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Necessary and sufficient conditions for output reachability and null output controllability of positive linear discrete systems with
delays in state, input, and output are established. It is also shown that output reachability and null output controllability together
imply output controllability.

1. Introduction

The research devoted to controllability was started byKalman
in the 1960s [1] and refers to linear dynamical systems. Con-
trollability is one of the fundamental concepts in the mod-
ern mathematical control theory ([2–4],. . .) and continually
appears as a necessary condition for the existence of solutions
to many control problems, for example, stabilization of
unstable system by feedback and optimal control. Basically
a system is controllable if it is possible to transfer it around
its entire configuration space using only certain admissible
controls. There exist many definitions of controllability that
depends on the framework or the class of models applied.
The following are examples of variations of controllability
notions which have been introduced in the control literature:
asymptotic controllability [5], relative controllability [6],
constrained controllability [7], complete controllability [8],
approximate controllability [9], small controllability [10],
output controllability [11, 12], and so on.

Inmost engineering applications, it is needed to direct the
output toward somedesired value. In fact, having control over
the output of the system has a significant importance if not
more than the states. For example, the control of a multilink
cable-driven manipulator, where the task is typically defined
in terms of end effector pose, rather than the joint positions
and velocities which can define the system’s state [13], also,
controlling the output of fixed-speed wind turbines in the

electrical network, which can directly affect the behavior
of power systems [14]. Output controllability is a property
of the impulse response matrix of a linear invariant-time
system which reflects the dominant ability of an external
input to move the output from any initial condition to any
final condition in a finite time [2]. In general, the output
controllability means that the system’s output can be directed
regardless of its state [15]. The necessary and sufficient
criterion for output controllability of linear time-invariant
systems is addressed in, for example, [12].

Positive systems are a wide class of systems in which state
variables and outputs are constrained to be positive, or at least
nonnegative for all time whenever the initial conditions and
inputs are nonnegative. Since the state variables and outputs
of many real-world processes represent quantities that may
not have meaning unless they are nonnegative because they
measure concentrations, numbers, populations, and so on,
positive systems arise frequently in mathematical modeling
of engineering problems, management sciences, economics,
social sciences, chemistry, biology, ecology, pharmacology,
medicine, and so forth.

An excellent survey of positive systems with an emphasis
on their applications in the areas of management and social
sciences is given by Luenberger in [16]. The more recent
monographs by Farina and Rinaldi in [17] and Kaczorek in
[18] are devoted entirely to positive linear systems and some
of their applications. Since positive systems are confined
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within a cone located in the positive orthant rather than in
the whole space [19, 20], their analysis and synthesis aremore
complicated and more challenging.

The state controllability of positive linear discrete systems
is largely studied by several authors since late 1980s [21–26],
the problem of controllability of linear positive discrete
systems with delays in state or control was discussed in
[27]. The problem of output reachability of positive linear
discrete systems is addressed in [28]. The output reachability
of positive discrete linear systems with state delay has been
studied in [29].

In this paper we examine the issue of output reachability,
null output controllability, and output controllability for
positive linear systems with multiple delays in state, input,
and output. These concepts are equivalent for unconstrained
systems. The output reachability of discrete positive linear
systems are characterized and proven by a simple algebraic
proof. The criteria for the null output controllability will be
established. We show that these properties are not equivalent
for positive systems. In addition we prove that the positive
system is output controllable only if it is output reachable and
null output controllable.

The structure of the paper is as follows. In the next
section some mathematical preliminaries of positive linear
discrete systems with delays are presented.We investigate the
output reachability and null output controllability of positive
linear discrete systems with delays in state, input, and output,
respectively, in Sections 3 and 4. In Section 5, necessary
and sufficient conditions for the output controllability of
positive delay systems are provided. Numerical examples will
be presented in Section 6.

2. Preliminaries

First we introduce some notations.N is the set of nonnegative
integers, N+ the set of positive integers, 𝜎𝑘𝑠 = {𝑠, 𝑠 + 1, . . . , 𝑘}
the finite subset of N with 𝑠 ≤ 𝑘, R𝑛 the set of real vectors
with 𝑛 components, and R𝑛+ the set of vectors in R𝑛 with
nonnegative components; that is,

R
𝑛
+ = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ R

𝑛 : 𝑥𝑖 ≥ 0, 𝑖 ∈ 𝜎𝑛1} , (1)

where 𝑇 denotes the transpose, R𝑛×𝑚 the set of real matrices
of order 𝑛 × 𝑚 (R𝑛 = R𝑛×1), 𝐼𝑛 the identity matrix in R𝑛×𝑛,
and 𝐴−1 the inverse of 𝐴 ∈ R𝑛×𝑛.

In this work, we consider the discrete linear delay system

𝑥𝑖+1 = 𝑝∑
𝑗=0

𝐴𝑗𝑥𝑖−𝑗 + 𝑞∑
𝑗=0

𝐵𝑗𝑢𝑖−𝑗, 𝑖 ∈ N,
𝑢−𝑗 ∈ R

𝑚 for 𝑗 ∈ 𝜎𝑞1 ,𝑥−𝑗 ∈ R
𝑛 for 𝑗 ∈ 𝜎𝑝0 ,

(2)

with the output equation

𝑦𝑖 = 𝑙∑
𝑗=0

𝐶𝑗𝑥𝑖−𝑗 + V∑
𝑗=0

𝐷𝑗𝑢𝑖−𝑗, 𝑖 ∈ N, with 𝑙 ≤ 𝑝, V ≤ 𝑞, (3)

where 𝑥𝑖 ∈ R𝑛 is the system state, 𝑢𝑖 ∈ R𝑚 is the input (or
control), 𝑦𝑖 ∈ R𝑟, 𝐴𝑗 ∈ R𝑛×𝑛 (𝑗 ∈ 𝜎𝑝0 ) are the matrices
of the state, 𝐵𝑗 ∈ R𝑛×𝑚 (𝑗 ∈ 𝜎𝑞0 ) are the matrices of the
input, 𝐶𝑗 ∈ R𝑟×𝑛 (𝑗 ∈ 𝜎𝑙0) are the matrices of the output
and 𝐷𝑗 ∈ R𝑟×𝑚 (𝑗 ∈ 𝜎V

0) are the matrices of the feedthrough
(or feedforward), and 𝑝, 𝑞 and V, and 𝑙 are the nonnegative
integer maximal values of delays on state, input, and output,
respectively.

Definition 1. The system modeled by (2) and (3) is said to be
positive if the state 𝑥𝑖 ∈ R𝑛+ and the output𝑦𝑖 ∈ R𝑟+, 𝑖 ∈ N, for
any initial states 𝑥−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑝0 ) and for any initial inputs𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎𝑞1 ) and all inputs 𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ N.

The mathematical theory of positive linear systems is
based on the theory of nonnegative matrix developed by
Perron and Frobenius (see [16, 30]).

Definition 2. A matrix 𝐴 = (𝑎𝑖𝑗) in R𝑛×𝑚 is said to be
nonnegative and denoted by 𝐴 ∈ R𝑛×𝑚+ , if all of its elements
are nonnegative; that is, 𝑎𝑖𝑗 ≥ 0 for all 𝑖 ∈ 𝜎𝑛1 , 𝑗 ∈ 𝜎𝑚1 .
Remark 3. 𝐴 ∈ R𝑛×𝑚+ if and only if 𝐴𝑥 ∈ R𝑛+ for all 𝑥 ∈ R𝑚+ .
Indeed, suppose one of the elements of 𝐴, 𝑎𝑖𝑗, is negative.
Then, for the nonnegative vector 𝑥 = (0, . . . , 0, 1, 0, . . . , 0)𝑇 ∈
R𝑚+ with the one in the 𝑗th component, the 𝑖th component of𝐴𝑥 would be 𝑎𝑖𝑗, which is negative. It is also easy to verify the
converse.

