝑘), 𝜙1(𝑘), 𝜙2(𝑘), . . . , 𝜙𝑛𝜙(𝑘)}𝑁𝑘=1 is
given.The identification problem stated in Section 2.1 is then
reduced to the following form of optimization problem:

minimize
𝜃̂1 ,𝜃̂2 ,...,𝜃̂𝑛𝑚

𝑁∑
𝑘=1

( min
𝜃̂∈{𝜃̂1 ,...,𝜃̂𝑛𝑚 }

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦 (𝑘) − 𝜃̂
𝑇 ⋅ 𝜙 (𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

2 , (2)

where the objective function is defined as the squared sum
of errors between the measured discrete data points and the
closest linear model chosen in the estimated linear model set.
Figure 2 illustrates the calculation of the objective function
for 𝑛𝑚 = 2 and 𝑛𝜙 = 1, where data points are denoted as
circles and estimated linear models are denoted as lines. The
figure shows that, in this situation, the objective function
value is the sum of the squares of the length of the dashed
lines. Therefore, an optimal solution of the problem (2)
can be found by searching 𝑦(𝑘), the estimation of 𝑦(𝑘),
which is obtained from a set of optimal coefficient vectors{𝜃̂1, 𝜃̂2, . . . , 𝜃̂𝑛𝑚} that best matches the given discrete data.
Note that this procedure is computationally expensive; thus,
a special algorithm may be required.

For the above optimization problem for multiple-mode
linear regression model identification, the following theorem
presents the condition under which the estimated set of
optimal coefficient vectors becomes uniquely identical to the
true set of coefficient vectors.

Theorem 1. Assume that a collection of 𝑁 data sets{𝑦(𝑘), 𝜙1(𝑘), 𝜙2(𝑘), . . . , 𝜙𝑛𝜙(𝑘)}𝑁𝑘=1 and the total number of
modes, 𝑛𝑚, are given a priori. Denote the total number of data
samples in the case that 𝜃(𝑘) corresponds to the 𝑖th mode
(i.e., 𝜃(𝑘) = 𝜃𝑖) as 𝑁𝑖. Thus, 𝑁1 + 𝑁2 + ⋅ ⋅ ⋅ + 𝑁𝑛𝑚 = 𝑁. For𝑖 ∈ {1, 2, . . . , 𝑛𝑚} and 𝑗 = 1, 2, . . . , 𝑁𝑖, let 𝑘𝑖,𝑗 ∈ [1,𝑁] be the
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Figure 2: Calculation of the objective function.

time instant satisfying 𝜃(𝑘𝑖,𝑗) = 𝜃𝑖. Then, if the given data set
satisfies

rank

[[[[[[[[
[

𝜙 (𝑘𝑖,1)𝑇
𝜙 (𝑘𝑖,2)𝑇...
𝜙 (𝑘𝑖,𝑁𝑖)𝑇

]]]]]]]]
]
= 𝑛𝜙 ∀𝑖 ∈ {1, 2, . . . , 𝑛𝑚} , (3)

the optimal solution of the optimization problem (2) satisfies{𝜃̂1, 𝜃̂2, . . . , 𝜃̂𝑛𝑚} = {𝜃1, 𝜃2, . . . , 𝜃𝑛𝑚}, which means that the
obtained estimate of the coefficient vector set coincides with the
true one.

Its proof, which is explained as follows, is self-evident.
The optimal solution mentioned above lets the objective
function in (2) be zero. The objective function is clearly
nonnegative, and condition (3) ensures the uniqueness of
the solution. Note that Theorem 1 ensures the validity of
the reduction of the considered identification problem to the
optimization problem in the formof (2). However, the formu-
lated optimization problem is inherently ill-conditioned and
nonconvex; thus, its global optimum cannot be obtained just
by applying conventional deterministic optimization tools or
a conventional PSO technique, as mentioned in Section 1.
Therefore, in the following section, a recently proposed PSO
mechanism, the CNT-CPSO [20, 24], is introduced to avoid
entrapment in the suboptimal solutions.

