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We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential
equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations,
we first consider the existence and regularity of solutions of the neutral control system by using fractional power of operators and the
local Lipschitz continuity of nonlinear term. Our purpose is to obtain the existence of solutions and the approximate controllability
for neutral functional differential control systems without using many of the strong restrictions considered in the previous literature.

Finally we give a simple example to which our main result can be applied.

1. Introduction

Let H and V be real Hilbert spaces such that V is a dense
subspace in H. Let U be a Banach space of control variables.
In this paper, we are concerned with the global existence of
solution and the approximate controllability for the following
abstract neutral functional differential system in a Hilbert
space H:

% [x (t) + (Bx) ()] = Ax (t) + f (t, x (t)) + (Cu) (1),
te,1], ©

x (0) = x,, (Bx) (0) = vy,

where A is an operator associated with a sesquilinear form on
VXV satisfying Garding’s inequality, f is a nonlinear mapping
of [0,T]xV into H satisfying the local Lipschitz continuity, B :
L*(0,T;V) — L*(0,T;H) and C : L*(0,T;U) — L*(0,T3H)
are appropriate bounded linear mapping.

This kind of equations arises in population dynamics,
in heat conduction in material with memory and in control
systems with hereditary feedback control governed by an
integrodifferential law.

Recently, the existence of solutions for mild solutions for
neutral differential equations with state-dependence delay
has been studied in the literature in [1, 2]. As for partial
neutral integrodifferential equations, we refer to [3-6]. The
controllability for neutral equations has been studied by
many authors, for example, local controllability of neutral
functional differential systems with unbounded delay in
[7], neutral evolution integrodifferential systems with state
dependent delay in [8, 9], impulsive neutral functional
evolution integrodifferential systems with infinite delay in
[10], and second order neutral impulsive integrodifferential
systems in [11, 12]. Although there are few papers treating
the regularity and controllability for the systems with local
Lipschitz continuity, we can just find a recent article by Wang
[13] in case of semilinear systems. Similar considerations of
semilinear systems have been dealt with in many references
[14-17].

In this paper, we propose a different approach from the
earlier works (briefly introduced in [1-6] about the mild
solutions of neutral differential equations. Our approach
is that results of the linear cases of Di Blasio et al. [18]
and semilinear cases of [19] on the L*-regularity remain
valid under the above formulation of the neutral differential
equation (1). For the basics of our study, the existence of local



solutions of (1) is established in L*(0,T5V) nW(0,T;V*) —
C([0,T];H) for some T > 0 by using fractional power of
operators and Sadvoskii’s fixed point theorem. Thereafter, by
showing some variations of constant formula of solutions,
we will obtain the global existence of solutions of (1) and
the norm estimate of a solution of (1) on the solution space.
Consequently, in view of the properties of the nonlinear
term, we can take advantage of the fact that the solution
mapping u € L*(0,T;U) ~ x is Lipschitz continuous, which
is applicable for control problems and the optimal control
problem of systems governed by nonlinear properties.

The second purpose of this paper is to study the approxi-
mate controllability for the neutral equation (1) based on the
regularity for (1); namely, the reachable set of trajectories is a
dense subset of H. This kind of equations arises naturally in
biology, physics, control engineering problem, and so forth.

The paper is organized as follows. In Section 2, we intro-
duce some notations. In Section 3, the regularity results of
general linear evolution equations besides fractional power of
operators and some relations of operator spaces are stated. In
Section 4, we will obtain the regularity for neutral functional
differential equation (1) with nonlinear terms satisfying local
Lipschitz continuity. The approach used here is similar to
that developed in [13, 19] on the general semilinear evolution
equations, which is an important role to extend the theory of
practical nonlinear partial differential equations. Thereafter,
we investigate the approximate controllability for the problem
(1) in Section 5. Our purpose in this paper is to obtain the
existence of solutions and the approximate controllability for
neutral functional differential control systems without using
many of the strong restrictions considered in the previous
literature.

Finally, we give a simple example to which our main result
can be applied.

2. Notations

Let Q be a region in an n-dimensional Euclidean space R"
and closure Q.

C™(Q) is the set of all m-times continuously differen-
tial functions on Q.

Cy'(Q) will denote the subspace of C™ () consisting
of these functions which have compact support in Q.

W™P(Q) is the set of all functions f = f(x) whose
derivative D” f up to degree m in distribution sense
belong to LP(Q). As usual, the norm is then given by

1/p
Voo~ (ZI00a)

1< p<oo,

1 o0 = max|D%ul 0 3)

as<m

where D° f = f. In particular, W*P(Q) = LP(Q) with
the norm || - ||, o

WP (Q) is the closure of CJ°(Q) in W™P(Q).
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For p = 2 we denote W™*(Q) = H™(Q) and
WoP(Q) = HI'(Q).

Let p' = p/(p—1), 1 < p < co. W P(Q) stands for

the dual space WO1 P ,(Q)* of WO1 P ’(Q) whose norm is
denoted by || - ||_1,P,00.

If X is a Banach space and 1 < p < 00,

L?(0,T;X) is the collection of all strongly measurable
functions from (0,T) to X, the pth powers of norms
are integrable,

C™([0,T];X) will denote the set of all m-times contin-
uously differentiable functions from [0,T] to X.

If X and Y are two Banach spaces, B(X,Y) is the
collection of all bounded linear operators from X to
Y, and B(X,X) is simply written as B(X).

For an interpolation couple of Banach spaces X, and
Xy, (Xg,Xy)g,, and [X(,X;]g denote the real and
complex interpolation spaces between X, and X,,
respectively.

Let A be a closed linear operator in a Banach space. Then

D(A) denotes the domain of (A) and R(A) the range
of A;

p(A) denotes the resolvent set of A, o(A) the spec-
trum of A, and 0,,(A) the point spectrum of A;

the kernel or null space {x € D(A) : Ax = 0} of Ais
denoted by Ker(A).

3. Regularity for Linear Equations

If H is identified with its dual space we may writeV ¢ H c V*
densely and the corresponding injections are continuous. The
normon V, H, and V* will be denoted by || - ||, | - [and || - [,
respectively. The duality pairing between the element v, of
V* and the element v, of V is denoted by (v,, v,), which is the
ordinary inner product in H if v;, v, € H.

For I € V* we denote (I,v) by the value I(v) of lat v € V.
The norm of ] as element of V* is given by

I

Il = sup (4)

vev VIl

Therefore, we assume that V' has a stronger topology than H
and, for brevity, we may consider
lull, < ful < lull, VueV. (5)

Leta(:,-) beabounded sesquilinear form defined in V xV'
and satistying Garding’s inequality:

Rea (u,u) > 8llul’, &> 0. (6)
Let A be the operator associated with this sesquilinear form:

(Au,v) =a(u,v), uveV. 7)
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Then A is a bounded linear operator from V to V* by the
Lax-Milgram theorem. The realization of A in H which is the
restriction of A to

D(A)={ueV : Auc H} (8)
is also denoted by A. From the following inequalities
Slull® < Rea (u,u) < ClAul [ul < Clullpy lul, )
where
lullpeay = (1Al + ()" (10)

is the graph norm of D(A), it follows that there exists a
constant C;, > 0 such that

1/2 1/2
lutl < Collull gy lual 2. (1)

Thus we have the following sequence:
D(A)cV cHCcCV" c DA, (12)

where each space is dense in the next one and continuous
injection.

Lemma 1. With the notations (11), (12), one has

ViV )ipo = H,
(13)

(D(A),H)yppp =V,

where (V,V"),, , denotes the real interpolation space between
V and V* (Section 1.3.3 of [20]).

It is also well known that A generates an analytic semi-
group S(t) in both H and V™. The following lemma is from
Lemma 3.6.2 of [21].

Lemma 2. Let S(t) be the semigroup generated by —A. Then
there exists a constant M such that
IS@® <M, Is @Il < M. (14)
Forallt > 0 and every x € H or V* there exists a constant
M > 0 such that the following inequalities hold:
ISt xl < Mt lxl,, ISl < ME |x]. (15)
By virtue of (6), we have that 0 € p(A) and the closed half

plane {A : Re A > 0} is contained in the resolvent set of A. In
this case, there exists a neighborhood U of 0 such that

p(A)>{A:|argd| > w}uUU. (16)

Hence, we can choose that the path T runs in the resolvent set
of A from coe to coe™, w < 8 < 7, avoiding the negative

axis. For each o > 0, we put

Ao b J A (A = ) dA, 17)
21 Jr

where A% is chosen to be for A > 0. By assumption, A™ is a
bounded operator. So we can assume that there is a constant
M, > 0 such that
% (%1
1A™ | gy < Mo IA™ | g vy < Mo (18)

For each a > 0, we define an operator A as follows:

—an-1
A% = (A™)" fora >0, 19)
I for a = 0.
The subspace D(A”) is dense in H and the expression
Ixll, = [|A%x||, x e D(A%) (20)

defines a norm on D(A%).

Lemma 3. (a) A% is a closed operator with its domain dense.
(b) If0 < & < B, then D(A%) > D(AP).
(c) For any T > 0, there exists a positive constant C, such
that the following inequalities hold for all t > 0:

o CD( o COC
IS Ol < S 1A Ollyrny < sty 2D

Proof. From [21, Lemma 3.6.2] it follows that there exists a
positive constant C such that the following inequalities hold
forallt > 0 and everyx € Hor V™:

C C
|AS(8) x| < — Il IlAS (£) x|l < P | » (22)

which implies (21) by properties of fractional power of A. For
more details about the above lemma, we refer to [21,22]. [

Let the solution spaces #'(T') and %#,(T) of strong
solutions be defined by

w (T) = L* (0, T; D (A)) n W"* (0, T; H),
W, (T)=L*(0,T;V)nW" (0, T; V). .
Here, we note that by using interpolation theory, we have
W (T) cC([0,T];V), W, (T)cC([0,T];H). (24)
Thus, there exists a constant M; > 0 such that

Ixlleorym < Millxllo, oy
(25)

oy < Millxlla e,

First of all, consider the following linear system:

x () + Ax (t) =k (1),
(26)
x (0) = x,.

By virtue of Theorem 3.3 of [6] (or Theorem 3.1 of [3, 21]),
we have the following result on the corresponding linear
equation of (26).



Lemma 4. Suppose that the assumptions for the principal
operator A stated above are satisfied. Then the following
properties hold:

(1) for xy € V.= (D(A), H), 5, (see Lemmal) and k €
L*(0,T;H), T > 0, there exists a unique solution x of
(26) belonging to #'(T) ¢ C([0,T];V) and satisfying

Ixllopcry < Cy (|%o0] + 1Kl 20,130 » (27)
where C, is a constant depending on T;

(2) let x, € Hand k € L*(0,T;V*), T > 0; then there
exists a unique solution x of (26) belongingto %", (T) ¢
C([0,T];H) and satisfying

Ixllop () < Cy (|%0] + Ikl 20,m59+9) » (28)
where C, is a constant depending on T.

Lemma5. Foreveryk € L2(0,T;H), let x(t) = f; S(t—s)k(s)ds
for 0 <t <T. Then there exists a constant C, such that

Ixll 20750y < Ca VTl 20,1511 - (29)
Proof. By (27) we have

M2 0,50ca)) < Cillkll 20,7580 (30)

Since

2

JtS(t—S)k(S)dS dt
0

Jt Ik (5) ds)zdt

0

T
2
I+l 05 = |
0

<u ) (

T t
SMJ tJ- Ik (s)Pdsdt
0

0

(31)

2 T
<ML j Ik (s)2ds,
2 Jo

it follows that
||x||L2(0’T;H) S T V M/2||k||L2(O,T;H). (32)
From (11), (30), and (32) it holds that

M 1/4
%N 20, < Co C1T<7> 1l 2 0,7 1)- (33)

So, the proof is completed. O

4. Semilinear Differential Equations

Consider the following abstract neutral functional differen-
tial system:

% [x () + (Bx) ()] = Ax () + f (£, x () + k (£) »

te(,1], ©%

x(0) = x,, (Bx) (0) = y,-
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Then we will show that the initial value problem (34) has a
solution by solving the integral equation:

x () =S®) [xq + yo] — (Bx) (¢)

+ L AS(t —s)Bx (s)ds (35)

+ JtS(t—s){f(s,x(s))+k(s)}ds.
0

Now we give the basic assumptions on the system (34).

Assumption B. Let B : L*(0,T;V) — L*(0,T;H)beabounded
linear mapping such that there exist constants 8 > 1/3,L > 0,
and a continuous nondecreasing function b(t) : [0,1] — R
with b(0) = 0 such that

"A‘BBx

cosm < 0 OIxl2em) 36)
Y (t,x) € (0,T) x L* (0, T; V).

Assumption F. f is a nonlinear mapping of [0, T] x V into H
satistying the following.

(i) There exists a function L, : R, — R such that

|ftx) = fty) <Ly () ]x -y,
hold for || x [<rand || y < 7.

tel0,T], (37)

(ii) The inequality
|f (&,)] < L (r) (<]l + 1) (38)
holds for every t € [0,T] and x € V.

Let us rewrite (Fx)(t) = f(t,x(t)) for each x € L*(0,T;V).
Then there is a constant, denoted again by L, (r), such that

||Fx||L2(o,T;H) <L, (r) (”x"LZ(o,T;V) + 1) ,
(39)

[[Fx, sz”LZ(o,T;H) <Ly(n)|x, - xZ"Lz(O,T;V)

hold for x € L?(0,T;V) and X%, € B.(T) ={x € L2(0,T5V) ¢
x"LZ(O,T;V) < 7’}.
From now on, we establish the following results on the

solvability of (34).

Theorem 6. Let Assumptions B and F be satisfied. Assume that
xo € H, k € L*(0,T;V*) for T > 0. Then, there exists a solution
x of (34) such that

x e W, (T)=L*(0,T;V)nW" (0, T;V*) c C([0,T]; H).
(40)

Moreover, there is a constant C, independent of x, and the
forcing term k such that

||x||W1(T) <G (1 + |x0| + "k"Lz(O,T;V*)) . (41)
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One of the main useful tools in the proof of existence
theorems for functional equations is the following Sadvoskii’s
fixed point theorem.

Lemma 7 (see [23]). Suppose that ¥ is a closed convex subset
of a Banach space X. Assume that K, and K, are mappings
from X to X such that the following conditions are satisfied:

(i) (K + K)(E) C &,
(ii) K, is a completely continuous mapping,
(iii) K, is a contraction mapping.
Then the operator K, + K, has a fixed point in 2.
Proof of Theorem 6. Let
1o =2C |x0 + ¥ » (42)

where C, is constant in Lemma 4. Let 3 > 1/3, and choose
0 < T, < T such that

T2 [{C,Ly (ro) (g + 1) + Collkl 2071 }
+2rb (1)) Cs(38) P (3p-2)"] @)
+1oMob (Ty) < Cy |x4 + ¥o)
where C, is constant in Lemma 5. Let
M =T {CoL, () +2(38) " *(38-2)'C_pb (1))}

+ Myb (T)) < 1.

(44)
Define a mapping J : L*(0,T;;V) — L*(0,T;V) as
(Jx) (£) = S (¢) (%0 + ¥) = (Bx) (1)
- d
+ L AS (t —s) (Bx) (s)ds (45)

+ JtS(t—s) {f (s, x(s)) + k(s)}ds.
0

It will be shown that the operator ] has a fixed point in the
space L*(0,T,;V). By Assumptions B and F, it is easily seen
that J is continuous from C([0,T,];H) in itself. Let

2={x e’ (0,T;;V) : Ixl2or) < For X (0) = %o},
(46)

which is a bounded closed subset of L2(0,T1;V). From (27) it
follows that

IS () (%0 + J’o)“LZ(o,Tl;V) < Cy |xg + ol - (47)
By (21), (25), and assumption B we have

1Bl 20r, ) = |AF AP Bx

L2 (0>T1 V)

<[4y |47B 48

L2(0>T1 ;H)

< roMob (T)).

By virtue of (29) in Lemma 5, for 0 < t < T}, it holds that

JtS(t—s){f(s,x(s))+k(s)}ds
0

L2 (0>T1 V)

<C, \/illFx +kll 20,15
< CZ\/’ITI{LI (1) (”x||L2(0,T1;V) + 1) * ”k”LZ(O’TI;V)}

< Cz\/i{Ll (r9) (ro + 1) + ”k”LZ(O,Tl;V)} .
Since (21) and Assumption F the following inequality holds:

(49)

IAS (t - 5) Bx ()] = |A"FS (t - 5) AP Bx (5)]

Crp (50)
< —(t BT rob (T}).
Let
t

Wx) (t) = Jo AS (t — s) Bx (s) ds. (51)

Then there holds
12

Jt AS(t —s)Bx (s)ds
0

2
dt]

Tl
Wl o) = “O

|1

< 21gb (T,) C,_y(36 - z)‘l(f t3ﬁ_1dt>

¢ Cl—ﬁ 2 1/2
Jy e (s ) ai

1/2

= 2rpb (Ty) Cl—ﬁ(3ﬁ)7l/2(3ﬁ - 2)71T13ﬁ/2'

(52)
Therefore, from (43), (47)-(52) it follows that
1% 20,1, 5
< Cy |xq + yo| + roMyb (T})
(53)

17 [y () (0 + 1) + oMo}

+2038) " (3p-2) b (1) Cop] < 7o,

and hence ] maps ¥ into X.
Define mapping K, + K, on L*(0,T};V) by the formula

Ux)(t) = (le) () + (sz) ),
(Kix) (1) = = (Bx) (1),

(Kyx) (£) = S (8) (xo + ¥p)
(54)

+ Jt AS (t —s) (Bx) (s)ds
0

+JtS(t—s){f(s,x(s))+k(s)}ds.
0



We can now employ Lemma 7 with £. Assume that a sequence
{x,} of LZ(O,TI;V) converges weakly to an element x_, €
L*(0,T;V); that is, w — lim X, = X Then we will show
that

n— 00

Jim [|K;x, - Ki x| = 0, (55)

which is equivalent to the completely continuity of K, since
LZ(O,TI;V) is reflexive. For a fixed t € [0,T}], let x; (x) =
(K, x)(t) for every x € L*(0,T};V). Then x; € L*(0,T;;V*)and
we have lim, _, . x; (x,,) = x; (x,) since w — lim
X Hence,

n—ooXn =

Jim (Kyx,) () = (Kjxo,) (1), t € [0,T1]. (56)
By (21), (25), and assumption B we have

[(Kyx) O = 1Bx) () = | AP APBx (o)
(57)

< I AP =

<
12 (O,Tl ;H)

Therefore, by Lebesgue’s dominated convergence theorem it
holds that

T, T,

Jim | JKx) @Fde = | k) O ds 69
0 0

that is, lim, , o IK X, 2010y = 1K Xeoll2orsv)- Since

L*(0,T;;V) is a Hilbert space, the relation (55) holds. Next,
we prove that K, is a contraction mapping on X. Indeed, for
every x; and x, € X, we have

(Kyxp) () = (Kyx,) (1)

_ L AS(t - 5) {(Bx,) (s) - (Bx,) (£)} ds (59)

N Lt S(t-9){f (5%, () - f (5%, (5))} ds.

Similar to (49) and (52), we have

K%, - K2x2||L2(O,T1;V)
<1 {Cal, () +2(38)
(60)
-1
x(3-2)"Cy_4b(T}) }

X [|xy = x, ||L2(0,T1;V)'

So by virtue of condition (44) the contraction mapping
principle gives that the solution of (34) exists uniquely in
[O)TI]-

So by virtue of condition (44), K, is contractive. Thus,
Lemma 7 gives that the equation of (34) has a solution in
W\ (T)).
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From now on we establish a variation of constant formula
(41) of solution of (34). Let x be a solution of (34) and x, € H.
Then we have that from (47)-(52) it follows that

%l z20,7,v
< C |xg + yo| + Myb (T,) %N 220,15
+ T13/3/2 chLl (1) (”x"LZ(O,Tl;V*) + 1) (61)
+ Gl | +238)
x (3~ 2)_1C17pb (Ty) "x"LZ(O,Tl;V)] .
Taking into account (44) there exists a constant C; such that
||X||L2(0,T1;V)
<(1-m)"
x [Cy |x + yo| + oMb (Ty) + TiF* (62)
x {C2L1 (ro) + C2||k||L2(o,T1;V*)H

< Cy (1+ o] + IKlz o))

which obtain the inequality (41). Since the conditions (43)
and (44) are independent of initial value and by (25)

| (T1)| < Ixlloqorr,sem < Milxlor, s (63)
by repeating the above process, the solution can be extended
to the interval [0,T7]. O

Corollary 8. If Myb(T,) < 1, then the uniqueness of the
solution of (34) in W', (T) is obtained.

Proof. Let MyL < 1. Then instead of condition (44), we can
choose T such that

Mob (1)) + TP {C, L, (ry) + 2(3p) ™2
(64)
x (3f-2)7Cpgb(T))} < 1.
For every x, and x, € X, we have
(Jxy) (1) = (Ux,) (1)
= (Bx,) (t) — (Bx;) ()
(65)

. r AS (£ - 5) {Bx, (s) - Bx, (1)} ds
0

+ L St=9){f(s%,(s) = f(s,x,(5))} ds.
Similar to (49) and (52), we have

||]x1 - ]x2”L2(0,T1;V)

< [Mob (T)) + T13'8/2 {Cle (r0) + 2(3/’))_1/2(3,8 - 2)_1

X Cy_gb (1) H ”'xl — X2 ||L2(0,T1;V)'
(66)
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So by virtue of condition (64) the contraction mapping
principle gives that the solution of (34) exists uniquely in
[0,T,]. O

Remark 9. Let Assumptions B and F be satisfied and (x,k) €
D(A) x L*(0,T;H). Then by the argument of the proof of
Theorem 6 term by term, we also obtain that there exists a
solution x of (34) such that

x e W (T)
(67)
=170, T;D(A) nW"(0,T; H) c C([0,T];V).
Moreover, there exists a constant C; such that
Iy < Cs (1+ x| + 1Kl 2q0,7500) (68)

where C; is a constant depending on T'.

The following inequality is refered to as the Young
inequality.

Lemma 10 (Young inequality). Leta > 0, b > 0, and 1/p +
1/g = 1, where 1 < p < 00, and 1 < q < co. Then for every
A > 0 one has

APaP bl
ab < + —.
p Mg

(69)

From the following result, we obtain that the solution
mapping is continuous, which is useful for physical applica-
tions of the given equation.

Theorem 11. Let Assumptions B and F be satisfied and
(X0 Yook) € H x H x L*(0,T;V*). Then the solution x of (34)
belongs to x € W ,(T) = L*(0,T;V) n W"(0,T;V*) and the
mapping

HxHxL*(0,T5V") 5 (xg yp k) — x € %', (T) (70)

is continuous.

Proof. From Theorem 6, it follows that if (x,,k) € H X
L*(0,T;V*), then x belongs to 77, (T). Let (xy;yo-k;) € H X
H x L*(0,T;V*) and let x; € %/,(T) be the solution of (34)
with (xg;,¥0:ok;) in place of (xg,y,,k) fori = 1,2. Let x; (i =
1,2) € X. Then as seen in Theorem 6, it holds that

41 (6 - x, (6 + (Bx,) () - (Bx,) ()]

dt
A () -, 0) + f(x, @) - f(tx, @) TV
+ k1 ) - kz (t),
x; (0) = x5 (0) = x5, — Xgp- (72)

7
So the solution of the above equation is represented by
xy (£) = x, (t)
= S (t) {(xo1 = %02) + (Yor = ¥o2)}
+(Bx,) () = (Bx,) (t)
" Lt AS(t — 5) {(Bx,) () - (Bxy) (1)} dis 73)
t
+ L St=9){f(sx, (1)
= f(s,x,(s) + Ky (5) — ky (5) } ds.
And, hence, it holds that
[l - x2"L2(0,T1;V)
< Cy (|xo1 = Xoo| + [yo1 = Y02l)
+ CzT13 pr2 e, ~ k2”L2(0,T1;V*)
+ Tfﬁ/z {MOL +C,L, (r) + 2(3[3)_1/2 7
x(36-2)"'b(T,) C, g}
X [y — x2||L2(0,T1;V)'
From (43), we have
[l - xZ"Lz(O,Tl;V)
< (1 - M)_l (Cl (|01 = %o2| + |yo1 = 02 ) (75)

+ Cszﬁ/ZHkl - k2"L2(0,T1;V*)) :

Hence, repeating this process as seen in Theorem 6, we
conclude that the solution mapping is continuous. O

For k € L*(0,T;V"*), let x; be the solution of (34) with k
instead of Bu.

Theorem 12. Let one assume that the embedding V. C H is
compact. For k € L2(0,T;V*) let x;. be the solution of (34).
Then the mapping k + x; is compact from L*(0,T;V*) to
L*(0,T;H). Moreover, if one defines the operator F by

F (k) = f (%) (76)

then F is also a compact mapping from L*(0,T;V*) to
L*(0,T;H).

Proof. If (x,k) € H x L2(0,T;V*), then in view of Theorem 6
")’k"%(T) < Cy (Jeo] + Mell 2079 - (77)

Since x; € L%(0,T;V), we have flx,) € L*(0,T;H).
Consequently, by (25), we know that x, € % ,(T) c



C([0,T];H). With aid of (a) of Lemma 3, noting that
" xk”LZ(O)T;V) S” xk||7/1(T), we haVe

"xk"%(T) < G5 (1 + [xo| + Ikl 207} - (78)

Hence if k is bounded in L*(0,T;V *), then so is X, inwW(T) =
L2(0,T;V)NnWY2(0,T;V*). Since V is compactly embedded in
H by assumption, the embedding

@, (T) c L* (0, T; H) (79)

is compact in view of Theorem 2 of Aubin [24]. Hence k — x;,
is compact from LZ(O,T;V*). Moreover, we have that & is a
compact mapping of

L*(0,T;V*) — %, (T) — L* (0, T; H),  (80)

which is of L*(0,T;V*) to L*(0,T;H). O

5. Approximate Controllability

In this section, we show that the controllability of the
corresponding linear equation is extended to the nonlinear
differential equation. Let U be a Banach space of control
variables. Here C is a linear bounded operator from L*(0,T;U)
to L? (0,T;H), which is called a controller. For x € LZ(O, T; H)
we set

t

(Bx) (t) = J N (t-s)x(s)ds, (81)

0
where N : [0,00) — Z(H,V) is strongly continuous.
Then it is immediately seen that Bx € C([0,T];V) and hence
AS(s)(Bx)(s) = AS(s)(Bx)(s) for 0 < s < T because D(A) =
V.Since t — N(¢) is strong continuous, by the uniform
boundedness principle, there exists a constant M, such that,
forany T > 0,

sup AN ()l oy vy < My
o PLHV*) N (82)

Consider the following neutral control equation
d
7 X0+ (Bx) ()] = Ax () + f (£, x (1) + (Cu) (1),

teo,1], 83

x(0) = x,, (Bx) (0) = y,-

Let x(T;B, f,u) be a state value of the system (83) at time T
corresponding to the operator B, the nonlinear term f, and
the control u. We note that S() is the analytic semigroup
generated by —A. Then the solution x(¢;B, f,u) can be written
as

x (B, f,u)

=S (1) (xo + ) — (Bx) (t)
t (84)
+ L S(t-s)

x {A (Bx) (s)ds + f (s,x(s)) + (Cu) (s)} ds.
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And in view of Theorem 6,

|l (‘;B’f’”)”wlm < Gy (|x + ||C||5£(U,H)||”||L2(0,T;U))-
(85)

We define the reachable sets for the system (34) as follows:

R(T) = {x(T;B, fu) :u € L* (0, T;U)},
(86)
L(T) = {x(T;0,0,u) :u € L* (0, T; U)} .

Definition 13. The system (83) is said to be approximately
controllable on [0,T7] if for every z; € H and € > 0 there
exists a control function u € L*(0,T;U) such that the solution
x(T;B, f,u) of (83) satisfies |x(T;f,u) — zp| < € that is,
Ry (f) = H, where R(T) is the closure of R(T) in H.

We define the linear operator S from L*(0,T;H) to H by
~ T
Sp:J S(T-s)p(s)ds (87)
0

for p € L*(0,T;H).
We need the following hypothesis.

Assumption S. (i) For any ¢ > 0 and p € L*(0,T;H), there
exists a u € L2(0,T;U) such that

|§p - §Cu| <e (88)
"Cu"Lz(O,t;H) < ql"P”LZ(o,t;H)’ 0<t<T, (89)

where g, is a constant independent of p.
(ii) f is a nonlinear mapping of [0,7] x H into H

satisfying the following.
There exists a function L, : R, — R such that

|f(tx) = f(6y)| < Ly () |x - ],
hold for |x| < rand |y| <.

te[0,T], (90)

By virtue of condition (i) of Assumption S we note that
AS(t — s)Bx = S(t — s)ABx for each x € V. Therefore, the
system (83) is approximately controllable on [0,T7] if for any
€ > 0 and z; € H there exists a control u € LZ(O,T;U) such
that

IS (T) (x0 + ¥,) = (Bx) (T)
_ 91)
+S{ABx + Fx + Cu} - z;| < &,

where (Fx)(t) = f(t,x(t)) for t > 0. Throughout this section,
invoking (85), we can choose a constant r; such that

r > Cs (|x0| + "C"f[(U,H)”u"LZ(O,T;U)) > (92)
and set

G(s,x) =ABx)(s) + f (s, x(5)). (93)
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Lemma 14. Let u; and u, be in L*(0,T;U). Then under the
Assumption S, one has that, for0 <t < T,

|x (t; B, fyu,) — x (t; B, f,u,)]
. (94)
< Me™ \/Zl]Cul - Cu, ||L2(0,T;H)’

where M, = eMMNT+L (),

Proof. Let x(t) = x(&B, f,u;) and x,(¢t) = x(t;B,f,u,). Then
for 0 <t < T, we have

x; () = x, (t) = (Bx,) (t) — (Bx;) ()

t
+ L St-3s){G(s,x;) -G (s, x,)} ds (95)
. Jt S(t=5)C (1, (5) -y (5)) ds.

0

So we immediately obtain

t
|A (Bx,) (t) = A(Bx,) (t)| < My Jo x5 (s) = x; ()| ds,

(96)
and so it holds that
t
L S(t—s) A{(Bx,) (s) - (Bx;) (s)} ds
(97)
t
< MMNTJ |, (s) = x, (5)| ds.
0
Moreover, we have
t
L St=s){f(sx,(s) = f(s,x,(5))} ds
t
<ML, (1) | [ (9 - 3 ()]s
0 (98)
J.t S(t = s){Cuy (s) — Cu, (s)} ds
0
< M\/Z"C”l - CuZ"LZ(O,Tl;V)'
Thus, from (95) it follows that
|x (t; B, fyuy) — x (t; B, f,u,)|
< MVt|[Cuy = City| 2o gy (99)

t
+{MM\T + ML, ()} L |, (s) = x; (5)| ds.

Therefore, by using Gronwall’s inequality this lemma follows.
O

Theorem 15. Under Assumption S, the system (83) is approx-
imately controllable on [0,T'].

Proof. We will show that D(A) ¢ Rp(g); that is, for given € >
0 and z; € D(A), there exists u € L2(0,T3U) such that

|zr — x (T3 B, fyu)| <&, (100)
where
x(T;B, f,u)
= S(T) (xo + 30) = (Bx) (T) o
T
+ J S(T-9){G(s,x (5B, fru)) + Cu(s)}ds.
0
As z; € D(A) there exists p € L*(0,T;Z) such that
Sp = zp + (Bx) (T) = S(T) (x + %) ; (102)

for instance, take p(s) = {(zy+ (Bx)(T))—sA(zy + (Bx)(T))} -
S(s)(xg + yo)/T. Letu, € L*(0,T;U) be arbitrary fixed. Since
by Assumption S there exists u, € LZ(O,T;U) such that

[S(p=G(x (B fru)) -SCw| <2, (103)
it follows that
|21 + (Bx) (T) = S(T) (o + ¥,)
(104)

~3G (- x (B, fuuy)) — SCuy| < 2

We can also choose w, € L*(0,T;U) by Assumption S such
that

S(G (x (5B, f1)) G (¢ (5B, 1)) ~ SC)

€ (105)
< —
8
and by Assumption S
|Cw, - (0.65H)
<q G (ox (B, fim)) (106)

=G (% (5B fiun))| 200
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for 0 < t < T. Therefore, in view of Lemmal4 and
Assumption S

” Cw, " L2(0,t;H)

=q {J(: |G (% (v B, f,u,))
1/2
-G(t,x(1;B, f, ul))|2d‘r}
<a (s L) | [ o (ei8. f)
12
-x(t;B, f, u1)|2dr}
<q (Mg +L(n) “; (Me:)’

, 1/2
X T“CMZ - Cu, "LZ(O,T;H)dT}

< q (My +L(r,)) Me™"

¢ 1/2
X (L TdT) |Cu, - C“1||L2(0,t;H)

1/2
£
=4q (MN +L (71)) M5M2<5) “C’/‘z - Cu1||L2(o,t;H)‘
(107)
Put u; = u, — w,. We determine w; such that
8(G(>x (B, fius) =G (-x (5B, f11)))
(108)

—§Cw3' < g,

chs "L2 (0,5H)
<q |G(x (5B, fius)) (109)

-G(»x (3B f, ”2))"L2(o,t;H)

for 0 <t < T. Hence, we have

||Cw3 ”L2 (0,:H)

<a {[ 16 (B )

, 1/2
G (r,x (5B, fou)| df}
<q (My+L(n))

x {Lt |x (3B, fyu3) — x (1B, f, u2)|2d1}1/2
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MZ
<q, (My +L(r,)) Me
t 5 1/2
x {L T"C”3 - CuZ"Lz(O,r:H)dT}

<q, (My +L(r,)) Me™"

t , 1/2
I -y

<q, (My +L(ry)) Me™"

X {J't T(ql (My +L(ry)) MeMZ)ZT—2
0 (110)

, 1/2
x |Cu, - Cu, |lL2(O,T;H)dT}
2
< (qy (My + L(ry)) Me™)
RN
o (L ?df) ICu, = Cuty 20 )

= (g, (My + L(r,)) Me™2)’

t4 1/2
X (n) ICu, - C”1||L2(o,t;H)'

By proceeding with this process and from

IC (u, - un+1)||L2(0,t;H)

n—1
= ||Cwn||L2(0)t;H) < (% (MN + L (rl)) MeMZ)

-2 1/2
X < 2.4... (27’1 _ 2) ) ||C1/l2 - CM] |lL2(O,t;H) (111)

- (% (My + 1:/(;)) MeM2t>n—1

||Cu2 - Cu, "Lz(O,t;H)’

1
. V(n—1)!

it follows that

[oe)
Z ICtpar = Cta|| 20 1
n=1

< i( a,T (My +L(r,)) