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Copyright © 2017 Xiuli Wu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple
structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation
precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has
been applied for function optimization and structure engineering design problems.There are threemajor optimization strategies in
the improvement: elite opposition-based (EOB) learning strategy enhances the diversity of population, local neighborhood search
strategy is introduced to enhance local search in breaking operation, and improved propagation operator provides the improved
algorithm with a better balance between exploration and exploitation. EOBWWO algorithm is verified by using 20 benchmark
functions and two structure engineering design problems and the performance of EOBWWO is compared against those of the
state-of-the-art algorithms. Experimental results show that the proposed algorithmhas faster convergence speed, higher calculation
precision, with the exact solution being even obtained on some benchmark functions, and a higher degree of stability than other
comparative algorithms.

1. Introduction

Optimization problem is wide and varied; in many scientific
and engineering computation areas, amajority of problems of
people encounter can be attributed to objective optimization
problem; thus, the research of optimization problem has been
a very active field. In fact, the optimization method can be
divided into two types of deterministic optimization and
stochastic optimization; although the deterministic optimiza-
tion method is relatively mature, its application condition is
harsh and difficult to deal with large-scale optimization prob-
lems, which prompted the stochastic optimization method,
especially development of heuristic optimization method.

In recent years, the heuristic optimization algorithm,
especially themetaheuristic optimization algorithm, has been
concerned by many researchers. Metaheuristic optimization
algorithm originates from the simulation of various types of
physical, biological, social, and other phenomena in nature
to solve optimization problems. As a stochastic optimization

method, the metaheuristic optimization algorithm has the
advantage of simple and universal, strong robustness, suitable
for parallel processing and wide application range. Due to
the advantages ofmetaheuristic, several algorithms have been
proposed recently, such as particle swarmoptimization (PSO)
[1], genetic algorithm (GA) [2], ant colony optimization
(ACO) [3], artificial bee colony (ABC) [4], cuckoo search
(CS) [5], bat algorithm (BA) [6], firefly algorithm (FA)
[7], flower pollination algorithm (FPA) [8], and water wave
optimization (WWO) [9].

Water wave optimization (WWO) is a relatively new
metaheuristic initially proposed by Zheng in 2015 [9],
inspired by the shallow water wave theory [10] for global
optimization.WWOhas the advantages of simple framework
and thus easiness of implementation; even with a small
population size it performs well [9]. At present, as a new
metaheuristic optimizationmethod,WWOhas been success-
fully applied to the optimization problems such as high speed
[9] and TSP [11].
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In order to further improve the performance of WWO,
some modified approaches are introduced to strengthen
its performance. Zhang et al. [12] improved on WWO; an
improved version with variable population size (VC-WWO)
is proposed by them, and, meanwhile, a comprehensive
learning mechanism is developed in refraction operator
to increase the solution diversity. Zheng and Zhang [13]
developed a simplified version of WWO (Sim-WWO); in
Sim-WWO, leaving out the refraction operator and in order
to better balance exploration and exploitation as well as
partially compensate the effect of weeding out refraction
operator, a strategy of population size reducing is introduced.
In order to apply WWO to combinatorial optimization
problem, the traveling salesman problem (TSP),Wu et al. [11]
redefined the propagation, breaking, and refraction operator
based on the original WWO. In this paper, an improved
water wave optimization algorithm based on elite-opposition
(EOBWWO) learning strategy has been applied to function
optimization and structure engineering design problems.
The improvements include three parts: elite opposition-
based learning (EOBL) strategy enhances the diversity of
population, local neighborhood search strategy is introduced
to enhance local search in breaking operation, and improved
propagation operator provides the improved algorithm with
a better balance between exploration and exploitation. We

tested the performance of EOBWWO on 20 benchmark
functions and two structure engineering design problems.
The experimental results show that proposed algorithm has
signification performance advantage including a fast conver-
gence speed and a high calculation precision; in addition, the
improved algorithm is able to obtain the exact solution on
some test functions.

This paper is organized into the following sections.
Section 2 introduces the originalWWOalgorithm briefly, the
detailed description of EOBWWO algorithm is presented in
Section 3, simulation experiments and results discussed are
described in Section 4, and finally the conclusion is given in
Section 5.

2. Water Wave Optimization (WWO)
Algorithm

Water wave optimization (WWO) algorithm is inspired by
shallow water wave theory and developed by Zheng [9],
where each individual in the population is analogous to the
“water wave” object with a wave height ℎ and a wavelength 𝜆.
Without losing generality, suppose there is a maximization
problem 𝐹 and its objection function is 𝑓, where practical
problem 𝐹 can be compared with the shallow water wave
model; the corresponding relation is shown as follows:

Practical problem 𝐹 Shallow water wave model

The search space of 𝐹 analogous to󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ Seabed area

Each solution of 𝐹 analogous to󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ A water wave objection

The fitness of each solution 󳨀→ It is inversely proportional to vertical distance to the seabed.
(1)

When the population is initialized, for each wave, the
wave height ℎ is set to a constant ℎmax and wavelength 𝜆 is
generally set to 0.5. The fitness value of each water wave is
inversely proportional to the vertical distance to the seabed;
from this we can know that from the seabed nearer the water
wave fitness value is bigger, the wave height is bigger, and the
wavelength is smaller, as illustrated in Figure 1. During the
process of optimization problem-solving, search globally in
the solution space by simulating the propagation, breaking,
and refraction operation of water waves.

2.1. Propagation. InWWO, all water waves have to be propa-
gated once at each generation. It is assumed that the original
water wave is 𝑥, 𝑥󸀠 is a new wave created by propagation
operator, the dimension of the maximum value function 𝐹 is𝐷, the propagation operation is shifted, and each dimension
of the original water wave 𝑥 is given as

𝑥󸀠 (𝑑) = 𝑥 (𝑑) + rand (−1, 1) ⋅ 𝜆𝐿 (𝑑) , (2)

where 𝑑 ∈ 𝐷, rand(−1, 1) is used to control the propagation
step which is a uniformly distributed random number fixed

in [−1, 1], and 𝐿(𝑑) is the length of the 𝑑th dimension of the
search space. If the length of 𝐿(𝑑) is longer than the length of
the 𝑑th dimension of the search space, a new position will be
reset randomly as

𝐿 (𝑑) = 𝑙𝑏 (𝑑) + rand ( ) ∗ (𝑢𝑏 (𝑑) − 𝑙𝑏 (𝑑)) , (3)

where 𝑙𝑏(𝑑) and 𝑢𝑏(𝑑) are the lower bound and upper bound
of 𝑑th dimension of the search space and rand( ) is a random
number within the range [0, 1].

After propagating, we evaluate fitness of 𝑥󸀠; if 𝑓(𝑥󸀠) >𝑓(𝑥), 𝑥󸀠 instead of 𝑥 in the population, meanwhile the wave
height of 𝑥󸀠 is reset to ℎmax; otherwise, 𝑥 remained, and in
order to simulate energy dissipation of wave in the process of
propagation, its height is decreased by one.

It is a natural phenomenon that when a wave travels from
deep water to shallow water, its wave height increases and its
wavelength decreases, as illustrated in Figure 1. In a bid to
simulate this phenomenon, WWO uses the way in which the
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Figure 1: Different wave shapes in deep and shallow water.

wavelength of each wave is updated after each generation as
follows:

𝜆 = 𝜆 ∗ 𝛼−(𝑓(𝑥)−𝑓min+𝜀)/(𝑓max−𝑓min+𝜀), (4)

where 𝛼 is a control parameter named wavelength reduction
coefficient, 𝑓max and 𝑓min are the maximum and minimum
fitness values among the current population, respectively, and𝜀 is a very small positive constant to avoid division-by-zero.

2.2. Breaking. In the water wave theory, with the energy of
water wave increasing constantly, crest becomes more and
more steep, and the wave breaks into a series of solitary waves
when its velocity of crest exceeds the wave celerity. After
propagating, WWO only performs breaking on the wave 𝑥
which is a new best solution 𝑥∗, which is used to improve
the diversity of the population. The detailed process is as
follows: first of all, we select randomly 𝑘 dimensions (where𝑘 is a random number between 1 and a predefined number𝑘max) and perform operations on each selected dimension of
original wave 𝑥 to generate each dimension of solitary wave𝑥󸀠 as follows:

𝑥󸀠 (𝑑) = 𝑥 (𝑑) + 𝑁 (0, 1) ⋅ 𝛽𝐿 (𝑑) , (5)

where 𝑁(0, 1) is a Gaussian random number with mean 0
and standard deviation 1 and 𝛽 is breaking coefficient. If the
solitary wave with the best fitness is better than 𝑥∗, 𝑥󸀠 is
selected instead of 𝑥∗; otherwise, 𝑥∗ remained.

2.3. Refraction. In WWO, the refraction operation only
performs on a wave 𝑥whose height decreases to zero to avoid
search stagnation, which simulates the phenomenon that
wave ray is not perpendicular to the isobath. By refraction, in
the way that random number centered halfway between the
original positions and 𝑥∗ to calculate each dimension of new
wave 𝑥󸀠, the details are as follows:

𝑥󸀠 (𝑑) = 𝑁((𝑥∗ (𝑑) + 𝑥 (𝑑))2 , 󵄨󵄨󵄨󵄨𝑥∗ (𝑑) − 𝑥 (𝑑)󵄨󵄨󵄨󵄨2 ) . (6)

Followed by refraction, the wave height of 𝑥󸀠 is also reset
to ℎmax; meanwhile its wavelength is updated as follows:

𝜆 = 𝜆 𝑓 (𝑥)𝑓 (𝑥󸀠) . (7)

To sumup, the role of propagation operator is tomake the
high fitness wave exploit small area and the low fitness wave
explore large area, the breaking operator enhances the local
search among the promising best waves, and the refraction
operation helps avoid search stagnation and thus reduces
premature convergence. The basic framework of WWO is as
Algorithm 1 [9].

3. The EOBWWO Algorithm

In order to improve the performance including global search-
ing and local searching abilities of WWO and obtain a
better balance between exploration and exploitation even
further, there are three optimization strategies applied to
the original WWO; they are elite opposition-based learning
(EOBL) strategy [42], local neighborhood searching (LNS)
strategy [43], and improved propagation operator.

3.1. Elite Opposition-Based Learning (EOBL) Strategy. The
optimization process of WWO algorithm can be regarded
as the transformation continually of its search space. When
the algorithm falls into local optimum, the search space
is difficult to contain the global optimal solution. Thus
it is very significant to guide the current solution space
approximation to the space of global optimal solution. In
a bid to enhance the global search ability (i.e., exploration
ability) ofWWO, the elite opposition-based learning (EOBL)
strategy is introduced.

Before introducing the EOBL, we should firstly explain
opposition-based learning (OBL) [44]. The main idea of
OBL is that it generates the opposition solution of current
solution, evaluates current solution and opposition solution
at the same time, and chooses the better one to enter the
next iteration. We assume 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐷) is a point
in current population (𝐷 is the dimension of search space;𝑥𝑗 ∈ [𝑎𝑗, 𝑏𝑗], 𝑗 = 1, 2, . . . , 𝐷), and its opposition point 𝑥̃ =(𝑥̃1, 𝑥̃2, . . . , 𝑥̃𝐷) is defined as follows:

𝑥̃𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑥𝑗. (8)

Since the opposition solution of OBL generated may not
be more favorable than the current search space to search
the global optimal solution, thus in this paper, we can use
elite opposition-based learning (EOBL) strategy. EOBL is a
new technique in the field of intelligence computation and
its model can be described as follows: Suppose the elite
individual (optimal individual in population) in the current
population is 𝑋𝑒 = (𝑥𝑒,1, 𝑥𝑒,2, . . . , 𝑥𝑒,𝐷), for an individual𝑋𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐷), the elite opposition solution 𝑋̃𝑖 =(𝑥̃𝑖,1, 𝑥̃𝑖,2, . . . , 𝑥̃𝑖,𝐷) of𝑋𝑖 is defined as follows:

𝑥̃𝑖,𝑗 = 𝜂 ∗ (𝑑𝑎𝑗 + 𝑑𝑏𝑗) − 𝑥𝑒,𝑗, (9)
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Input: Define objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)
Output: The best solution 𝑥∗;
(1) Initialization: Initialize parameters including 𝛼, 𝛽, 𝜆, randomly initialize a population 𝑃 of𝑁𝑃 waves;
(2) while stop criterion is not satified do
(3) for each 𝑥 ∈ 𝑃 do
(4) Propagate 𝑥 to a new 𝑥󸀠 based on equation (2);
(5) if 𝑓(𝑥󸀠) < 𝑓(𝑥) then
(6) if 𝑓(𝑥󸀠) < 𝑓(𝑥∗) then
(7) Break 𝑥 based on equation (5);
(8) Update 𝑥∗ with 𝑥󸀠;
(9) endif
(10) Replace 𝑥 with 𝑥󸀠;
(11) else
(12) Decrease 𝑥.ℎ by one;
(13) if 𝑥.ℎ = 0 then
(14) Refract 𝑥 to a new 𝑥󸀠 based on equation (6) and equation (7);
(15) endif
(16) endif
(17) Update the wavelength based on equation (4);
(18) endfor
(19) endwhile

Algorithm 1: TheWWO algorithm.

where 𝑖 = 1, 2, . . . , 𝑁𝑃, 𝑁𝑃 is the population size, 𝑗 =1, 2, . . . , 𝐷, 𝜂 ∈ 𝑈(0, 1) and 𝜂 is a generalized coefficient, and[𝑑𝑎𝑗, 𝑑𝑏𝑗] is the dynamic boundary of the 𝑗th dimensional
search space and can be obtained by the following formula:

𝑑𝑎𝑗 = min (𝑥𝑖,𝑗) ,
𝑑𝑏𝑗 = max (𝑥𝑖,𝑗) . (10)

The fixed boundary is not conducive to preserve the search
experience; thus we use dynamic boundary of the search
space to replace the fixed boundary to preserve the search
experience in order to make the opposition solution located
in the search space which is narrowing. Moreover, if the
operator of dynamic boundary makes 𝑥̃𝑖,𝑗 jump out of[𝑑𝑎𝑗, 𝑑𝑏𝑗], the following method can be used to reset 𝑥̃𝑖,𝑗:

𝑥̃𝑖,𝑗 = rand (𝑑𝑎𝑗, 𝑑𝑏𝑗) . (11)

The EOBL generates the opposition population according to
the elite individual and evaluates the current population and
the elite population at the same time; in addition, it makes
full use of the characteristics of the elite individuals to contain
more useful search information than the ordinary individuals
which improve the diversity of the population to certain
extent. EOBL can enhance the ability of global exploration of
WWO.

3.2. Local Neighborhood Search (LNS). WWO only performs
the breaking operator on the new best solution to enhance
local search around the best solution. In a bid to further
enhance the local search ability to improve the convergence
speed, the local neighborhood search [43] (LNS) model is
added before the breaking operation.

The main idea of LNS is using the best solution found
so far in a small neighborhood of the current solution
rather than the entire population to update the current
solution. The experience of an individual’s neighborhood
is considered when updating the individual’s location, so
that the graph of interconnections of them is called neigh-
borhood structure. Suppose there is a WWO population𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑁𝑃), 𝑋𝑖 (𝑖 ∈ [1,𝑁𝑃]) is a vector in the
current population, and its dimension is 𝐷. The indices of
each vector are random in a bid to maintain the diversity of
each neighborhood. Next, we can define the neighborhood
of radius 𝑟 (𝑟 is a nonzero integer and 2𝑟 + 1 < 𝑁𝑃), where𝑟 = 10, for each vector 𝑋𝑖; that is to say, neighborhood
of 𝑋𝑖 consists of 𝑋𝑖−𝑘, . . . , 𝑋𝑖, . . . , 𝑋𝑖+𝑘. For analysis, we
suppose that the vectors can be arranged into a ring topology
according to their indices. Figure 2 illustrates the concept of
local neighborhood model. In addition, the neighborhood
topology is static and about the definition of the set of vectors
all the time. LNS model is described in

𝐿 𝑖 = 𝑋𝑖 + 𝑚 ∗ (𝑋𝑛 opt − 𝑋𝑖) + 𝑛 ∗ (𝑋𝑝 − 𝑋𝑞) , (12)

where𝑋𝑛 opt is the best vector in the neighborhood of𝑋𝑖 and𝑝, 𝑞 ∈ [𝑖 − 𝑟, 𝑖 + 𝑟] (𝑝 ̸= 𝑞 ̸= 𝑖) and 𝑚 and 𝑛 are the scaling
factors, where 𝑚, 𝑛 ∈ rand( ). In the improved version of
WWO, the newbest solution is updated according to (12), and
the breaking operation is performed by the updated solution
as

𝑥󸀠 (𝑑) = 𝐿 𝑖 (𝑑) + 𝑁 (0, 1) ⋅ 𝛽𝐿 (𝑑) , (13)

where 𝐿 𝑖 is the best solution updated by LNS.