3. The CNT-CPSO-Based
Identification Scheme for Multiple-Mode
Linear Regression Models

In this section, the CNT-CPSO-based direct identifica-
tion scheme for multiple-mode linear regression models is
described in detail. The design parameter vector is defined as

x fl (x̂𝑇1 , x̂𝑇2 , . . . , x̂𝑇𝑛𝑚)𝑇 = (𝜃̂𝑇1 , 𝜃̂𝑇2 , . . . , 𝜃̂𝑇𝑛𝑚)𝑇 ∈ R𝑛𝜙⋅𝑛𝑚 . Let xℓ𝑖
denote the position vector of the 𝑖th particle of the

swarm at the ℓth iteration in the PSO; thus, xℓ𝑖 =((x̂ℓ𝑖,1)𝑇, (x̂ℓ𝑖,2)𝑇, . . . , (x̂ℓ𝑖,𝑛𝑚)𝑇)𝑇. Here, the following notation is
used for concise representation.

xℓ𝑖 fl xℓ(𝑖−1mod 𝑛𝑝)+1 for 𝑖 < 1 or 𝑛𝑝 + 1 ≤ 𝑗. (4)

Then, the proposed identification scheme for the multiple-
mode linear regression model consists of the following steps.

Step 0. Set the initial iteration step to ℓ = 0 and initialize𝑛𝑝 particles with randomly chosen x0𝑖 ∈ R𝑛𝜙⋅𝑛𝑚 , where 𝑖 =1, 2, . . . , 𝑛𝑝. Then, x0pbest𝑖 and x0sbest𝑖 are set as

x0pbest,𝑖 ←󳨀 x0𝑖 ,
x0sbest,𝑖 ←󳨀 arg min

x∈{x0𝑗 |𝑗=𝑖−𝑛𝑠/2,...,𝑖+𝑛𝑠/2}
L (x) , (5)

where the even-numbered 𝑛𝑠 (≤np) denotes the number of
neighbors the 𝑖th particle has andL(x) denotes the objective
function, which is defined in this study as follows:

L (xℓ𝑖 ) fl 𝑁∑
𝑘=1

( min
z∈{x̂ℓ𝑖,1 ,...,x̂ℓ𝑖,𝑛𝑚 }

󵄨󵄨󵄨󵄨󵄨𝑦 (𝑘) − z𝑇 ⋅ 𝜙 (𝑘)󵄨󵄨󵄨󵄨󵄨)
2 . (6)

Step 1. If the termination criterion is satisfied, the optimiza-
tion algorithm is terminated with the following optimal
solution:

x∗ fl arg minimize
x∈{x𝑗𝑖 |𝑖=1,...,𝑛𝑝;𝑗=0,...,ℓ}

L (x) . (7)

Otherwise, go to Step 2.
Step 2. Apply the following evolutionary update law to all the
particles:

kℓ+1𝑖 ←󳨀 𝑐0kℓ𝑖 + 𝑐1𝑟ℓ1,𝑖 (xℓpbest,𝑖 − xℓ𝑖 )
+ 𝑐2𝑟ℓ2,𝑖 (xℓsbest,𝑖 − xℓ𝑖 ) ,

(8)

where k0𝑖 is equal to the zero vector 0 ∈ R𝑛𝜙⋅𝑛𝑚 , and

xℓ+1𝑖 ←󳨀 xℓ𝑖 + kℓ+1𝑖 . (9)

The inertia factor 𝑐0, cognitive scaling factor 𝑐1, and social
scaling factor 𝑐2 in (8) are given by the designer. The random
numbers 𝑟ℓ1,𝑖 and 𝑟ℓ2,𝑖 are uniformly distributed in [0, 1] and
represent the stochastic behaviors of the PSO. Next, set ℓ =ℓ + 1 and then determine xℓpbest,𝑖 and xℓsbest,𝑖 as follows:

xℓpbest,𝑖 ←󳨀 arg min
x∈{x𝑗𝑖 |𝑗=0,1,...,ℓ}

L (x) ,
xℓsbest,𝑖 ←󳨀 arg min

x∈{xℓ𝑗 |𝑗=𝑖−𝑛𝑠/2,...,𝑖+𝑛𝑠/2}
L (x) . (10)

Next, go to Step 1.
Following the above identification procedure using the

CNT-CPSO tool, the formulated optimization problem (2)
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can be solved directly without any difficulty, and eventually,
our objective of deriving a multiple-mode linear regression
model is achieved. It is important to note that the proposed
CNT-CPSO-based scheme handles the identification of PWA
systems without any prior knowledge of their mode transi-
tions and can handle a large number of data samples without
trouble. These are the most notable features of our CNT-
CPSO-based identification methodology. The above fact is
thoroughly demonstrated via experimental studies in the
following section.

4. Experimental Validation of
CNT-CPSO-Based Identification:
Multiple-Mode Linear Regression
Model for a DC Motor System

Experiments were conducted with a measured set of input-
output data from the DC motor system shown in Fig-
ure 3 to examine the performance of the CNT-CPSO-based
identification scheme for the development of a multiple-
mode linear regression model. To this end, our methodology
described in Section 3 was applied to the target system, and
the reconstruction of the input-output map based on the
obtained multiple submodels was studied.

4.1. Identification Problem Formulation. The experimental
DC motor system was excited with a sinusoidal electric
current 𝑖(𝑡) (Figure 4(a)), and its angular velocity 𝜔(𝑡)
(Figure 4(b)) and derivative 𝜔̇(𝑡) (Figure 4(c)) were mea-
sured. From these input-output data, a collection of 𝑁
data sets used for the identification process was defined as{𝜔̇(𝑡𝑘), 𝑖(𝑡𝑘), 𝜔(𝑡𝑘)}𝑁𝑘=1, where 𝑡𝑘 = 0.01(𝑘 − 1), and𝑁 = 512.

The multiple-mode linear regression model for 𝑡 = 𝑡1,𝑡2, . . . , 𝑡𝑁 is then constructed as follows:

𝜔̇ (𝑡) = 𝐾 (𝑡) 𝑖 (𝑡) + 𝐷 (𝑡) 𝜔 (𝑡) + 𝐹 (𝑡) , (11)

where 𝐾(𝑡), 𝐷(𝑡), and 𝐹(𝑡) are the mode-dependent coef-
ficients corresponding to the torque, viscous friction, and
Coulomb friction, respectively. Let 𝑦acc(𝑡𝑘), 𝜃acc(𝑡𝑘), and

𝜙acc(𝑡𝑘) be defined as 𝑦acc(𝑡𝑘) fl 𝜔̇(𝑡𝑘), 𝜃acc(𝑡𝑘) fl[𝐾(𝑡𝑘), 𝐷(𝑡𝑘), 𝐹(𝑡𝑘)]𝑇, and 𝜙acc(𝑡𝑘) fl [𝑖(𝑡𝑘), 𝜔(𝑡𝑘), 1]𝑇,
respectively. Then, the model equation (11) is equivalently
modified as

𝑦acc (𝑡𝑘) = 𝜃𝑇acc (𝑡𝑘) ⋅ 𝜙acc (𝑡𝑘) ⇐⇒
𝜔̇ (𝑡𝑘) = 𝐾 (𝑡𝑘) 𝑖 (𝑡𝑘) + 𝐷 (𝑡𝑘) 𝜔 (𝑡𝑘) + 𝐹 (𝑡𝑘) , (12)

which indicates that its identification problem can be handled
by the scheme described in Sections 2 and 3. Here, it is
assumed that the number of linear submodels is given a priori
as 𝑛𝑚 = 3 (i.e., 𝜃acc(𝑡𝑘) ∈ {𝜃acc,1, 𝜃acc,2, 𝜃acc,3}). Under the
above model formulation, the proposed CNT-CPSO-based
identification procedure was applied to the optimization
problem in the formof (2).The optimization results and some
discussion are presented in detail in the following subsection.

4.2. Experimental Results and Discussion. To find the esti-
mate of {𝜃acc,1, 𝜃acc,2, 𝜃acc,3}, the identification problem men-
tioned above was optimized using 𝑐0 = 0.7298, 𝑐1 = 𝑐2 =1.4962, 𝑛𝑝 = 1000, 𝑛𝑠 = 8, and ℓmax = 2000 (the maximum
PSO iteration number). Then, the following set of optimal
coefficient vectors was obtained:

𝜃̂acc,1 = [𝐾̂1, 𝐷1, 𝐹1]𝑇
= [14.7043, −68.2070, −0.1359]𝑇 ,

𝜃̂acc,2 = [𝐾̂2, 𝐷2, 𝐹2]𝑇
= [139.2976, −2.5335, −86.0630]𝑇 ,

𝜃̂acc,3 = [𝐾̂3, 𝐷3, 𝐹3]𝑇
= [137.3649, −2.6072, 90.5020]𝑇 .

(13)

Three types of model output corresponding to 𝜃̂acc,1, 𝜃̂acc,2,
and 𝜃̂acc,3 (i.e., 𝑦𝜃̂acc,𝑖(𝑡𝑘) = 𝜃̂𝑇acc,𝑖 ⋅ 𝜙acc(𝑡𝑘), 𝑖 = 1, 2, 3) are
plotted in Figure 5.

From the parameter vectors (𝜃̂acc,𝑖 (𝑖 = 1, 2, 3)) and the
corresponding model outputs 𝑦𝜃̂acc,𝑖 , one can infer that the
estimate 𝜃̂acc(𝑡𝑘) fl [𝐾̂(𝑡𝑘), 𝐷(𝑡𝑘), 𝐹(𝑡𝑘)] of 𝜃acc(𝑡𝑘) in (12),
which takes one of {𝜃̂acc,1, 𝜃̂acc,2, 𝜃̂acc,3} at each time instant,
can be derived as the final outcome using the following
formula:

𝜃̂acc (𝑡𝑘) fl arg min
𝜃̂∈{𝜃̂acc,1 ,𝜃̂acc,2 ,𝜃̂acc,3}

󵄨󵄨󵄨󵄨𝑦acc (𝑡𝑘) − 𝑦𝜃̂ (𝑡𝑘)󵄨󵄨󵄨󵄨 . (14)

The time histories of the obtained 𝐾̂(𝑡𝑘), 𝐷(𝑡𝑘), and 𝐹(𝑡𝑘)
are presented in Figure 6. It can easily be confirmed from
Figure 6 and the 𝜔(𝑡) plot in Figure 4 that the three modes
are associated with the normal rotation state (𝜃̂acc,2), reverse
rotation state (𝜃̂acc,3), and stall state (𝜃̂acc,1) of the target DC
motor. This classification of the set of identified parameter
vectors is probably quite natural. The estimate of the angular
acceleration, 𝑦acc(𝑡𝑘)(= ̂̇𝜔(𝑡𝑘)), can then be reconstructed on
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Figure 4: Experimental data: current input 𝑖(𝑡) (a), angular velocity 𝜔(𝑡) (b), and angular acceleration 𝜔̇(𝑡) (c).
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Figure 5: Model outputs corresponding to 𝜃̂acc,1 (a), 𝜃̂acc,2 (b), and 𝜃̂acc,3 (c).

the basis of 𝐾̂(𝑡𝑘), 𝐷(𝑡𝑘), and 𝐹(𝑡𝑘) in Figure 6 and is pre-
sented in Figure 7.This figure shows that the estimate 𝑦acc(𝑡𝑘)
obtained via the three-mode linear model better matches
the measured discrete data of 𝜔̇(𝑡𝑘) than that obtained using
the ordinary linear regression model. This result verifies the
effectiveness of the proposed identification for a multiple-
mode linear regression model.

Some remarks on the characteristics observed from the
set of identified parameter vectors {𝜃̂acc,1, 𝜃̂acc,2, 𝜃̂acc,3} are as
follows. The Coulomb friction 𝐹(𝑡𝑘), shown in Figure 6(c),
acts in the direction opposite to 𝜔(𝑡𝑘), which agrees with the
well-known behavior of a DC motor, in which this friction
depends only on the direction of the angular velocity and
not on the magnitude of the velocity. However, the behavior
of the identified viscous friction coefficient 𝐷(𝑡𝑘), shown in
Figure 6(b), may disagree with the actual phenomenon in
which the viscous friction is proportional to the velocity
and reaches zero at zero angular velocity. Note that the

viscous friction coefficient 𝐷1 of 𝜃̂acc,1 (the parameter vector
corresponding to the stall state of the target DCmotor) takes
a larger value, 𝐷1 = −68.20698, than𝐷2 (=−2.53347) and𝐷3
(=−2.60725). This large coefficient value causes the viscous
friction term,𝐷(𝑡𝑘)𝜔(𝑡𝑘), in (11) to take a large value when the
DC motor is nearly in its stall state. This phenomenon surely
lowers the identification accuracy, and Figure 7 confirms that
a small but nonnegligible behavioral discrepancy between𝑦acc(𝑡𝑘) and 𝜔̇(𝑡𝑘) occurs when the DC motor is in the stall
state. Conversely, once the set of optimal coefficient vectors,{𝜃̂acc,1, 𝜃̂acc,2, 𝜃̂acc,3}, is obtained via the identification scheme
proposed in Section 3, the time variation 𝜃̂acc(𝑡𝑘) should be
found by applying (14). This knowledge of the time variation
of 𝜃̂acc(𝑡𝑘) makes offline reconstruction of the input-output
map possible, as shown in Figure 7. However, the procedure
described above does not directly provide any information
about the mode switching mechanism. Note that if the input-
output map must be predicted online using the identified
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Figure 7: Comparison of the output 𝑦acc(𝑡𝑘) of three-mode linear
regression model with the output of ordinary linear regression
model.

multiple-mode model, knowledge of this mechanism is
essential to determine which one among all the submodels
is active. To overcome these shortcomings, the following
subsection considers an extended identification scheme for
the development of a multiple-mode linear regressionmodel.

4.3. Extended Identification Scheme and Its Experimental
Validation. This section considers an extension of the CNT-
CPSO-based identification for amultiple-mode linear regres-
sion model that enables us to find not only the optimal
parameters of the submodels, but also a certain decision
parameter involved in the mode transition criteria. Its
effectiveness is examined using a set of finite input-output
measurements obtained from the experimental DC motor
system described above.

The experimental results presented in the previous sub-
section show that mode switching, 𝜃̂acc(𝑡𝑘) ∈ {𝜃̂acc,1, 𝜃̂acc,2,
𝜃̂acc,3}, is associated with transitions among the normal
rotation state, reverse rotation state, and stall state of the
target DC motor. This fact definitely implies that the occur-
rence of mode switching can be identified by observing the
online measured angular velocity, 𝜔(𝑡𝑘), of the DC motor at
each time instant 𝑡𝑘. Therefore, the mode transition criteria
depending on 𝜔(𝑡𝑘) are formulated.

Themultiple-mode linear regression model (11) is rewrit-
ten by applying the forward difference formula to the angular
acceleration term 𝜔̇(𝑡) as follows:

𝜔 (𝑡𝑘+1) = 𝑇𝑠𝐾(𝑡𝑘) 𝑖 (𝑡𝑘) + (1 + 𝑇𝑠𝐷(𝑡𝑘)) 𝜔 (𝑡𝑘)
+ 𝑇𝑠𝐹 (𝑡𝑘) ⇐⇒

𝑦vel (𝑡𝑘+1) = 𝜃𝑇vel (𝑡𝑘) ⋅ 𝜙vel (𝑡𝑘) ,
(15)

where 𝑇𝑠 (=0.01 (s)) denotes the sampling time interval,𝑦vel(𝑡𝑘) fl 𝜔(𝑡𝑘+1), 𝜃vel(𝑡𝑘) fl [𝑇𝑠𝐾(𝑡𝑘), 1 + 𝑇𝑠𝐷(𝑡𝑘),𝑇𝑠𝐹(𝑡𝑘)]𝑇, and𝜙vel(𝑘) fl [𝑖(𝑡𝑘), 𝜔(𝑡𝑘), 1]𝑇.Then, the set of the
parameter vectors of the three subsystems, {𝜃̃vel,1, 𝜃̃vel,2, 𝜃̃vel,3},
and the mode transition criteria are defined as follows:

𝜃̃vel,1 fl [𝑇𝑠𝐾̃1, 1 + 𝑇𝑠𝐷1, 𝑇𝑠𝐹1]𝑇 , 𝜔 (𝑡𝑘) > 𝜔,
𝜃̃vel,2 fl [𝑇𝑠𝐾̃2, 1 + 𝑇𝑠𝐷2, 𝑇𝑠𝐹2]𝑇 , 𝜔 (𝑡𝑘) < −𝜔,
𝜃̃vel,3 fl [𝑇𝑠𝐾̃3, 1 + 𝑇𝑠𝐷3, 𝑇𝑠𝐹3]𝑇 , 󵄨󵄨󵄨󵄨𝜔 (𝑡𝑘)󵄨󵄨󵄨󵄨 ≤ 𝜔,

(16)

where 𝜔 (>0) denotes the threshold velocity that enables
us to determine which one among the three submodels is
active; its value should be optimized along with those of the
other parameters in {𝜃̃vel,1, 𝜃̃vel,2, 𝜃̃vel,3}. From (16), one can
easily see that 𝜃̃vel,1, 𝜃̃vel,2, and 𝜃̃vel,3 correspond to the normal
rotation state, reverse rotation state, and stall state of the DC
motor, respectively.

Under the above problem formulation, our CNT-CPSO-
based identification procedure described in Section 3 is
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applied to find the optimal values of 𝐾̃𝑗, 𝐷𝑗, 𝐹𝑗 (𝑗 = 1, 2, 3),
and 𝜔. Let the 𝑖th particle x𝑖 of the swarm be defined as x𝑖 fl(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,9, 𝑥i,10)𝑇 = (𝐾̃1, 𝐷1, 𝐹1, 𝐾̃2, 𝐷2, 𝐹2, 𝐾̃3, 𝐷3, 𝐹3,𝜔)𝑇. Then, the objective function can be modified as follows:

L (xℓ𝑖 ) fl 𝑁∑
𝑘=1

(𝑦vel (𝑡𝑘) − 𝑦vel (𝑡𝑘))2 , (17)

where 𝑦vel(𝑡𝑘), with 𝑦vel(0) = 𝑦vel(0) = 𝜔(0), switches at each
time instant as

𝑦vel (𝑡𝑘+1)

=
{{{{{{{{{

[𝑇𝑠𝑥ℓ𝑖,1, 1 + 𝑇𝑠𝑥ℓ𝑖,2, 𝑇𝑠𝑥ℓ𝑖,3] ⋅ 𝜙vel (𝑡𝑘) , 𝜔 (𝑡𝑘) > 𝑥ℓ𝑖,10,
[𝑇𝑠𝑥ℓ𝑖,4, 1 + 𝑇𝑠𝑥ℓ𝑖,5, 𝑇𝑠𝑥ℓ𝑖,6] ⋅ 𝜙vel (𝑡𝑘) , 𝜔 (𝑡𝑘) < −𝑥ℓ𝑖,10,
[𝑇𝑠𝑥ℓ𝑖,7, 1 + 𝑇𝑠𝑥ℓ𝑖,8, 𝑇𝑠𝑥ℓ𝑖,9] ⋅ 𝜙vel (𝑡𝑘) , 󵄨󵄨󵄨󵄨𝜔 (𝑡𝑘)󵄨󵄨󵄨󵄨 ≤ 𝑥ℓ𝑖,10.

(18)

It is worth mentioning that, because of the flexibility of
the PSO, the above extended identification problem can be
solved without any difficulty by directly applying the CNT-
CPSO algorithm with no modification. The CNT-CPSO was
then run with a PSO setup identical to that described in
Section 4.2. The experimental results are summarized below.

The identified parameter vector set {𝜃̃vel,1, 𝜃̃vel,2, 𝜃̃vel,3} and
threshold velocity 𝜔 are as follows:

𝜃̃vel,1 fl [1.4189, 0.9748, − 0.9014]𝑇 , 𝜔 (𝑡𝑘) > 𝜔,
𝜃̃vel,2 fl [1.3940, 0.9741, 0.9411]𝑇 , 𝜔 (𝑡𝑘) < −𝜔,
𝜃̃vel,3 fl [0.0837, 1, − 0.0047]𝑇 , 󵄨󵄨󵄨󵄨𝜔 (𝑡𝑘)󵄨󵄨󵄨󵄨 ≤ 𝜔,

(19)

where 𝜔 = 0.9057 and
[𝐾̃1, 𝐷1, 𝐹1] = [141.89333, −2.52084, −90.13833] ,
[𝐾̃2, 𝐷2, 𝐹2] = [139.40073, −2.58537, 94.10730] ,
[𝐾̃3, 𝐷3, 𝐹3] = [8.37053, 0, −0.47260] .

(20)

Note that this extended scheme gives the standard for judging
which mode is active as an output of the identification
procedure in terms of the observed angular velocity 𝜔(𝑡𝑘).
Therefore, the task of finding a suitable parameter vector at
each time instant as presented in (14), which should also be
performed after the identification procedure, is not required.
Note that the formulation in (14) only allows us to find
which one among {𝜃̂acc,1, 𝜃̂acc,2, 𝜃̂acc,3} minimizes the output
prediction error (i.e., |𝑦acc(𝑡𝑘)−𝑦𝜃̂(𝑡𝑘)|) at each time instant 𝑡𝑘.
Further, this knowledge of the mode switching criteria may
make it possible to predict the system output online, unlike
the identification scheme in Section 4.2, which makes only
offline reconstruction of the input-output map possible. The
predicted angular velocity 𝑦vel(𝑡𝑘), which is obtained on the
basis of the identified three-mode linear regression model
with {𝜃̃vel,1, 𝜃̃vel,2, 𝜃̃vel,3} and the mode transition criteria in
(19), is compared with the measured angular velocity 𝜔(𝑡𝑘)
in Figure 8. The two angular velocities are perfectly identical,
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Figure 8: Time behavior of the angular velocity 𝑦vel(𝑡𝑘) predicted
using the identified three-mode linear regression model.

and this fact demonstrates the validity of the extended
identification methodology. The time variations of 𝐾̃(𝑡𝑘),𝐷(𝑡𝑘), and 𝐹(𝑡𝑘) are shown in Figure 9. This figure shows
that 𝐾̃(𝑡𝑘) and 𝐹(𝑡𝑘) exhibit similar trends to those of 𝐾̂(𝑡𝑘)
and𝐹(𝑡𝑘) in Figure 6; however, the viscous friction coefficient𝐷(𝑡𝑘) shows entirely different behavior from that of 𝐷(𝑡𝑘) in
Figure 6(b). In fact,𝐷(𝑡𝑘) agrees well with the viscous friction
phenomena, because𝐷(𝑡𝑘) becomes zero (i.e.,𝐷3 = 0) when
the DCmotor is nearly in its stall state.Therefore, the viscous
friction term 𝐷(𝑡𝑘)𝜔(𝑡𝑘) also approaches zero. This superior
identification result clearly leads to better prediction of the
angular acceleration 𝜔̇(𝑡𝑘). Figure 10 shows the predicted𝜔̇(𝑡𝑘) obtained using the model parameters given in (20).
Compared to the angular acceleration estimated using (13)
and shown in Figure 7, the prediction of 𝜔̇(𝑡𝑘)was remarkably
improved, especially when theDCmotorwas in the stall state.
The above observations clearly verify the effectiveness of the
extended identification methodology.

5. Conclusion

In this paper, the CNT-CPSO-based direct identification of
a multiple-mode system was studied, and two new strate-
gies were introduced. The first strategy was to introduce
a multiple-mode system consisting of a finite set of linear
regression representations of subsystems and then to reduce
the identification problem for such a multiple-mode model
into an optimization problem. The target systems include
the subsystems of PWA systems, and the introduced method
is applicable regardless of the mode transition mechanism
of the target system. The second strategy was to adopt a
metaheuristic optimizer, the CNT-CPSO algorithm, which
was developed relatively recently by some of the authors
of this paper. This tool plays a key role in addressing
some complex difficulties arising due to the inherent ill-
conditioned and nonconvex nature of the formulated opti-
mization problem. Then, a concrete procedure for applying
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Figure 9: Time histories of 𝜃̃vel(𝑡𝑘): 𝐾̃(𝑡𝑘) (a),𝐷(𝑡𝑘) (b), 𝐹(𝑡𝑘) (c).
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Figure 10: Angular acceleration predicted using the identified
model parameters in (20).

the CNT-CPSO-based identificationmethodology to develop
a multiple-mode linear regression model was described in
detail. This scheme requires no prior knowledge of mode
transitions between subsystems and, unlike some conven-
tional methods, can handle a large amount of data without
difficulty during the identification process, which is another
distinguishing feature of the proposed method. Finally, an
experiment was conducted on a DCmotor system to evaluate
and demonstrate the practical usability of the proposed
metaheuristic optimizer-based identification scheme. Using
the same experimental setup, an extension of the CNT-
CPSO-based identification scheme was also proposed and
examined. Comparison of the experimental results verified
that this extensionmakes it possible to simultaneously obtain
both the optimal parameters of multiple submodels and the
designated decision parameter involved in the introduced
mode transition criteria.
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