The following proposition provides a necessary and suffi-
cient conditions for positivity of system (2) and (3).

Proposition 4. System (2) and (3) is positive if and only if𝐴𝑗 ∈ R
𝑛×𝑛
+ (𝑗 ∈ 𝜎𝑝0 ) ,𝐵𝑗 ∈ R
𝑛×𝑚
+ (𝑗 ∈ 𝜎𝑞0) , (4)

𝐶𝑗 ∈ R
𝑟×𝑛
+ (𝑗 ∈ 𝜎𝑙0) ,𝐷𝑗 ∈ R
𝑟×𝑚
+ (𝑗 ∈ 𝜎V

0) . (5)

Proof.

Sufficiency. If the condition (4) is satisfied, then

𝑥1 = 𝑝∑
𝑗=0

𝐴𝑗𝑥−𝑗 + 𝑞∑
𝑗=0

𝐵𝑗𝑢−𝑗 ∈ R
𝑛
+, (6)

since 𝑥−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑝0 ) and 𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎𝑞0 ). Assume that𝑥𝑘 ∈ R𝑛+ for 𝑘 ∈ 𝜎𝑖1. From (2) we have

𝑥𝑖+1 = 𝑝∑
𝑗=0

𝐴𝑗𝑥𝑖−𝑗 + 𝑞∑
𝑗=0

𝐵𝑗𝑢𝑖−𝑗 ∈ R
𝑛
+, (7)

since (4) holds and 𝑥𝑖−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑝0 ), 𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎𝑞1 ),
and 𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ N. Hence 𝑥𝑖 ∈ R𝑛+ for any 𝑖 ∈ N.
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Consequently, if condition (5) is satisfied, we get that 𝑦𝑖 ∈ R𝑟+
for every 𝑖 ∈ N since 𝑥−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑙0), 𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎V

1),
and 𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ N.
Necessity. Assuming that system (2) and (3) is positive, let𝑢−𝑗 = 0 for 𝑗 ∈ 𝜎𝑞0 . Then from (2) and (3), for 𝑖 = 0, we
have

𝑥1 = 𝑝∑
𝑗=0

𝐴𝑗𝑥−𝑗 = 𝐴𝑥0 ∈ R
𝑛
+,

𝑦0 = 𝑙∑
𝑗=0

𝐶𝑗𝑥−𝑗 = 𝐶𝑥1 ∈ R
𝑟
+, (8)

with 𝐴 = (𝐴0 𝐴1 ⋅ ⋅ ⋅ 𝐴𝑝) ∈ R
𝑛×𝑛(𝑝+1),𝐶 = (𝐶0 𝐶1 ⋅ ⋅ ⋅ 𝐶𝑙) ∈ R
𝑟×𝑛(𝑙+1),𝑥0 = (𝑥0, 𝑥−1, . . . , 𝑥−𝑝)𝑇 ∈ R
𝑛(𝑝+1),𝑥1 = (𝑥0, 𝑥−1, . . . , 𝑥−𝑙)𝑇 ∈ R
𝑛(𝑙+1).

(9)

Hence by Remark 3, we have 𝐴 ∈ R
𝑛×𝑛(𝑝+1)
+ ; that is, 𝐴𝑗 ∈

R𝑛×𝑛+ (𝑗 ∈ 𝜎𝑝0 ) and 𝐶 ∈ R𝑟×𝑛(𝑙+1)+ ; that is, 𝐶𝑗 ∈ R𝑟×𝑛+ (𝑗 ∈ 𝜎𝑙0)
since𝑥0 ∈ R

𝑛(𝑝+1)
+ and𝑥1 ∈ R𝑛(𝑙+1)+ are arbitrary. Now, assume

that 𝑥−𝑗 = 0 for 𝑗 ∈ 𝜎𝑝0 , and for 𝑖 = 0, we obtain
𝑥1 = 𝑞∑
𝑗=0

𝐵𝑗𝑢−𝑗 = 𝐵𝑢0 ∈ R
𝑛
+,

𝑦0 = V∑
𝑗=0

𝐷𝑗𝑢−𝑗 = 𝐷𝑢1 ∈ R
𝑟
+, (10)

with 𝐵 = (𝐵0 𝐵1 ⋅ ⋅ ⋅ 𝐵𝑞) ∈ R
𝑛×𝑚(𝑞+1),𝐷 = (𝐷0 𝐷1 ⋅ ⋅ ⋅ 𝐷V) ∈ R
𝑟×𝑚(V+1),𝑢0 = (𝑢0, 𝑢−1, . . . , 𝑢−𝑞)𝑇 ∈ R
𝑚(𝑞+1),𝑢1 = (𝑢0, 𝑢−1, . . . , 𝑢−V)𝑇 ∈ R
𝑚(V+1),

(11)

which implies that 𝐵 ∈ R
𝑛×𝑚(𝑞+1)
+ ; that is, 𝐵𝑗 ∈ R𝑛×𝑚+ (𝑗 ∈ 𝜎𝑞0 )

and 𝐷 ∈ R𝑟×𝑚(V+1)+ , that is, 𝐷𝑗 ∈ R𝑟×𝑚+ (𝑗 ∈ 𝜎V
0) since 𝑢0 ∈

R
𝑚(𝑞+1)
+ and 𝑢1 ∈ R𝑚(V+1)+ are arbitrary. This completes the

proof.

In all the sequel, we assume that system (2) and (3) is
positive.

In the next proposition, we will present the explicit
solution of system (2).

Proposition 5. The general solution to (2) is given by

𝑥𝑖 = 𝐺𝑖𝑥0 + 𝑝∑
𝑗=1

𝑝−𝑗+1∑
𝑘=1

𝐺𝑖−𝑘𝐴𝑘−1+𝑗𝑥−𝑗
+ 𝑞∑
𝑗=1

𝑞−𝑗+1∑
𝑘=1

𝐺𝑖−𝑘𝐵𝑘−1+𝑗𝑢−𝑗 + 𝑖−1∑
𝑗=0

𝑞∑
𝑘=0

𝐺𝑖−1−𝑗−𝑘𝐵𝑘𝑢𝑗,
𝑖 ∈ N,

(12)

where the transition matrix 𝐺𝑖 ∈ R𝑛×𝑛 (𝑖 ∈ N) is determined
by the recurrence relation

𝐺𝑖 = {{{{{{{
𝐼𝑛 for 𝑖 = 0,
𝑝∑
𝑘=0

𝐴𝑘𝐺𝑖−1−𝑘 for 𝑖 ∈ N+, (13)

with the assumption 𝐺𝑖 = 0 for 𝑖 < 0. (14)

Proof. The proof is given in [31].

We pose 𝐻0𝑖 = 𝐺𝑖, and then

𝐻0𝑖 = {{{{{{{{{{{
𝐼𝑛 for 𝑖 = 0,
𝑝∑
𝑘=0

𝐴𝑘𝐻0𝑖−1−𝑘 for 𝑖 ∈ N+,0 for 𝑖 < 0, (15)

and, for all 𝑖 ∈ N+, we pose

𝐻𝑗𝑖 = 𝑝−𝑗+1∑
𝑘=1

𝐻0𝑖−𝑘𝐴𝑘−1+𝑗, 𝑗 ∈ 𝜎𝑝1 ,
𝐿𝑗𝑖 = 𝑞−𝑗+1∑

𝑘=1

𝐻0𝑖−𝑘𝐵𝑘−1+𝑗, 𝑗 ∈ 𝜎𝑞1 , (16)

with 𝐻𝑗𝑖 = 𝐿𝑗𝑖 = 0 for 𝑖 ≤ 0.
Moreover, for 𝑖 ∈ N, we pose

𝐾𝑖 = 𝑞∑
𝑘=0

𝐻0𝑖−𝑘𝐵𝑘, (17)

with 𝐾𝑖 = 0, for 𝑖 < 0.
Clearly by (15), (16), and (17), the solution of (2) is given

by the following new formula:

𝑥𝑖 = 𝐻0𝑖 𝑥0 + 𝑝∑
𝑗=1

𝐻𝑗𝑖 𝑥−𝑗 + 𝑞∑
𝑗=1

𝐿𝑗𝑖𝑢−𝑗 + 𝑖−1∑
𝑗=0

𝐾𝑖−1−𝑗𝑢𝑗,
𝑖 ∈ N. (18)

In the following and without loss of generality, we assume
that 𝑙 = V. Indeed, for example, if 𝑙 > V we can set 𝐷𝑗 = 0 for𝑗 ∈ 𝜎𝑙V+1.
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Now, we introduce the matrices sequence as follows:

H
𝑗
𝑖 = 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖−𝑘, 𝑗 ∈ 𝜎𝑝0 , 𝑖 ∈ N,
L
𝑗
𝑖 = 𝑙∑
𝑘=0

𝐶𝑘𝐿𝑗𝑖−𝑘, 𝑗 ∈ 𝜎𝑞1 , 𝑖 ∈ N,
K𝑖 = 𝑙∑

𝑘=0

𝐶𝑘𝐾𝑖−𝑘, 𝑖 ∈ N,
K𝑖 = K𝑖 + 𝐷𝑖+1, 𝑖 ∈ 𝜎𝑙−10 .

(19)

For 0 ≤ 𝑖 < 𝑙, the output equation (3) can be rewritten as

𝑦𝑖 = 𝑖∑
𝑘=0

𝐶𝑘𝑥𝑖−𝑘 + 𝑙∑
𝑘=𝑖+1

𝐶𝑘𝑥𝑖−𝑘 + 𝑖∑
𝑘=0

𝐷𝑘𝑢𝑖−𝑘
+ 𝑙∑
𝑘=𝑖+1

𝐷𝑘𝑢𝑖−𝑘
= 𝑖∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘𝑥0 + 𝑖∑
𝑘=0

𝐶𝑘 𝑝∑
𝑗=1

𝐻𝑗
𝑖−𝑘

𝑥−𝑗
+ 𝑖∑
𝑘=0

𝐶𝑘 𝑞∑
𝑗=1

𝐿𝑗
𝑖−𝑘

𝑢−𝑗 + 𝑙∑
𝑘=𝑖+1

𝐶𝑘𝑥𝑖−𝑘 + 𝑙∑
𝑘=𝑖+1

𝐷𝑘𝑢𝑖−𝑘
+ 𝑖∑
𝑘=0

𝐶𝑘𝑖−𝑘−1∑
𝑗=0

𝐾𝑖−𝑘−1−𝑗𝑢𝑗 + 𝑖∑
𝑘=0

𝐷𝑘𝑢𝑖−𝑘
= 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘𝑥0 + 𝑙∑
𝑘=0

𝐶𝑘 𝑝∑
𝑗=1

𝐻𝑗
𝑖−𝑘

𝑥−𝑗
+ 𝑙∑
𝑘=0

𝐶𝑘 𝑞∑
𝑗=1

𝐿𝑗
𝑖−𝑘

𝑢−𝑗 + 𝑙∑
𝑘=𝑖+1

𝐶𝑘𝑥𝑖−𝑘 + 𝑙∑
𝑘=𝑖+1

𝐷𝑘𝑢𝑖−𝑘
+ 𝑖−1∑
𝑘=0

𝐶𝑘𝑖−𝑘−1∑
𝑗=0

𝐾𝑖−𝑘−1−𝑗𝑢𝑗 + 𝑖∑
𝑘=0

𝐷𝑘𝑢𝑖−𝑘
= ( 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝑥0 + 𝑝∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖−𝑘) 𝑥−𝑗
+ 𝑞∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐿𝑗𝑖−𝑘) 𝑢−𝑗 + 𝑙∑
𝑗=𝑖+1

𝐶𝑗𝑥𝑖−𝑗
+ 𝑙∑
𝑗=𝑖+1

𝐷𝑗𝑢𝑖−𝑗 + 𝑖−1∑
𝑗=0

(𝑖−𝑗−1∑
𝑘=0

𝐶𝑘𝐾𝑖−𝑗−1−𝑘) 𝑢𝑗
+ 𝑖−1∑
𝑗=0

𝐷𝑖−𝑗𝑢𝑗 + 𝐷0𝑢𝑖

= H
0
𝑖 𝑥0 + 𝑝∑

𝑗=1

H
𝑗
𝑖𝑥−𝑗 + 𝑞∑

𝑗=1

L
𝑗
𝑖𝑢−𝑗 + 𝑙−𝑖∑

𝑗=1

𝐶𝑖+𝑗𝑥−𝑗
+ 𝑙−𝑖∑
𝑗=1

𝐷𝑖+𝑗𝑢−𝑗 + 𝑖−1∑
𝑗=0

(K𝑖−𝑗−1 + 𝐷𝑖−𝑗) 𝑢𝑗 + 𝐷0𝑢𝑖
= H
0
𝑖 𝑥0 + 𝑙−𝑖∑

𝑗=1

(H𝑗𝑖 + 𝐶𝑖+𝑗) 𝑥−𝑗 + 𝑝∑
𝑗=𝑙−𝑖+1

H
𝑗
𝑖𝑥−𝑗

+ 𝑙−𝑖∑
𝑗=1

(L𝑗𝑖 + 𝐷𝑖+𝑗) 𝑢−𝑗 + 𝑞∑
𝑗=𝑙−𝑖+1

L
𝑗
𝑖𝑢−𝑗

+ 𝑖−1∑
𝑗=0

K𝑖−𝑗−1𝑢𝑗 + 𝐷0𝑢𝑖.
(20)

Hence

𝑦𝑖 = Q𝑖+1𝑥0 + R𝑖+1𝑢𝑖+10 , (21)

with

Q𝑖+1 = (𝑀𝑖+1 𝑂𝑖+1) ∈ R
𝑟×(𝑛(𝑝+1)+𝑚𝑞)
+ , (22)

where

𝑀𝑖+1= (H0𝑖 H1𝑖 + 𝐶𝑖+1 H2𝑖 + 𝐶𝑖+2 ⋅ ⋅ ⋅ H𝑙−𝑖𝑖 + 𝐶𝑙 H𝑙−𝑖+1𝑖 ⋅ ⋅ ⋅ H
𝑝
𝑖

)
∈ R
𝑟×𝑛(𝑝+1)
+ ,

𝑂𝑖+1 = (L1𝑖 + 𝐷𝑖+1 ⋅ ⋅ ⋅ L𝑙−𝑖𝑖 + 𝐷𝑙 L𝑙−𝑖+1𝑖 ⋅ ⋅ ⋅ L
𝑞
𝑖
) ∈ R

𝑟×𝑚𝑞
+ ,

𝑥0 =
((((((((((((((
(

𝑥0𝑥−1...𝑥−𝑝𝑢−1...𝑢−𝑞

))))))))))))))
)

∈ R
𝑛(𝑝+1)+𝑚𝑞
+ ,

R𝑖+1 = (K𝑖−1 K𝑖−2 ⋅ ⋅ ⋅ K1 K0 𝐷0) ∈ R
𝑟×(𝑖+1)𝑚
+ ,

𝑢𝑖+10 = ((
(

𝑢0𝑢1...𝑢𝑖
))
)

∈ R
(𝑖+1)𝑚
+ .

(23)
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For 𝑖 ≥ 𝑙, we have𝑦𝑖 = 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘𝑥0 + 𝑙∑
𝑘=0

𝐶𝑘 𝑝∑
𝑗=1

𝐻𝑗
𝑖−𝑘

𝑥−𝑗
+ 𝑙∑
𝑘=0

𝐶𝑘 𝑞∑
𝑗=1

𝐿𝑗
𝑖−𝑘

𝑢−𝑗 + 𝑙∑
𝑘=0

𝐶𝑘𝑖−𝑘−1∑
𝑗=0

𝐾𝑖−𝑘−1−𝑗𝑢𝑗
+ 𝑙∑
𝑘=0

𝐷𝑘𝑢𝑖−𝑘
= ( 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝑥0 + 𝑝∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖−𝑘) 𝑥−𝑗
+ 𝑞∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐿𝑗𝑖−𝑘) 𝑢−𝑗
+ 𝑖−𝑙−1∑
𝑗=0

( 𝑙∑
𝑘=0

𝐶𝑘𝐾𝑖−𝑗−1−𝑘) 𝑢𝑗
+ 𝑖−1∑
𝑗=𝑖−𝑙

(𝑖−𝑗−1∑
𝑘=0

𝐶𝑘𝐾𝑖−𝑗−1−𝑘) 𝑢𝑗 + 𝑙∑
𝑗=0

𝐷𝑗𝑢𝑖−𝑗
= ( 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝑥0 + 𝑝∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖−𝑘) 𝑥−𝑗
+ 𝑞∑
𝑗=1

( 𝑙∑
𝑘=0

𝐶𝑘𝐿𝑗𝑖−𝑘) 𝑢−𝑗
+ 𝑖−1∑
𝑗=0

( 𝑙∑
𝑘=0

𝐶𝑘𝐾𝑖−𝑗−1−𝑘) 𝑢𝑗 + 𝑙∑
𝑗=0

𝐷𝑗𝑢𝑖−𝑗
= H
0
𝑖 𝑥0 + 𝑝∑

𝑗=1

H
𝑗
𝑖𝑥−𝑗 + 𝑞∑

𝑗=1

L
𝑗
𝑖𝑢−𝑗 + 𝑖−1∑

𝑗=0

K𝑖−𝑗−1𝑢𝑗
+ 𝑙∑
𝑗=0

𝐷𝑗𝑢𝑖−𝑗
= H
0
𝑖 𝑥0 + 𝑝∑

𝑗=1

H
𝑗
𝑖𝑥−𝑗 + 𝑞∑

𝑗=1

L
𝑗
𝑖𝑢−𝑗 + 𝑖−𝑙−1∑

𝑗=0

K𝑖−𝑗−1𝑢𝑗
+ 𝑖−1∑
𝑗=𝑖−𝑙

(K𝑖−𝑗−1 + 𝐷𝑖−𝑗) 𝑢𝑗 + 𝐷0𝑢𝑖
= H
0
𝑖 𝑥0 + 𝑝∑

𝑗=1

H
𝑗
𝑖𝑥−𝑗 + 𝑝∑

𝑗=1

L
𝑗
𝑖𝑢−𝑗 + 𝑖−𝑙−1∑

𝑗=0

K𝑖−𝑗−1𝑢𝑗
+ 𝑖−1∑
𝑗=𝑖−𝑙

K𝑖−𝑗−1𝑢𝑗 + 𝐷0𝑢𝑖.

(24)

Then, we get the linear algebraic equation𝑦𝑖 = Q𝑖+1𝑥0 + R𝑖+1𝑢𝑖+10 , (25)

with

Q𝑖+1 = (H0𝑖 H1𝑖 ⋅ ⋅ ⋅ H
𝑝
𝑖 L1𝑖 ⋅ ⋅ ⋅ L

𝑞
𝑖 )∈ R

𝑟×(𝑛(𝑝+1)+𝑚𝑞)
+ , (26)

R𝑖+1 = (K𝑖−1 K𝑖−2 ⋅ ⋅ ⋅ K𝑙 K𝑙−1 ⋅ ⋅ ⋅ K0 𝐷0)∈ R
𝑟×(𝑖+1)𝑚
+ . (27)

The following lemmas will be needed in the sequel.

Lemma 6. For any 𝑖 ∈ N+, we have

𝐻0𝑖 = 𝑝∑
𝑘=0

𝐻0𝑖−1−𝑘𝐴𝑘. (28)

Proof. First, for 𝑖 = 1, we have 𝐻01 = 𝐴0 = ∑𝑝
𝑘=0

𝐻0−𝑘𝐴𝑘 and
(28) holds. Secondly, suppose that (28) holds for 𝑘 ∈ 𝜎𝑖1. We
prove that it holds for 𝑘 = 𝑖 + 1.

For 𝑖 ∈ 𝜎𝑝1 , we have
𝐻0𝑖+1 = 𝑖∑

𝑘=0

𝐴𝑘𝐻0𝑖−𝑘 = 𝑖−1∑
𝑘=0

𝐴𝑘𝐻0𝑖−𝑘 + 𝐴 𝑖
= 𝑖−1∑
𝑘=0

𝐴𝑘( 𝑝∑
𝑗=0

𝐻0𝑖−𝑘−1−𝑗𝐴𝑗) + 𝐴 𝑖
= 𝑖−1∑
𝑘=0

𝐴𝑘(𝑖−𝑘−1∑
𝑗=0

𝐻0𝑖−𝑘−1−𝑗𝐴𝑗) + 𝐴 𝑖
= 𝑖−1∑
𝑗=0

(𝑖−𝑗−1∑
𝑘=0

𝐴𝑘𝐻0𝑖−𝑗−1−𝑘) 𝐴𝑗 + 𝐴 𝑖
= 𝑖−1∑
𝑗=0

𝐻0𝑖−𝑗𝐴𝑗 + 𝐴 𝑖 = 𝑖∑
𝑗=0

𝐻0𝑖−𝑗𝐴𝑗 = 𝑝∑
𝑗=0

𝐻0𝑖−𝑗𝐴𝑗.

(29)

For 𝑖 ≥ 𝑝 + 1, we have
𝐻0𝑖+1 = 𝑝∑

𝑘=0

𝐴𝑘𝐻0𝑖−𝑘 = 𝑝∑
𝑘=0

𝐴𝑘( 𝑝∑
𝑗=0

𝐻0𝑖−𝑘−1−𝑗𝐴𝑗)
= 𝑝∑
𝑗=0

( 𝑝∑
𝑘=0

𝐴𝑘𝐻0𝑖−𝑗−1−𝑘) 𝐴𝑗 = 𝑝∑
𝑗=0

𝐻0𝑖−𝑗𝐴𝑗. (30)

Thus, (28) is satisfied in step 𝑖 + 1. Hence, (28) holds for
any 𝑖 ∈ N+.

Lemma 7. For all 𝑖 ∈ N, we have𝐻𝑗𝑖+1 = 𝐻𝑗+1𝑖 + 𝐻0𝑖 𝐴𝑗, 𝑗 ∈ 𝜎𝑝−10 ,𝐻𝑝𝑖+1 = 𝐻0𝑖 𝐴𝑝, (31)
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𝐿𝑗𝑖+1 = 𝐿𝑗+1𝑖 + 𝐻0𝑖 𝐵𝑗, 𝑗 ∈ 𝜎𝑞−11 ,𝐿𝑞𝑖+1 = 𝐻0𝑖 𝐵𝑞. (32)

Proof. For 𝑖 = 0, we have
𝐻𝑗+10 + 𝐻00𝐴𝑗 = 𝐴𝑗 = 𝐻𝑗1 , 𝑗 ∈ 𝜎𝑝−10 ,𝐻00𝐴𝑝 = 𝐴𝑝 = 𝐻𝑝1 . (33)

Let 𝑖 ∈ N+. For 𝑗 = 0, we have
𝐻1𝑖 + 𝐻0𝑖 𝐴0 = 𝑝∑

𝑘=1

𝐻0𝑖−𝑘𝐴𝑘 + 𝐻0𝑖 𝐴0 = 𝑝∑
𝑘=0

𝐻0𝑖−𝑘𝐴𝑘; (34)

then by Lemma 6, we get

𝐻0𝑖+1 = 𝐻1𝑖 + 𝐻0𝑖 𝐴0. (35)

For 𝑗 ∈ 𝜎𝑝−11 , we have

𝐻𝑗𝑖+1 − 𝐻𝑗+1𝑖 = 𝑝−𝑗+1∑
𝑘=1

𝐻0𝑖+1−𝑘𝐴𝑘−1+𝑗 − 𝑝−𝑗∑
𝑘=1

𝐻0𝑖−𝑘𝐴𝑘+𝑗
= 𝑝−𝑗∑
𝑘=0

𝐻0𝑖−𝑘𝐴𝑘+𝑗 − 𝑝−𝑗∑
𝑘=1

𝐻0𝑖−𝑘𝐴𝑘+𝑗 = 𝐻0𝑖 𝐴𝑗. (36)

And for 𝑗 = 𝑝, we have
𝐻𝑝𝑖+1 = 1∑

𝑘=1

𝐻0𝑖+1−𝑘𝐴𝑘−1+𝑝 = 𝐻0𝑖 𝐴𝑝. (37)

Similarly, we prove that (32) holds.

Lemma 8. We have

H
0
𝑖+1 = H

1
𝑖 + H

0
𝑖𝐴0 + 𝐶𝑖+1, 𝑖 < 𝑙,

H
0
𝑖+1 = H

1
𝑖 + H

0
𝑖𝐴0, 𝑖 ≥ 𝑙. (38)

And for all 𝑖 ∈ N, we have

H
𝑗
𝑖+1 = H

𝑗+1
𝑖 + H

0
𝑖𝐴𝑗, 𝑗 ∈ 𝜎𝑝−11 ,

H
𝑝
𝑖+1 = H

0
𝑖𝐴𝑝, (39)

L
𝑗
𝑖+1 = L

𝑗+1
𝑖 + H

0
𝑖 𝐵𝑗, 𝑗 ∈ 𝜎𝑞−11 ,

L
𝑞
𝑖+1 = H

0
𝑖 𝐵𝑞. (40)

Proof. Let 𝑖 < 𝑙. For 𝑗 = 0, we have
H
0
𝑖+1 = 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖+1−𝑘 = 𝑖+1∑
𝑘=0

𝐶𝑘𝐻0𝑖+1−𝑘
= 𝑖∑
𝑘=0

𝐶𝑘𝐻0𝑖+1−𝑘 + 𝐶𝑖+1
= 𝑖∑
𝑘=0

𝐶𝑘 (𝐻1𝑖−𝑘 + 𝐻0𝑖−𝑘𝐴0) + 𝐶𝑖+1
= 𝑖∑
𝑘=0

𝐶𝑘𝐻1𝑖−𝑘 + ( 𝑖∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝐴0 + 𝐶𝑖+1
= H
1
𝑖 + H

0
𝑖𝐴0 + 𝐶𝑖+1,

(41)

for 𝑗 ∈ 𝜎𝑝−11 , we have

H
𝑗
𝑖+1 = 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖+1−𝑘 = 𝑖∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖+1−𝑘
= 𝑖∑
𝑘=0

𝐶𝑘 (𝐻𝑗+1
𝑖−𝑘

+ 𝐻0𝑖−𝑘𝐴𝑗) = H
𝑗+1
𝑖 + H

0
𝑖𝐴𝑗, (42)

and, for 𝑗 = 𝑝, we have
H
𝑝
𝑖+1 = 𝑖∑
𝑘=0

𝐶𝑘𝐻𝑝𝑖+1−𝑘 = ( 𝑖∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝐴𝑝 = H
0
𝑖𝐴𝑝. (43)

For 𝑖 ≥ 𝑙, with 𝑗 ∈ 𝜎𝑝−10 , we have

H
𝑗
𝑖+1 = 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑗𝑖+1−𝑘 = 𝑙∑
𝑘=0

𝐶𝑘 (𝐻𝑗+1
𝑖−𝑘

+ 𝐻0𝑖−𝑘𝐴𝑗)
= H
𝑗+1
𝑖 + H

0
𝑖𝐴𝑗, (44)

and, for 𝑗 = 𝑝, we have
H
𝑝
𝑖+1 = 𝑙∑
𝑘=0

𝐶𝑘𝐻𝑝𝑖+1−𝑘 = ( 𝑙∑
𝑘=0

𝐶𝑘𝐻0𝑖−𝑘) 𝐴𝑝 = H
0
𝑖𝐴𝑝. (45)

Similarly, we prove that (40) holds.

3. Output Reachability

In this section we will present necessary and sufficient
conditions for output reachability of system (2) and (3).
By generalization of definition given in [29] we obtain the
following definitions.

Definition 9. The system modeled by (2) and (3) is said to be
output reachable in 𝑁 ∈ N+ steps if, for any nonnegative final
output 𝑦𝑓 ∈ R𝑟+, there exists a nonnegative input sequence𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ 𝜎𝑁−10 , which steers the output of the system
from 𝑥−𝑗 = 0, 𝑗 ∈ 𝜎𝑝0 to 𝑦𝑓, with 𝑢−𝑗 = 0 for 𝑗 ∈ 𝜎𝑝1 ; that is,𝑦𝑓 = 𝑦𝑁−1.
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Definition 10. The systemmodeled by (2) and (3) is said to be
output reachable if there exists a positive integer𝑁 ∈ N+ such
that the system is output reachable in 𝑁 steps.

Now, we present a class of nonnegative matrices, called
the monomial matrices [18, 30]. The utility of such a matrix
will be highlighted in the study of the output reachability of
positive linear systems.

A vector V ∈ R𝑛+ with exactly one of its components being
nonzero and all the others being zero is called monomial
vector or 𝑖-monomial if the nonzero component is in the 𝑖th
position.

Definition 11. A square matrix 𝐴 ∈ R𝑛×𝑛+ is said to be
monomial if it contains 𝑛 linearly independent monomial
columns.

An important property of monomial matrices is given by
the following result.

Lemma 12 (see [18]). Let 𝐴 ∈ R𝑛×𝑛+ . Then 𝐴−1 exists
and is nonnegative if and only if 𝐴 is a monomial matrix.
Furthermore, 𝐴−1 is also a monomial matrix.

The characterization of the output reachability is given by
the following proposition.

Proposition 13. The system modeled by (2) and (3) is output
reachable if and only if, for some 𝑁 ∈ N+, the output
reachability matrix R𝑁 includes a monomial submatrix of
order 𝑟 × 𝑟 (𝑟 ≤ 𝑁𝑚).
Proof.

Sufficiency. Let 𝑦𝑓 ∈ R𝑟+ be the final output to be reached.
From (21) or (25), we have𝑦𝑁−1 = Q𝑁𝑥0 + R𝑁𝑢𝑁0 . (46)

With 𝑥0 = 0, this gives𝑦𝑁−1 = R𝑁𝑢𝑁0 . (47)

The matrixR𝑁 includes a monomial submatrix of order𝑟 × 𝑟, and without loss of generality, we can assume that

R𝑁 = (𝑅1 𝑅2) (48)

such that 𝑅1 ∈ R𝑟×𝑟+ is a monomial matrix and 𝑅2 ∈
R𝑟×(𝑁𝑚−𝑟)+ . Hence, by Lemma 12, we have 𝑅−11 ∈ R𝑟×𝑟+ . Thus,
for

𝑢𝑁0 = (𝑅−11 𝑦𝑓0 ) ∈ R
𝑁𝑚
+ , (49)

we get

𝑦𝑁−1 = (𝑅1 𝑅2) (𝑅−11 𝑦𝑓0 ) = 𝑦𝑓; (50)

that is, system (2) and (3) is output reachable.

Necessity. Assume that system (2) and (3) is output reachable
for some 𝑁 ∈ N+.Thus, for every 𝑧 ∈ R𝑟+ there exists an input𝑢𝑁 ∈ R𝑁𝑚+ such that 𝑧 = R𝑁𝑢𝑁, (51)

with R𝑁 = (𝑟𝑖𝑗)𝑖∈𝜎𝑟
1
,𝑗∈𝜎𝑁𝑚
1

and 𝑢𝑁 = (𝑢𝑗)𝑗∈𝜎𝑁𝑚
1

. In particular,
for 𝑧 = 𝑒1, with 𝑒1 being the first column of 𝐼𝑟, we have

𝑁𝑚∑
𝑗=1

𝑟1𝑗𝑢𝑗 = 1, (52)

and for 𝑖 ∈ 𝜎𝑟2, we have
𝑁𝑚∑
𝑗=1

𝑟𝑖𝑗𝑢𝑗 = 0. (53)

So by (52), there exists 𝑘 ∈ 𝜎𝑁𝑚1 such that 𝑢𝑘 ̸= 0, and
consequently by equation (53) we have 𝑟𝑖𝑘 = 0 for all 𝑖 ∈ 𝜎𝑟2.
Hence, if 𝑟1𝑘 ̸= 0, then the 𝑘th column of R𝑁 is monomial.
If 𝑟1𝑘 = 0, then the 𝑘th column ofR𝑁 is null, which implies
that

𝑁𝑚∑
𝑗=1

𝑟1𝑗𝑢𝑗 = 1, 𝑗 ̸= 𝑘,
𝑁𝑚∑
𝑗=1

𝑟𝑖𝑗𝑢𝑗 = 0, 𝑗 ̸= 𝑘, 𝑖 ∈ 𝜎𝑟2. (54)

The same reasoning gives the existence of a 1-monomial
column or another null column ofR𝑁. Since the columns of
R𝑁 are not all null, then R𝑁 has at least one 1-monomial
column.

The same reasoning for 𝑧 = 𝑒𝑖, 𝑖 ∈ 𝜎𝑟2, leads to the
existence of a 𝑖-monomial column. Hence by Definition 11,
the matrixR𝑁 contains a monomial submatrix of order 𝑟 × 𝑟.
The proposition is proved.

Remark 14. If system (2) and (3) is output reachable and

R
𝑇
𝑁 (R𝑁R𝑇𝑁)−1 ∈ R

𝑁𝑚×𝑟
+ , (55)

then the nonnegative input 𝑢𝑁0 ∈ R𝑁𝑚+ which steers the
output of the system from 𝑥−𝑗 = 0, 𝑗 ∈ 𝜎𝑝0 , to any desired
nonnegative final output 𝑦𝑓 ∈ R𝑟+, with 𝑢−𝑗 = 0 for 𝑗 ∈ 𝜎𝑞1 ,
can be computed by the formula𝑢𝑁0 = R

𝑇
𝑁 (R𝑁R𝑇𝑁)−1 𝑦𝑓. (56)

4. Null Output Controllability

By generalization of definition given in [11] the precise
definitions of the null output controllability of system (2) and
(3) are given as follows.

Definition 15. The system modeled by (2) and (3) is said to
be null output controllable in 𝑁 ∈ N+ steps if, for any
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nonnegative initial state sequence 𝑥−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑝0 ) and
any nonnegative initial input sequence 𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎𝑞1 ),
there exists a nonnegative input sequence 𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ 𝜎𝑁−10 ,
which steers the output of the system from 𝑥−𝑗 to zero; that
is, 𝑦𝑁−1 = 0.
Definition 16. The system modeled by (2) and (3) is said to
be null output controllable if there exists a positive integer𝑁 ∈ N+ such that the system is null output controllable in 𝑁
steps.

The characterization of the null output controllability is
given by the following proposition.

Proposition 17. The system modeled by (2) and (3) is null
output controllable if and only if, for some 𝑁 ∈ N+, the null
output controllability matrix Q𝑁 is null.

Proof.

Sufficiency. From (21) or (25), at the step 𝑖 = 𝑁 − 1, we have𝑦𝑁−1 = Q𝑁𝑥0 + R𝑁𝑢𝑁0 ; (57)

since Q𝑁 = 0, then, for 𝑢𝑁0 = 0, we have 𝑦𝑁−1 = 0; that is,
system (2) and (3) is null output controllable.

Necessity. If system (2) and (3) is null output controllable,
then, for some 𝑁 ∈ N+, there exists an input 𝑢𝑁0 ∈ R𝑁𝑚+ such
that

Q𝑁𝑥0 + R𝑁𝑢𝑁0 = 0. (58)

Since R𝑁𝑢𝑁0 ∈ R𝑟+ and Q𝑁𝑥0 ∈ R𝑟+, then Q𝑁𝑥0 = 0,
which ensures that Q𝑁 = 0 because 𝑥0 ∈ R

𝑛(𝑝+1)+𝑚𝑞
+ by

Definition 15, is arbitrary. This finishes the proof.

System (2) and (3) describes the evolution of the state and
output of a system in the nonnegative orthant with delays
in the state, input, and output. However, we can rewrite this
system in such away that these delays disappear from the state
equation. Let (𝑥𝑖)𝑖∈N be the solution of (2) and define a new
state variable 𝑥𝑖 ∈ R

𝑛(𝑝+1)+𝑚𝑞
+ for 𝑖 ∈ N by

𝑥𝑖 =
((((((((((
(

𝑥𝑖𝑥𝑖−1...𝑥𝑖−𝑝𝑢𝑖−1...𝑢𝑖−𝑞

))))))))))
)

. (59)

It is readily verified that the state 𝑥𝑖 satisfies𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖, 𝑖 ∈ N,𝑥0 ∈ R
𝑛(𝑝+1)+𝑚𝑞
+ , (60)

and the output 𝑦𝑖 satisfies𝑦𝑖 = 𝐶𝑥𝑖 + 𝐷0𝑢𝑖, 𝑖 ∈ N, (61)

where𝐴

=
((((((((((((((((((((((
(

𝐴0 𝐴1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐴𝑝 𝐵1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵𝑞𝐼𝑛 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 00 d d
... ... ...... d d d
... ... ...0 ⋅ ⋅ ⋅ 0 𝐼𝑛 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0... ... 𝐼𝑚 d

...... ... 0 d d

...... ... ... d d d

...0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝐼𝑚 0

))))))))))))))))))))))
)

,

𝐵 =
(((((((((((((
(

𝐵00...0𝐼𝑚0...0

)))))))))))))
)

∈ R
(𝑛(𝑝+1)+𝑚𝑞)×𝑚
+ ,

𝐶 = (𝐶11 𝐶12) ,

(62)

where𝐶11 = (𝐶0 𝐶1 ⋅ ⋅ ⋅ 𝐶𝑙 0 ⋅ ⋅ ⋅ 0) ∈ R
𝑟×𝑛(𝑝+1)
+ ,𝐶12 = (𝐷1 ⋅ ⋅ ⋅ 𝐷𝑙 0 ⋅ ⋅ ⋅ 0) ∈ R

𝑟×𝑚𝑞
+ . (63)

Then we have the following result.

Proposition 18. The system modeled by (2) and (3) is null
output controllable if and only if there exists 𝑁 ∈ N+ such that𝐶𝐴𝑁−1 = 0. In particular, if 𝐴 is nilpotent, then system (2) and
(3) is null output controllable.

Proof.

Sufficiency. The general solution of (60) is given by

𝑥𝑖 = 𝐴𝑖𝑥0 + 𝑖−1∑
𝑗=0

𝐴𝑖−𝑗−1𝐵𝑢𝑗, 𝑖 ∈ N. (64)
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For 𝑢𝑖 = 0, 𝑖 ∈ 𝜎𝑁−10 , we have 𝑥𝑁−1 = 𝐴𝑁−1𝑥0, this
implies that𝑦𝑁−1 = 𝐶𝑥𝑁−1 + 𝐷0𝑢𝑁−1 = 𝐶𝐴𝑁−1𝑥0 + 𝐷0𝑢𝑁−1 = 0; (65)

since 𝐶𝐴𝑁−1 = 0. Hence system (2) and (3) is null output
controllable.

Necessity. System (2) and (3) is null output controllable,
according to Proposition 17, Q𝑁 = 0 for some 𝑁 ∈ N+. For𝑢𝑁0 = 0, we have𝑦𝑁−1 = Q𝑁𝑥0 + R𝑁𝑢𝑁0 = 0 ∀𝑥0 ∈ R

𝑛(𝑝+1)+𝑚𝑞
+ . (66)

On the other hand, we have 𝑦𝑁−1 = 𝐶𝐴𝑁−1𝑥0 = 0; then𝐶𝐴𝑁−1 = 0 since𝑥0 is arbitrary.This completes the proof.

In the remainder of this section and without loss of
generality, we assume that 𝑝 ≥ 𝑞. Indeed, if 𝑝 < 𝑞 we can
set 𝐴𝑗 = 0 for 𝑗 ∈ 𝜎𝑞𝑝+1.
Lemma 19. For all 𝑖 ≥ 𝑝, we have

𝐴𝑖 =
(((((((((((
(

𝐻0𝑖 𝐻1𝑖 ⋅ ⋅ ⋅ 𝐻𝑝𝑖 𝐿1𝑖 ⋅ ⋅ ⋅ 𝐿𝑞𝑖𝐻0𝑖−1 𝐻1𝑖−1 ⋅ ⋅ ⋅ 𝐻𝑝𝑖−1 𝐿1𝑖−1 ⋅ ⋅ ⋅ 𝐿𝑞𝑖−1... ... ... ... ...𝐻0𝑖−𝑝 𝐻1𝑖−𝑝 ⋅ ⋅ ⋅ 𝐻𝑝𝑖−𝑝 𝐿1𝑖−𝑝 ⋅ ⋅ ⋅ 𝐿𝑞𝑖−𝑝0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0... ... ... ...0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

)))))))))))
)

. (67)

Proof. Let 𝑢𝑖 = 0 for 𝑖 ∈ N. Then, according to (64), we have𝑥𝑖 = 𝐴𝑖𝑥0, 𝑖 ∈ N. (68)

On the other hand, from (18), for all 𝑖 ≥ 𝑝 we have

𝑥𝑖 =
((((((((((
(

𝑥𝑖𝑥𝑖−1...𝑥𝑖−𝑝0...0

))))))))))
)

=
(((((((((((
(

𝐻0𝑖 𝐻1𝑖 ⋅ ⋅ ⋅ 𝐻𝑝𝑖 𝐿1𝑖 ⋅ ⋅ ⋅ 𝐿𝑞𝑖𝐻0𝑖−1 𝐻1𝑖−1 ⋅ ⋅ ⋅ 𝐻𝑝𝑖−1 𝐿1𝑖−1 ⋅ ⋅ ⋅ 𝐿𝑞𝑖−1... ... ... ... ...𝐻0𝑖−𝑝 𝐻1𝑖−𝑝 ⋅ ⋅ ⋅ 𝐻𝑝𝑖−𝑝 𝐿1𝑖−𝑝 ⋅ ⋅ ⋅ 𝐿𝑞𝑖−𝑝0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0... ... ... ...0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

)))))))))))
)

((((((((((
(

𝑥0𝑥−1...𝑥−𝑝𝑢−1...𝑢−𝑞

))))))))))
)

.

(69)

Hence by identification between (68) and (69), we get that
(67) holds.

Proposition 20. If, for some 𝑠 ∈ 𝜎𝑙0, 𝐶𝑠 is injective, that is,𝑟𝑎𝑛𝑘 𝐶𝑠 = 𝑛, then system (2) and (3) is null output controllable
implying that 𝐴 is a nilpotent matrix.

Proof. System (2) and (3) is null output controllable; then by
Proposition 17, for some 𝑁 ∈ N+, we have Q𝑁 = 0. If 𝑁 ≤ 𝑙,
then H

𝑗
𝑁−1 = 0, 𝑗 ∈ 𝜎𝑝0 , 𝐶𝑘 = 0, 𝑘 ∈ 𝜎𝑙𝑁 and L𝑘𝑁−1 =0, 𝑘 ∈ 𝜎𝑞1 , 𝐷𝑗 = 0, 𝑗 ∈ 𝜎𝑙𝑁. Then 𝑠 ∈ 𝜎𝑁−10 and 𝐶𝑠𝐻𝑗𝑁−1−𝑠 =0, 𝐶𝑠𝐿𝑘𝑁−1−𝑠 = 0. Since𝐶𝑠 is injective, then𝐶𝑇𝑠 𝐶𝑠 is invertible,

which implies that 𝐻𝑗𝑁−1−𝑠 = 0 and 𝐿𝑘𝑁−1−𝑠 = 0. By Lemma 7,
for 𝑖 ∈ 𝜎𝑝0 we get 𝐻𝑗𝑁−1−𝑠+𝑖 = 0 and 𝐿𝑘𝑁−1−𝑠+𝑖 = 0. According
to Lemma 19, we have 𝐴𝑁−1−𝑠+𝑝 = 0, that is, 𝐴 is nilpotent.
Similarly, we prove that𝐴 is nilpotent if𝑁 ≥ 1+𝑙.Thisfinishes
the proof.

5. Output Controllability

By generalization of definition given in [11] we shall formulate
the fundamental definitions for output controllability of
system (2) and (3) as follows.

Definition 21. The systemmodeled by (2) and (3) is said to be
output controllable in 𝑁 ∈ N+ steps if for any nonnegative
initial state sequence 𝑥−𝑗 ∈ R𝑛+ (𝑗 ∈ 𝜎𝑝0 ) and any nonnegative
initial input sequence 𝑢−𝑗 ∈ R𝑚+ (𝑗 ∈ 𝜎𝑞1 ), there exists a
nonnegative input sequence 𝑢𝑖 ∈ R𝑚+ , 𝑖 ∈ 𝜎𝑁−10 , which steers
the output of the system from 𝑥−𝑗 to any desired nonnegative
final output 𝑦𝑓 ∈ R𝑟+, i.e., 𝑦𝑁−1 = 𝑦𝑓.
Definition 22. The systemmodeled by (2) and (3) is said to be
output controllable if there exists a positive integer 𝑁 ∈ N+
such that the system is output controllable in 𝑁 steps.

The characterization of the output controllability is given
by the following proposition.

Proposition 23. The system modeled by (2) and (3) is output
controllable if and only if it is output reachable and null output
controllable.

Proof.

Necessity. It is evident.

Sufficiency. Since system (2) and (3) is output reachable,
then, according to Proposition 13, R𝑁1 for some 𝑁1 ∈ N+
includes a monomial submatrix of order 𝑟 × 𝑟. On the other
hand, system (2) and (3) is null output controllable; hence,
according to Proposition 17, Q𝑁2 = 0 for some 𝑁2 ∈ N+.
Then, for 𝑁 = max{𝑁1, 𝑁2}, the matrix

R𝑁 = (R̃ R𝑁1) (70)

contains a monomial submatrix of order 𝑟 × 𝑟, with R̃ ∈
R
𝑟×(𝑁−𝑁1)𝑚
+ . Hence, by proof of Proposition 13, for any 𝑦𝑓 ∈
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R𝑟+, there exists a nonnegative input 𝑢𝑁0 ∈ R𝑁𝑚+ such
that 𝑦𝑓 = R𝑁𝑢𝑁0 . (71)

And by Lemma 8, we have Q𝑁 = 0. Then for every 𝑥0 ∈
R
𝑛(𝑝+1)+𝑚𝑞
+ we get that𝑦𝑁−1 = Q𝑁𝑥0 + R𝑁𝑢𝑁0 = 𝑦𝑓; (72)

that is, system (2) and (3) is output controllable. The propo-
sition is proved.

6. Numerical Examples

Example 1 (output reachability). Suppose that we are given
system (2) and (3) with 𝑝 = 𝑞 = 𝑙 = 2 and matrices

𝐴0 = (0 0 00 0 00 0 1) ,
𝐴1 = (0 0 00 1 00 0 0) ,
𝐴2 = (0 0 00 1 01 1 0) ,
𝐵0 = (010) ,
𝐵1 = (100) ,
𝐵2 = (010) ,
𝐶0 = (1 0 00 0 1) ,
𝐶1 = (0 0 10 0 0) ,
𝐶2 = (0 0 00 0 1) ,
𝐷0 = (10) ,

𝐷1 = (00) ,
𝐷2 = (10) .

(73)

The conditions of Proposition 13 are satisfied because the
output reachability matrix in five steps

R5 = (K3 K2 K1 K0 𝐷0) = (0 0 2 0 11 0 0 0 0) (74)

contains a monomial submatrix of order 2 × 2.
By simple calculation, we get

R
𝑇
5 (R5R𝑇5 )−1 = ((

(

0 10 00.4 00 00.2 0
))
)

∈ R
5×2
+ . (75)

Then the nonnegative input sequence that permitted to
transfer the output from the zero initial conditions to the final
output 𝑦𝑓 = (1 0.5)𝑇 according to (56) is

𝑢50 = R
𝑇
5 (R5R𝑇5 )−1 𝑦𝑓 = (0.5 0 0.4 0 0.2)𝑇 . (76)

Table 1 gives the values of the output at each step. We see that
the final output has been reached within a number of steps of
the input data sequence greater than 𝑛 + 1 = 4.

This comes up to be a particularity of discrete delay
systems. This is not satisfied in the case of discrete systems
without delay where the steps to reach the final output 𝑦𝑓 are
always less than or equal to 𝑛+1.This results from the Cayley-
Hamilton theorem.

The next two examples study, respectively, the conditions
of the null output controllability and output controllability.

Example 2 (null output controllability). Consider the system
modeled by (2) and (3) with matrices

𝐴0 = (0 0 00 0 01 0 0) ,
𝐴1 = (0 0 00 0 01 0 0) ,
𝐴2 = (0 0 02 0 00 0 0) ,
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Table 1: Values of the outputs in the transfer steps.𝑁 1 2 3 4 5𝑦𝑁−1 (0.50 ) (0.50 ) (1.40 ) (00) ( 10.5)
𝐵1 = (010) ,
𝐵2 = (002) ,
𝐶0 = (3 0 00 0 1) ,
𝐶1 = (1 0 01 0 0) ,
𝐶2 = (2 0 00 0 0) .

(77)

System (2) and (3) is null output controllable because the null
output controllability matrix in four steps

Q4 = (H03 H13 H23 L13 L23) (78)

is null.
System (2), (3) in this example is null output controllable

for any 𝐶𝑘 ∈ R𝑟×3+ (𝑘 ∈ 𝜎20) because the matrix 𝐴 is nilpotent
with index 𝑘 = 6; that is, 𝐴𝑘−1 ̸= 0 and 𝐴𝑘 = 0.
Example 3 (output controllability). Consider the system
modeled by (2) and (3) with matrices

𝐴0 = (0 0 01 0 01 0 0) ,
𝐴1 = (0 0 00 0 01 1 0) ,
𝐴2 = (0 0 00 0 01 0 1) ,
𝐵0 = (0 01 00 0) ,

𝐵1 = (0 01 20 0) ,
𝐵2 = (0 00 01 3) ,
𝐶0 = (0 0 01 0 0) ,
𝐶1 = (1 0 00 0 0) ,
𝐶2 = (1 0 01 0 0) ,
𝐷0 = (1 40 3) ,
𝐷1 = (1 10 1) ,
𝐷2 = (0 21 1) .

(79)

System (2) and (3) is output reachable because the output
reachability matrix in tree steps

R3 = (K1 K0 𝐷0) = (0 2 1 1 1 41 1 0 1 0 3) (80)

contains a monomial submatrix of order 2 × 2.
The conditions of Proposition 17 are satisfied because the

null output controllability matrix in four steps

Q4 = (H03 H13 H23 L13 L23) (81)

is null, so by proof of Proposition 23, the system is output
controllable in four steps.

7. Conclusion

The output controllability of positive discrete linear systems
with delays in state, control, and output has been consid-
ered. Necessary and sufficient conditions for the positivity
of discrete systems have been established (Proposition 4).
Criteria for output reachability (Proposition 13) and null
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output controllability (Proposition 17) of the positive discrete
systems have been also proved. It has been shown that output
reachability and null output controllability together imply
output controllability (Proposition 23). Numerical examples
were given to illustrate the results.

We think that the techniques used in this paper can be
useful to investigate the output reachability, null output con-
trollability, and output controllability problems for different
positive dynamical systems such as switched systems, frac-
tional systems with different orders, and fractional switched
systems.
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