3.3. Improvement of WWO. In original WWO, all water
waves have to be propagated once at each generation, and
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Input: Define objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)
Output: The best solution 𝑥∗;
(1) Initialization: Initialize related parameters including 𝛼, 𝛽, 𝜆, 𝜂, 𝑤max, 𝑤min, 𝑎, 𝑏,𝑚 and 𝑛, initialize

dynamic boundary of the search space, randomly initialize a population 𝑃 of𝑁𝑃 waves
(2) while stop criterion is not satisfied do
(3) Update the current population with EOBL accordding to equation (9), equation (10) and equation (11);
(4) for each 𝑥 ∈ 𝑃 do
(5) Propagate 𝑥 to a new 𝑥󸀠 based on equation (14);
(6) if 𝑓(𝑥󸀠) < 𝑓(𝑥) then
(7) if 𝑓(𝑥󸀠) < 𝑓(𝑥∗) then
(8) Break 𝑥 based on equation (12) and equation (13);
(9) Update 𝑥∗ with 𝑥󸀠;
(10) Endif
(11) Replace 𝑥 with 𝑥󸀠;
(12) else
(13) Decrease 𝑥.ℎ by one;
(14) if 𝑥.ℎ = 0 then
(15) Refract 𝑥 to a new 𝑥󸀠 based on equation (6) and equation (7);
(16) endif
(17) endif
(18) Update the wavelength based on equation (4);
(19) endfor
(20) endwhile

Algorithm 2: The framework of EOBWWO algorithm.
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Figure 2: Neighborhood ring topology of radius 2.

the search behavior of each water wave is affected by the
other waves in the group. Similar to PSO [1, 45, 46], an
inertial weight is embedded into (2) in order to learn the past
experience. Moreover, as shown in (2) and (4), propagation
operator can make high fitness wave search small region and
low fitness wave explore large region in global search process.
In (2), the search step size is a random number fixed in the
range [−1, 1], which is not very reasonable because search
step size prefers fairly large step at the beginning in order to
strengthen the probability of reaching the optimal regions,

and, with the iteration going on, search step size should
be decreased gradually to enhance the local exploitation
ability. The random step size in the propagation process is
improved by referencing to the method of [47]; the improved
propagation operator is as follows:

𝑤 = 𝑤max − (𝑤max − 𝑤min) iter
itermax

,
𝜌 = 11 + 𝑒𝑎∗iter−𝑏 rand (−1, 1) ,

𝑥󸀠 (𝑑) = 𝑤 ∗ 𝑥 (𝑑) + 𝜌 ∗ 𝜆𝐿 (𝑑) ,
(14)

where 𝑤max and 𝑤min are, respectively, the maximum and
minimum inertial weight, where 𝑤 ∈ [0.4, 1.5], iter is
the current iteration number and itermax is the maximum
iteration number, and 𝑎 and 𝑏 are two selected constants,
where 𝑎 = 0.02, 𝑏 = 25. Improved propagation operator
not only makes use of the past experience, but also makes the
search step size decrease graduallywith the iteration going on.
The whole pseudocode of EOBWWO can be summarized as
Algorithm 2.

4. Simulation Experiments and
Results Analysis

In order to identify the effectiveness and efficiency of EOB-
WWO, 20 standard test functions are applied in this section.
The detailed parameters about 20 benchmark functions [48,
49] including functional form, scope, optimal solution, and
the iterations are illustrated in Table 1. The 20 benchmark



6 Mathematical Problems in Engineering

functions can be divided into three groups, unimodal func-
tions (𝑓01∼𝑓06) as group 1, multimodal functions (𝑓07∼𝑓14)
as group 2, and low-dimension functions (𝑓15∼𝑓20) as group
3. In the unimodal functions, the global optimum of 𝑓06 is
located in a smooth, long, and narrow parabolic valley; when
the traditional gradient optimization method is searched to
the valley edge, it is difficult to carry out global optimization.
However, it is very slow to change the value in the long and
narrow area, which can be used to evaluate the performance
of the algorithm. In the multimodal functions, 𝑓09 has many
local minima, it is a typical nonlinear multimodal function,
which has a wide range of search space, and it is generally
considered to be a complex multimodal problem which is
difficult to deal with. In general, unimodal functions are
suitable for evaluating the exploitation; however, multimodal
functions tend to be a good choice for evaluating exploration
[50].

The rest of this section is organized as follows: experi-
mental setting is given in Section 4.1, experiment results of
30 dimensions and discussion are represented in Section 4.2,
high-dimension test results including 100 dimensions, 1000
dimensions, and 10000 dimensions for some unimodal func-
tions and multimodal functions are described in Section 4.3,
and two design problems are shown in Section 4.4.

4.1. Experimental Setting and Comparative Methods. The
empirical analysis was conducted on a computer of Intel(R)
with 3.5 GHz Xeon CPU and 8GB of memory, the operating
system isWindows 7, and the programs are written inMatlab
2012a.

The scope and dimension of variables have significant
influence on the complexity of optimization. The scope of
the benchmark function and the dimension of the low-
dimension functions are illustrated in Table 1. The dimen-
sions of unimodal functions and multimodal functions are,
respectively, 30, 100, 1000, and 10000.

The performance of proposed EOBWWO algorithm is
evaluated by comparing it to five state-of-the-art metaheuris-
tic algorithms: ABC [4], CS [5], FPA [6], BA [8], and WWO
[9]; the parameters settings of aforementioned algorithms are
given in Table 2.

4.2. Experiment Results and Discussion. In Tables 3-4, the
dimension is 30, whereas the standard benchmark functions
are listed in Table 1. In this paper, all function optimization
experimental results of the algorithms are repeated 30 times
to ensure the credibility in statistics.There are four evaluation
indicators: max, min, median, and Std represent the worst
fitness value, optimal fitness value, median of the test results,
and standard deviation, respectively. The last column of
Tables 3–5 gives the rank of the algorithms in terms ofmedian
values among the six algorithms. The minimum value, best
median value, and the minimum standard deviation values
among the six algorithms of each benchmark function are
shown in bold.

Moreover, nonparametric Wilcoxon rank tests were con-
ducted on the results of EOBWWO and other comparative
algorithms on the 20 benchmark functions, and the test

results are shown in Table 6, where the value of ℎ is 1
indicating that the performance and comparative method are
statistically different with 95% confidence, and 0 implies that
there is no statistical difference [9].

In Table 3, on the unimodal group, EOBWWO obtained
the exact solution except function 𝑓06 and obtained the
minimum standard deviation. Although ranking fifth on
function𝑓06, standard deviation of EOBWWO is less than the
other algorithms. All thesemean that EOBWWOhas a higher
calculation precision and better stability in the optimization
of the unimodal functions.

On group 2 of 8 multimodal functions, seeing from
Table 4, EOBWWO can find the exact solution for 𝑓07, 𝑓09,𝑓10, 𝑓11, 𝑓12, and 𝑓13, and the standard deviations of the five
functions of EOBWWO are zeros. In addition, EOBWWO
obtains the best median value on all functions. For functions𝑓08 and 𝑓14, the worst fitness value, best fitness value, median
value, and standard deviations of EOBWWO are less than
the other five algorithms.Themultimodal functions aremore
complex than unimodal functions due to the local minima;
thus the above analysis indicates that EOBWWOhas a strong
global search ability and higher calculation precision.

On group 3 of 6 low-dimension functions, results are
illustrated in Table 5. For 𝑓15, EOBWWO obtains the min-
imum values including the worst fitness, best value fitness,
median value, and standard deviations among the compar-
ative algorithms. For 𝑓16, ABC, CS, WWO, and EOBWWO
can find the exact solution, and the standard deviations of
ABC and EOBWWOare zeros. For𝑓17, ABC, CS,WWO, and
EOBWWO have the same median value and optimal fitness
value, while the standard deviation of CS is minimal. For𝑓18, FPA can obtain the better fitness value and median, but
the standard deviation of WWO is the best. For 𝑓19, optimal
fitness value,median value, and the standard deviation of FPA
are better than those of EOBWWO. And for 𝑓20, it is obvious
that ABC, CS, WWO, and EOBWWO obtain the exact
solution and the standard deviation of CS is better. Through
the above analysis of Table 5, we can draw a conclusion
that EOBWWO has certain advantages in dealing with low-
dimension functions according to the experimental results.

In summary, as a result of introducing the three major
optimization strategies in the improvement, the calculation
precision of EOBWWO is better than the comparative
algorithms for most benchmark functions. In addition to
functions 𝑓06, 𝑓18, and 𝑓19, the calculation precision of
EOBWWO is inferior to ABC, FPA, and FPA, respectively.
Moreover, EOBWWO can find the exact solution on 𝑓01–𝑓05,𝑓07, 𝑓09, 𝑓11, 𝑓12, 𝑓13, and 𝑓16, and the standard deviations of
these functions are zeros, which show the higher calculation
precision and stronger stability of EOBWWO. EOBWWO
obtains exact solution on multimodal functions 𝑓07, 𝑓09, 𝑓11,𝑓12, and 𝑓13, which shows that EOBWWO has better global
search performance.

In order to show the performance of the EOBNWWO
clearly, Figures 3–22 represent the convergence curves and
Figures 23–42 describe the ANOVA test of global minimum
of benchmark functions in Table 1. From Figures 3–22,
obliviously, the convergence rate of EOBWWO is faster than
other comparison algorithms including WWO on 𝑓01–𝑓07,
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Table 2: The parameters setting for six algorithms.

Algorithm Parameter values
ABC [4] Limit = 50, the population size is 50
CS [5] 𝛽 = 1.5, 𝑃𝑎 = 0.25, the population size is 50
FPA [6] 𝜌 = 0.8, the population size is 50

BA [8] 𝐴 = 0.25, 𝑟 = 0.5, 𝑓 ∈ [0, 2], the population
size is 50

WWO [9] 𝜆 = 0.5, ℎmax = 12, 𝛼 = 1.0026, 𝛽 ∈ [0.01, 0.25],𝑘max = min(12, 𝐷/2), the population size is 50

EOBWWO

𝜆 = 0.5, ℎmax = 12, 𝛼 = 1.0026, 𝛽 ∈ [0.01, 0.25],𝑘max = min(12, 𝐷/2), 𝜂 ∈ 𝑈(0, 1),𝑤 ∈ [0.4, 1.5], 𝑎 = 0.02, 𝑏 = 20, 𝑟 = 10,𝑚, 𝑛 ∈ rand( ), the population size is 30
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Figure 3:𝐷 = 30, convergence curves for 𝑓01.

𝑓09–𝑓13, and 𝑓17, and the exact solution of EOBWWO is
obtained in some functions𝑓01–𝑓05,𝑓07,𝑓09–𝑓13, and𝑓16-𝑓17.
All of these indicate that EOBWWO has a faster convergence
speed and a higher calculation precision than the other
comparative algorithms. Figures 23–42 show theANOVA test
of global minimum for𝑓01–𝑓20; it can be easily found that the
standard deviation of EOBWWO is much smaller for most
functions and the standard deviation is even zero on some
functions (e.g., 𝑓01–𝑓05, 𝑓07–𝑓13, and 𝑓15-𝑓16). Figures 23–42
imply that EOBWWO has strong stability.

4.3. High-Dimension Function Test Results. In order to val-
idate performance of EOBWWO comprehensively, in this
subsection, we choose four functions including two uni-
modal functions (𝑓01, 𝑓06) and two multimodal functions
(𝑓07, 𝑓09) to test the 100 dimensions, 1000 dimensions, and
10000 dimensions, respectively, on the six algorithms. The
results of all the algorithms about the four functions are
summarized in Table 7. The maximum numbers of iteration
of each algorithmon each function are consistentwithTable 1.
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Figure 4:𝐷 = 30, convergence curves for 𝑓02.
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Figure 5:𝐷 = 30, convergence curves for 𝑓03.

For unimodal function 𝑓01, it can be seen obviously
that the performance of EOBWWO outperforms the other
comparative algorithms for dimensions 100, 1000, and 10000
from Table 7. With the increase of dimension, EOBWWO is
still obtaining the exact solution and the standard deviation
is zero on 𝑓01. In the five comparison algorithms, as far as
the median value changes in each dimension are concerned,
the stability of FPA is better, but BA obtains the minimum
value in each dimension. From the results of function 𝑓06 in
Table 7, it is very easy to find that although the performance
of EOBWWO is not very good when the dimension is 30,
with the increase of dimension, not only does EOBWWO
obtain the minimum value in each dimension, but also the
standard deviation is the smallest and the range is not very
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Table 3: Experiment results of unimodal functions for different algorithms (𝐷 = 30).
Number Algorithm Results

Max Min Median Std Rank

𝑓01 (𝐷 = 30)
ABC 4.44633𝐸 − 12 3.45813𝐸 − 14 1.92𝐸 − 13 9.22745𝐸 − 13 2
CS 1.36762𝐸 − 5 1.02709𝐸 − 6 4.95555𝐸 − 6 2.28819𝐸 − 6 4
FPA 783.5925333 76.04241806 303.9240824 188.3527023 6
BA 1.568634𝐸 − 3 1.029165𝐸 − 3 1.282484𝐸 − 3 1.31272𝐸 − 4 5

WWO 5.55407𝐸 − 10 1.07596𝐸 − 10 2.69635 − 10 1.15369𝐸 − 10 3
EOBWWO 0 0 0 0 1

𝑓02 (𝐷 = 30)
ABC 3.44699𝐸 − 11 1.17159𝐸 − 13 1.51639𝐸 − 12 6.29287𝐸 − 12 2
CS 1.28405𝐸 − 4 0.53823𝐸 − 5 6.08593𝐸 − 5 2.96568𝐸 − 5 3
FPA 1.09372𝐸 + 4 1.677𝐸 + 3 3.61889𝐸 + 3 1.89233𝐸 + 3 6
BA 0.037048461 0.01382428 0.020204478 0.004767846 5

WWO 0.511649493 0.000169285 0.013059176 0.200939335 4
EOBWWO 0 0 0 0 1

𝑓03 (𝐷 = 30)
ABC 0.829003374 0.3204228717 0.555760641 0.120472774 5
CS 0.088057162 0.000337518 0.007576085 0.022275036 3
FPA 15.1544391 4.697724887 8.12103893 2.186818227 6
BA 0.015412963 0.010993868 0.013059351 0.001157761 4

WWO 0.331726179 6.95792𝐸 − 9 1.53742𝐸 − 6 0.062504822 2
EOBWWO 0 0 0 0 1

𝑓04 (𝐷 = 30)
ABC 6.47604𝐸 − 24 6.96705𝐸 − 28 2.21019𝐸 − 26 1.20736𝐸 − 24 2
CS 74.1784179 0.006545946 3.896226938 19.85723139 4
FPA 2.64849𝐸 + 13 11.2387456 3401.123936 4.8539𝐸 + 12 6
BA 1.089641426 0.116013073 0.14358676 0.180342929 3

WWO 723.5000563 349.8831021 530.7411865 92.94725208 5
EOBWWO 0 0 0 0 1

𝑓05 (𝐷 = 30)
ABC 0 0 0 0 1
CS 0 0 0 0 1
FPA 1464 194 692.5 300.9258052 6
BA 1 0 0 0.449776445 4

WWO 5 0 0 1 5
EOBWWO 0 0 0 0 1

𝑓06 (𝐷 = 30)
ABC 27.62119073 7.911323481 20.45437209 4.364699718 1
CS 26.10849123 23.69813132 25.20307209 0.695990009 2
FPA 83.14751217 43.48073835 61.12668297 11.14304633 6
BA 25.51159629 24.8746208 27.74338401 0.985458463 4

WWO 29.32841665 24.00396307 27.69619184 1.153955218 3
EOBWWO 28.9707934 28.2967605 28.8377944 0.162741102 5

large. In addition, for EOBWWO, the change of the order of
magnitudes ofmedian is the smallest in different dimensions.
Those provide strong evidence that EOBWWO has higher
performance in dealing with complex functions. Among the
other comparative algorithms, the performance of BA is
better, the second is CS, the third is WWO, and the fourth
and fifth are BC and FPA, respectively.

Formultimodal functions, EOBWWOobtained the exact
solution and the standard deviation is zero on 𝑓07 and

𝑓09 for the dimensions 100, 1000, and 10000. Taking into
account median value, the performance of BA is better
among comparative algorithms. However, considering the
order of magnitudes of median, the difference between the
five algorithms is not obvious.

Furthermore, some high dimensional tests of EOBWWO
are also tested in functions 𝑓02, 𝑓04, 𝑓10, 𝑓12, and 𝑓13; details
of the experimental results are shown in Table 8. As shown
in Tables 7 and 8 and the above analysis, EOBWWO has
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Table 4: Experiment results of multimodal functions for different algorithms (𝐷 = 30).
Number Algorithm Results

Max Min Median Std Rank

𝑓07 (𝐷 = 30)
ABC 4.543430376 0.872091069 2.32396378 0.77610662 2
CS 100.3117085 69.593399457 83.78234227 9.01595302 5
FPA 155.7273116 103.5726964 121.9253488 12.6731423 6
BA 44.0464352 9.204919504 26.66189504 8.91738265 3

WWO 119.6471701 47.99518568 81.08466559 20.4603731 4
EOBWWO 0 0 0 0 1

𝑓08 (𝐷 = 30)
ABC 0.200343498 0.077326914 0.142626325 0.03146059 2
CS 2.644000719 1.141797447 2.096514981 0.38634392 4
FPA 7.743838028 3.174296934 4.343237221 0.91961437 6
BA 2.121661491 0.026334395 1.250303713 0.79120840 3

WWO 8.74527255 2.713986881 3.436036696 1.37954679 5
EOBWWO 8.88178𝐸 − 16 8.88178E − 16 8.88178E − 16 0 1

𝑓09 (𝐷 = 30)
ABC 0.009995413 1.40219𝐸 − 6 1.03254𝐸 − 5 0.00251343 2
CS 0.21732293 0.046844017 0.097110776 0.04071839 5
FPA 7.743838028 3.174296934 4.343237221 0.91961437 6
BA 8.8209𝐸 − 5 4.84725𝐸 − 5 6.96553𝐸 − 5 1.0629𝐸 − 5 3

WWO 0.027745165 0.000101686 0.004216065 0.008990433 4
EOBWWO 0 0 0 0 1

𝑓10 (𝐷 = 30)
ABC 1.82152𝐸 − 5 3.55257𝐸 − 7 4.91547𝐸 − 6 3.92981𝐸 − 6 2
CS 23.75901871 20169151391 8.018029438 6.27034500 4
FPA 2.78𝐸 + 8 1.07𝐸 + 7 7.32𝐸 + 7 7.20𝐸 + 7 6
BA 0.517543758 0.102778936 0.249802147 0.10685336 3

WWO 3.57𝐸 + 5 1148.931415 28435.22582 70797.7997 5
EOBWWO 3.2059𝐸 − 249 0 4.3182E − 304 0 1

𝑓11 (𝐷 = 30)
ABC −0.025319222 −0.025319222 −0.025319992 8.93607𝐸 − 15 6
CS −0.100574784 −0.100574784 −0.100574784 4.53639𝐸 − 14 3
FPA −0.100574784 −0.100574784 −0.100574784 8.35309𝐸 − 12 5
BA −0.100574784 −0.100574784 −0.100574784 1.18291𝐸 − 14 3

WWO −0.100574784 −0.100574784 −0.100574784 1.93291𝐸 − 15 2
EOBWWO −1 −1 −1 0 1

𝑓12 (𝐷 = 30)
ABC 0.02864526 0.007552463 0.012569017 0.00450223 2
CS 32.10594109 16.77196848 26.78636751 3.59576559 5
FPA 19.30313173 12.51112225 15.67535455 1.74928731 4
BA 42.35819689 25.57284909 31.84105217 3.87397750 6

WWO 19.88306619 9.975451796 14.2300995 2.59319376 3
EOBWWO 0 0 0 0 1

𝑓13 (𝐷 = 30)
ABC 8.85875𝐸 − 8 6.75126𝐸 − 15 6.88565𝐸 − 9 2.1219𝐸 − 8 2
CS 3.531716667 1.26783277 2.278563536 0.625010328 5
FPA 7.466256332 0.073108474 2.782338916 1.589472384 6
BA 0.018080917 0.012650753 0.014787578 0.001091235 3

WWO 1.942396367 0.026078564 0.13612587 0.64846015 4
EOBWWO 0 0 0 0 1

𝑓14 (𝐷 = 30)
ABC 2.600171726 1.999873348 2.399879727 0.184266606 5
CS 1.633485698 0.922951921 1.400436259 0.17500411 4
FPA 5.30000938 2.701931127 3.871080144 0.61020963 6
BA 0.499873346 0.199873346 0.299873346 0.06214554 2

WWO 1.211882567 0.599906059 0.808361684 0.174395376 3
EOBWWO 0.099873348 0 0.099873346 0.018234295 1
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Table 5: Experiment results of low-dimension functions for different algorithms.

Number Algorithm Results
Max Min Median Std Rank

𝑓15 (𝐷 = 24)
ABC 0.455803159 0.088628487 0.244130317 0.092018378 5
CS 0.006558415 0.002334688 0.003589486 0.001062387 2
FPA 3.516583313 0.439394393 1.119151909 0.756461677 4
BA 0.085283799 0.017280708 0.035769424 0.019917509 3

WWO 1.582142729 0.0749512 0.437894406 0.30106576 6
EOBWWO 3.44639𝐸 − 63 3.5938E − 262 6.1033E − 207 6.29221E − 64 1

𝑓16 (𝐷 = 2)
ABC −1 −1 −1 0 1
CS −1 −1 −1 1.47866𝐸 − 13 1
FPA −0.999991624 −1 −0.999999921 1.56202𝐸 − 6 6
BA −0.999999927 −1 −0.999999978 2.08821𝐸 − 8 5

WWO −1 −1 −1 2.06163𝐸 − 17 1
EOBWWO −1 −1 −1 0 1

𝑓17 (𝐷 = 4)
ABC −10.1531456 −10.15319968 −10.15319968 1.0346𝐸 − 5 1
CS −10.15319968 −10.15319968 −10.15319968 5.03511E − 15 1
FPA −10.15315656 −10.15319968 −10.15319952 7.82319𝐸 − 6 5
BA −5.055111551 −5.055182873 −50.551596 1.85604𝐸 − 5 6

WWO −5.10077214 −10.15319968 −10.15319968 1.281841952 1
EOBWWO −10.14720526 −10.15319968 −10.15319968 0.001093567 1

𝑓18 (𝐷 = 4)
ABC −10.40251326 −10.40294057 −10.40294057 7.79447𝐸 − 5 4
CS −10.40294057 −10.40294057 −10.40294057 2.21007𝐸 − 14 3
FPA −10.40202483 −10.40294054 −10.40293239 1.60136𝐸 − 5 1
BA −5.087559948 −5.08766627 −5.087628993 2.54514𝐸 − 5 6

WWO −10.40294057 −10.40294057 −10.40294057 2.00647E − 15 2
EOBWWO −10.40130898 −10.40294057 −10.40294057 0.000360071 5

𝑓19 (𝐷 = 4)
ABC −5.174214497 −10.53640982 −10.53640982 0.978996012 2
CS −10.53640982 −10.53640982 −10.53640982 1.33033𝐸 − 12 2
FPA −10.53388561 −10.53640939 −10.5363024 0.000210477 1
BA −5.128396631 −10.53632794 −5.128439601 1.37202234 6

WWO −5.175646742 −10.53640982 −10.53640982 0.978736954 2
EOBWWO −10.52292613 −10.53640982 −10.53640982 0.002461764 2

𝑓20 (𝐷 = 2)
ABC 3.00425387 3 3 0.00077653 1
CS 3 3 3 1.91987E − 15 1
FPA 3 3 3 2.62468𝐸 − 15 1
BA 3.000011451 3.00000068 3.000001582 2.81115𝐸 − 6 6

WWO 3 3 3 4.77801𝐸 − 15 1
EOBWWO 3 3 3 4.14957𝐸 − 15 1

the ability efficiently and stably to handle high dimensional
functions.

4.4. Structural Engineering Design Examples. Many struc-
tural design problems in the real world are constrained
optimization problems which are nonlinear with complex
constraints and the optimal solution even does not exist
in some cases. In order to evaluate the performance of
EOBWWO even further, in this subsection, EOBWWO was

used to solve two structural design problems: design of a
compressing spring and design of a welded beam.

4.4.1. Test Problem 1: Design of a Tension/Compression Spring.
Design of a tension or compressing spring problem is
introduced by Belegundu [14] firstly and it deals with the
optimal design of tension/compression spring for aminimum
weight. As shown in Figure 43, a tension/compression spring
problem has three design variables: the wire diameter 𝑑(𝑥1),
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Table 6: Statistical comparison between EOBWWO and the other five algorithms.

ABC CS FPA BA WWO𝑝 value ℎ 𝑝 value ℎ 𝑝 value ℎ 𝑝 value ℎ 𝑝 value ℎ𝑓01 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓02 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓03 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓04 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓05 NaN 0 NaN 0 1.2108𝐸 − 12 1 0.0027 1 1.6428𝐸 − 9 1𝑓06 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1 6.2828𝐸 − 6 1 2.0338𝐸 − 9 1𝑓07 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓08 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓09 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓10 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓11 1.2059𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.197𝐸 − 12 1 5.1032𝐸 − 13 1𝑓12 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓13 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1𝑓14 2.5190𝐸 − 11 1 2.5190𝐸 − 11 1 2.5190𝐸 − 11 1 2.5190𝐸 − 11 1 2.5190𝐸 − 11 1𝑓15 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1 3.0199𝐸 − 11 1𝑓16 NaN 0 1.20088𝐸 − 12 1 1.2118𝐸 − 12 1 1.2118𝐸 − 12 1 0.3337 0𝑓17 3.1245𝐸 − 4 1 1.0446𝐸 − 7 1 1.7216𝐸 − 6 1 2.9953𝐸 − 11 1 1.6737𝐸 − 4 1𝑓18 0.0851 0 1.3993𝐸 − 5 1 1.587𝐸 − 7 1 2.9916𝐸 − 11 1 1.187𝐸 − 7 1𝑓19 0.159 0 0.0371 1 5.4608𝐸 − 10 1 3.6058𝐸 − 11 1 2.1012𝐸 − 6 1𝑓20 0.5130 0 2.8286𝐸 − 9 1 0.1657 0 2.9766𝐸 − 11 1 0.5097 0

the mean coil diameter 𝐷(𝑥2), and the number of active
coils 𝑁(𝑥3). The minimum weight is subject to constraints
on minimum deflection, shear stress, surge frequency, and
limits on outside diameter [15]. A detailed description of the
problem is as follows:

Minimize: 𝑓 (𝑋) = (𝑥3 + 2) × 𝑥2𝑥21 (15)

Subject to: 𝑔1 (𝑋) = 1 − 𝑥32𝑥371785𝑥41 ≤ 0 (16)

𝑔2 (𝑋)
= 4𝑥22 − 𝑥1𝑥212566 (𝑥2𝑥31 − 𝑥41) + 15108𝑥21 − 1
≤ 0

(17)

𝑔3 (𝑋) = 1 − 140.45𝑥1𝑥32𝑥3 ≤ 0 (18)

𝑔4 (𝑋) = 𝑥1 + 𝑥21.5 − 1 ≤ 0, (19)

where the experimental parameters are set as follows:(0.05, 0.25, 2) ≤ 𝑋(𝑥1, 𝑥2, 𝑥3) ≤ (1, 1.3, 15) [29]. Table 9
lists the optimal solution for compression spring design
obtained by EOBWWO. The results are 20 runs indepen-
dently and the number of iterations of EOBWWO is 5000.
In the process of dealing with tension/compression spring

4500 50001500 2000 2500 3000 3500 4000500 10000
Iterations

ABC
CS
FPA

BA
WWO
EOBWWO

10
−300

10
−200

10
−100

10
0

10
100

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

Figure 6:𝐷 = 30, convergence curves for 𝑓04.

constrained optimization problem, first of all we need to
determine whether the four constraints are satisfied. If these
constraint conditions are all satisfied, then calculate 𝑓(𝑋)
according to formula (15) and compare𝑓(𝑋)with the original
fitness values, the better result as fitness value of constrained
optimization problem. Otherwise, the original fitness value
remains and continues to iterate.
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Table 7: Experiment results of high-dimension functions for different algorithms (𝑓01, 𝑓06, 𝑓07, 𝑓09).
Number Algorithm Dimension Worst Best Median Std

𝑓01

ABC
100 7.637713 1.257573 3.295669 1.651127
1000 1.434828𝐸 + 6 1.304834𝐸 + 6 1.371354𝐸 + 6 3.090254𝐸 + 4
10000 3.062472𝐸 + 7 2.988161𝐸 + 7 3.023603𝐸 + 7 1.446642𝐸 + 4

CS
100 26.040384 9.3680842 15.818794 4.115038
1000 6.516648𝐸 + 4 4.647782𝐸 + 4 5.504538𝐸 + 4 4.829252𝐸 + 3
10000 1.280442𝐸 + 6 1.058719𝐸 + 6 1.167367𝐸 + 6 5.345232𝐸 + 4

FPA
100 8.187843𝐸 + 3 4.416928𝐸 + 3 5.803334𝐸 + 3 1.062651𝐸 + 3
1000 1.400121𝐸 + 5 1.400121𝐸 + 5 1.400121𝐸 + 5 1.400121𝐸 + 5
10000 1.550111𝐸 + 6 9.442398𝐸 + 5 1.182740𝐸 + 6 1.704160𝐸 + 6

BA
100 0.021140987 0.015486339 0.018443888 0.001474661
1000 3.550121599 3.091995126 3.394685417 0.109635184
10000 1130.145132 750.0726451 865.3136568 94.15923749

WWO
100 6.483196131 3.07003824 0.917763681 0.91773681
1000 2.763344𝐸 + 5 2.088491𝐸 + 5 2.375400𝐸 + 5 1.655635𝐸 + 4
10000 7.929174𝐸 + 6 5941746𝐸 + 6 6.548260𝐸 + 5 4.464375𝐸 + 5

EOBWWO
100 0 0 0 0
1000 0 0 0 0
10000 0 0 0 0

𝑓06

ABC
100 470.7882 276.5788 407.6043 48.01618428
1000 202219.7218 177258.0229 193783.4147 5721.958598
10000 4156258.387 4029855.806 4108026.596 2985721724

CS
100 121.3484018 108.7940185 114.162504 3.194704574
1000 5108.984648 3833.317047 4359.012469 293.4115925
10000 73588.75287 57413.36292 66913.83583 4034.78353

FPA
100 559.2407 313.9292 421.0102 53.82862792
1000 8635.941471 5242.413467 6518.179353 870.7185594
10000 87358.09362 59543.23061 71905.7802 7351.701592

BA
100 100.7466 97.73262 99.84007 0.79162325
1000 1614.346207 1424.000673 1479.067336 47.45627579
10000 201943.4784 116612.8731 136871.9433 20275.79495

WWO
100 264.9252737 103.030758 118.948408 36.85200769
1000 20094.16217 13833.01993 16535.50983 1361.529306
10000 566850.0669 398083.154 470903.7464 37718.72406

EOBWWO
100 98.93733 98.35499 98.83611 0.1326465
1000 998.9477482 998.4598459 998.7574767 0.133930167
10000 9998.963982 9997.990523 9998.740734 0.255601018

𝑓07

ABC
100 136.8533 108.4902 122.9485 8.215112956
1000 11758.89361 11266.87845 11600.7465 122.7986144
10000 175645.833 173987.3858 174819.5595 470.6736986

CS
100 532.4556943 393.0034167 456.391023 79.34852616
1000 11758.89361 11266.87845 11600.7465 159.2707509
10000 100168.3367 97832.02684 98994.11566 503.1069646

FPA
100 719.314 632.8825 674.7777 23.77504554
1000 9679.894951 9201.466552 9432.549086 125.8751735
10000 102588.4972 99293.30339 101542.8715 817.4508097

BA
100 146.1837 48.6256 102.4563 21.99337966
1000 1868.357958 1058.160315 1289.192742 214.602082
10000 62214.8107 58922.9904 60387.27428 739.8935726

WWO
100 752.071607 532.8408358 645.477105 57.03009115
1000 1632.88218 9939.23755 10334.79578 192.1639397
10000 116931.0586 112418.7607 114726.7636 1248.129627

EOBWWO
100 0 0 0 0
1000 0 0 0 0
10000 0 0 0 0
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Table 7: Continued.

Number Algorithm Dimension Worst Best Median Std

𝑓09

ABC
100 5.135663 1.823636 2.836978 1.811452675
1000 16666.76931 15706.49796 16346.9208 252.8474194
10000 28259.6583 274901.5152 279624.617 1490.552232

CS
100 3.870724583 2.423491994 3.008555665 0.41301955
1000 797.6679633 582.0471041 690.0181057 55.72921205
10000 12543.25214 9844.343528 10872.16696 672.723997

FPA
100 106.3429 50.14951 70.05947 11.61798957
1000 1342.792454 861.2975273 1101.229098 134.1435148
10000 13324.24358 9169.071683 11107.79476 1225.099338

BA
100 6.2𝐸 − 4 3.56𝐸 − 4 4.84𝐸 − 4 5.58029𝐸 − 5
1000 0.025577018 0.021496965 0.023453281 0.001074614
10000 0.744676593 0.500121455 0.599339533 0.058517493

WWO
100 1.648358348 1.294987676 1.41369559 0.087489969
1000 4194.059126 2989.289164 3304.633104 257.7285706
10000 67780.01333 53734.62138 60711.98145 2937.168912

EOBWWO
100 0 0 0 0
1000 0 0 0 0
10000 0 0 0 0

Table 8: Experiment results of high-dimension functions of EOBWWO.

Functions Dimensions Worst Best Median Std𝑓02 10000 0 0 0 0𝑓04 10000 0 0 0 0𝑓10 10000 0 0 0 0𝑓12 10000 0 0 0 0𝑓13 10000 0 0 0 0

Table 9: Statistical results of best tension/compression springmodel
obtained by EOBWWO.

Worst Best Mean Std
0.012703814 0.012665234 0.012680022 1.20767𝐸 − 5

In the process of using EOBWWO algorithm to deal
with tension/compression spring constrained optimization
problem, when the position of individual in current pop-
ulation is changed (create a new solution) and required to
estimate the new solution, the steps of dealing with the ten-
sion/compression spring constrained optimization problems
are as follows.

Step 1. Calculate the values of the four constraint conditions
(see (16)–(19)) and estimate whether they are all satisfied with
the constraint conditions. If these constraint conditions are all
satisfied, go to Step 2; otherwise, go to Step 3.

Step 2. Calculate fitness value of new solution by formula
(15), and compare new fitness value to original fitness value.
According to the comparison results determine whether to
update the current individual. Go to Step 4.

Step 3. Keeping the original individual that violates any
constraint, go to Step 4.

Step 4. Continue performing the following operations.
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Figure 7:𝐷 = 30, convergence curves for 𝑓05.
The reason behind keeping the individual that violates

any constraint of the constraint conditions is that each itera-
tion of the population has to implement the elite opposition-
based learning (EOBL) strategy and propagation operation;
then the individual that violates any constraint may satisfy
the constraints in the next iteration.
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Table 10: Best results of compression spring by different model.

Researcher(s) Method Design variables 𝑓(𝑋)𝑥1(𝑑) 𝑥2(𝐷) 𝑥3(𝑁)
Belegundu [14] a 0.05 0.315900 14.25000 0.0128334
Arora [15] b 0.053396 0.399180 9.185400 0.0127303
Coello [16] GA 0.051480 0.351661 11.632201 0.01270478
Coello [17] GA 0.05148 0.35166 11.6322 0.0127
Coello and Montes [18] GA 0.051989 0.363965 10.890522 0.0126810
He et al. [19] PSO 0.05169040 0.35674999 11.28712599 0.0126652812
Coello and Becerra [20] EPc 0.05 0.3174 14.0318 0.01272
Raj et al. [21] ECTd 0.05386200 0.41128365 8.68437980 0.01274840
Hedar and Fukushima [22] SAe 0.051742503409 0.358004783455 11.2139073627 0.012665285
He and Wang [23] PSO 0.051728 0.357644 11.244543 0.0126747
Montes and Coello [24] ESf 0.051643 0.355360 11.397926 0.012698
Omran and Salman [25] CODEQg 0.0516837458 0.3565898352 11.2964717107 0.0126652375
Aragón et al. [26] T-cellh 0.05162 0.35511 11.3845 0.01267
Akay and Karaboga [27] ABC 0.051749 0.358179 11.203763 0.012665
Gandomi et al. [28] BA 0.05169 0.35673 11.2885 0.01267
Gandomi [29] ISAi NA NA NA 0.012665
Baykasoğlu and Ozsoydan [30] FA 0.0516674837 0.3561976945 11.3195613646 0.0126653049
Present study EOBWWO 0.05169826 0.356939073 11.2760014 0.012665234
a: mathematical optimization technique; b: numerical optimization technique; c: evolutionary programming; d: evolutionary computational technique; e:
simulated annealing; f: evolution strategies; g: chaotic search, opposition-based learning, differential evolution, and quantum mechanics; h: TCA is the T-cell
algorithm; i: interior search algorithm; NA: there is no relevant data.

Table 11: The optimal solution of the welded beam design example
obtained by EOBWWO.

Worst Best Mean Std
1.71846399 1.69634711 1.70146693 0.005170473
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Figure 8:𝐷 = 30, convergence curves for 𝑓06.
As one of the most well-known design benchmark prob-

lems, many researchers have studied this problem. Bele-
gundu [14] introduced this problem and used eight different
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Figure 9:𝐷 = 30, convergence curves for 𝑓07.
mathematical optimization techniques for this problem.
Arora [15] solved this problem using a numerical optimiza-
tion technique called a constraint correction at the constant
cost. Table 10 summarized the optimal results of design of
a tension/compression spring obtained by EOBWWO and
other researchers.

As seen from Table 10, the proposed method obtained
the best design overall of 0.012665234 corresponding to𝑋 = (0.05169826, 0.356939073, 11.2760014) and the results
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Table 12: The optimal solution of the welded beam design example using different methods.

Researcher(s) Method Design variables 𝑓(𝑋)𝑥1(ℎ) 𝑥2(𝑙) 𝑥3(𝑡) 𝑥4(𝑏)
Deb [31] GA 0.2489 6.1730 8.1789 0.2533 2.4331
Leite and Topping [32] GA 0.2489 6.1097 8.2484 0.2485 2.4000
Coello [33] GA 0.2088 3.4205 8.9975 0.2100 1.7483
Deb [34] GA NA NA NA NA 2.38
Coello [16] GA 0.208800 3.420500 8.997500 0.210000 1.748309
Hu et al. [35] PSO 0.20573 3.47049 9.03662 0.20573 1.72485084
He et al. [19] PSO 0.2444 6.2175 8.2915 0.2444 2.3810
Liu [36] SA 0.2444 6.2175 8.2915 0.2444 2.3810
Hedar and Fukushima [22] SA 0.205644 3.4725787 9.03662391 0.2057296 1.7250022
He and Wang [23] PSO 0.202369 3.544214 9.048210 0.205723 1.728024
Mahdavi et al. [37] HSA 0.20573 3.47049 9.03662 0.20573 1.7248
Montes and Coello [24] ES 0.199742 3.612060 9.037500 0.206082 1.73730
Fesanghary et al. [38] HHSA 0.20572 3.47060 9.03682 0.20572 1.7248
Kaveh and Talatahari [39] PSO + ABC 0.205729 3.469875 9.036805 0.205765 1.724849
Kaveh and Talatahari [40] ABC 0.205700 3.471131 9.036683 0.205731 1.724918
Gandomi et al. [41] FA 0.2015 3.562 9.0414 0.2057 1.73121
Akay and Karaboga [27] FA 0.205730 3.470489 9.036624 0.205730 1.724852
Gandomi et al. [28] BA 0.2015 3.562 9.0414 0.2057 1.7312
Gandomi [29] ISA NA NA NA NA 2.3812
Baykasoğlu and Ozsoydan [30] FA 0.205730 3.470489 9.036624 0.205730 1.724852
Present study EOBWWO 0.205832588 3.253654976 9.0315042 0.205962951 1.69634711
HAS: harmony search algorithm; HHSA: hybridizing harmony search algorithm.
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Figure 10:𝐷 = 30, convergence curves for 𝑓08.
obtained by EOBWWO are better than the comparative
methods.

4.4.2. Test Problem 2: Design of a Welded Beam. As another
well-known design benchmark problem, the objective of
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Figure 11:𝐷 = 30, convergence curves for 𝑓09.

welded beam problem is to minimize overall cost of fabrica-
tion subject to constraints on shear stress 𝜏, bending stress in
the beam 𝜎, buckling load on the bar 𝑃𝑐, end deflection of the
beam 𝛿, and side constraints. As depicted in Figure 44 [28],
this problem consists of four design variables: thickness of the
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Figure 12:𝐷 = 30, convergence curves for 𝑓10.
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Figure 13:𝐷 = 30, convergence curves for 𝑓11.

weld ℎ(𝑥1), the length of the welded joint 𝑙(𝑥2), the width of
the beam 𝑡(𝑥3), and the thickness of the beam 𝑏(𝑥4).

The problem can be formulated as follows:

Minimize: 𝑓 (𝑋)
= 1.10471𝑥21𝑥2
+ 0.04811𝑥3𝑥4 (𝑥2 + 14)

(20)

Subject to: 𝑔1 (𝑋) = 𝜏 (𝑋) − 𝜏max ≤ 0 (21)

𝑔2 (𝑋) = 𝜎 (𝑋) − 𝜎max ≤ 0 (22)
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Figure 14:𝐷 = 30, convergence curves for 𝑓12.
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Figure 15:𝐷 = 30, convergence curves for 𝑓13.

𝑔3 (𝑋) = 𝑥1 − 𝑥4 ≤ 0 (23)

𝑔4 (𝑋) = 0.15 − 𝑥1 ≤ 0 (24)

𝑔5 (𝑋) = 𝛿 (𝑋) − 0.25 ≤ 0 (25)

𝑔6 (𝑋) = 𝑃 − 𝑃𝑐 (𝑋) ≤ 0 (26)

𝑔7 (𝑋)
= 0.10471𝑥21 + 0.04811𝑥3𝑥4 (14 + 𝑥2)
− 5 ≤ 0,

(27)
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Figure 16:𝐷 = 30, convergence curves for 𝑓14.
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Figure 17:𝐷 = 24, convergence curves for 𝑓15.

where

𝜏 (𝑋) = √(𝜏󸀠)2 + 2𝜏󸀠𝜏󸀠󸀠 𝑥22𝑅 + (𝜏󸀠󸀠)2,
𝜏󸀠 = 𝑃√2𝑥1𝑥2 ,
𝜏󸀠󸀠 = 𝑀𝑅𝐽 ,
𝑀 = 𝑃(𝐿 + 𝑥22 ) ,
𝑅 = √𝑥224 + (𝑥1 + 𝑥32 )2,
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Figure 18:𝐷 = 2, convergence curves for 𝑓16.

𝐽 = 2{√2𝑥1𝑥2 [𝑥2212 + (𝑥1 + 𝑥32 )2]} ,
𝜎 (𝑋) = 6𝑃𝐿𝑥23𝑥4 ,
𝛿 (𝑋) = 4𝑃𝐿3𝐸𝑥33𝑥4 ,
𝑃𝑐 (𝑋) = 4.013𝐸√𝑥23𝑥64/36𝐿2 (1 − 𝑥32𝐿√ 𝐸4𝐺) ,
𝑃 = 6, 000 lb,
𝐿 = 14 in,
𝐸 = 30 × 106 psi,
𝐺 = 12 × 106 psi,
𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ,
(0.1, 0.1, 0.1, 0.1) ≤ 𝑋 ≤ (2, 10, 10, 2) .

(28)

EOBWWO algorithm was run to find the minimum cost
of fabrication of this design problem, where the range of
values of the four experimental parameters 𝑥1, 𝑥2, 𝑥3, 𝑥4
is set as follows: (0.1, 0.1, 0.1, 0.1) ≤ 𝑋(𝑥1, 𝑥2, 𝑥3, 𝑥4) ≤(2, 10, 10, 2) [30]. Similarly, in the process of searching the
minimum overall cost of fabrication, it is also the first
to determine whether the seven constraint conditions are
satisfied when calculating the fitness value. If these constraint
conditions are all satisfied, then make use of formula (20) to
calculate fitness value. In each run, EOBWWO is at the cost
of 5000-function evaluation to locate the optimal solution.
The experimental results of design of a welded beam obtained
by EOBWWO are listed in Table 11. Similarly, in the process
of searching the minimum overall cost of fabrication, when
the position of any individual in the current population is
changed and required to estimate the new solution, the steps
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Figure 19:𝐷 = 4, convergence curves for 𝑓17.
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Figure 20:𝐷 = 4, convergence curves for 𝑓18.
of using EOBWWO algorithm to deal with welded beam
problem are as using EOBWWO algorithm to deal with
compression spring.

The results of comparingwith those of other optimization
algorithms reported in the literature are shown in Table 12.
It can be seen from Table 12 remarkably that the proposed
EOBWWO algorithm is much better than other algorithms
in the design of welded beam, and the optimal solution
obtained by EOBWWO is 1.69634711 corresponding to 𝑋 =(0.205832588, 3.253654976, 9.0315042, 0.25962951).
5. Conclusions

In this paper, three strategies are added to the original
WWO algorithm to improve the convergence speed and
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Figure 21:𝐷 = 4, convergence curves for 𝑓19.
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Figure 22:𝐷 = 2, convergence curves for 𝑓20.
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Figure 23:𝐷 = 30, ANOVA test of global minimum for 𝑓01.
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Figure 24:𝐷 = 30, ANOVA test of global minimum for 𝑓02.
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Figure 25:𝐷 = 30, ANOVA test of global minimum for 𝑓03.
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Figure 26:𝐷 = 30, ANOVA test of global minimum for 𝑓04.

calculation precision of WWO algorithm even further for
function optimization and structure engineering design
problems.The elite opposition-based (EOB) learning strategy
enhances global exploration capability by means of increas-
ing population diversity. The local neighborhood search
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Figure 27:𝐷 = 30, ANOVA test of global minimum for 𝑓05.
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Figure 28:𝐷 = 30, ANOVA test of global minimum for 𝑓06.
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Figure 29:𝐷 = 30, ANOVA test of global minimum for 𝑓07.

strategy is introduced to enhance local exploitation capa-
bility via enhancing the local search around the promising
optimal solution. In addition, the improved propagation
operator provides the improved algorithm with a better
balance between exploration and exploitation. By using the
above-mentioned three strategies, EOBWWO can deal with
function optimization including multimodal functions and
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Figure 30:𝐷 = 30, ANOVA test of global minimum for 𝑓08.
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Figure 31:𝐷 = 30, ANOVA test of global minimum for 𝑓09.
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Figure 32:𝐷 = 30, ANOVA test of global minimum for 𝑓10.

structural design problems. The results of 20 benchmark
functions and two structural design problems in Section 4
demonstrated that the performance of EOBWWO is bet-
ter than the comparative algorithms at most benchmark
functions and other solving methods for the two structural
design problems. The improved EOBWWO algorithm can
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Figure 33:𝐷 = 30, ANOVA test of global minimum for 𝑓11.
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Figure 34:𝐷 = 30, ANOVA test of global minimum for 𝑓12.

CS FPAABC WWO EOBWWOBA

0

1

2

3

4

5

6

7

Figure 35:𝐷 = 30, ANOVA test of global minimum for 𝑓13.

significantly improve the convergence speed and calcula-
tion precision of the original WWO algorithm. There are
various important issues for the further research topics of
EOBWWO. On the one hand, structural design problems
not only exist in the real world widely, but also are generally
nonlinear and constrained optimization problems.Therefore,
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Figure 36:𝐷 = 30, ANOVA test of global minimum for 𝑓14.
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Figure 37:𝐷 = 24, ANOVA test of global minimum for 𝑓15.
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Figure 38:𝐷 = 2, ANOVA test of global minimum for 𝑓16.

other design problems can be resolved using EOBWWO in
future research, such asmultidimensional knapsack problem,
permutation flow shop scheduling problem [51], and graph
coloring problem. On the other hand, some improvements
can be introduced to EOBWWO and WWO algorithm to
enhance the ability of dealing with relevant problems. More
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Figure 39:𝐷 = 4, ANOVA test of global minimum for 𝑓17.
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Figure 40:𝐷 = 4, ANOVA test of global minimum for 𝑓18.
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Figure 41:𝐷 = 4, ANOVA test of global minimum for 𝑓19.

elaborate set of parameters, such as breaking coefficient𝛽 and
wavelength reduction coefficient𝛼, multiple population strat-
egy, and combination with other optimization algorithms are
some good choices. In addition, multiobjective optimization
problems are also the focus in the future research.
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Figure 42:𝐷 = 2, ANOVA test of global minimum for 𝑓20.
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Figure 44: The welded beam problem.
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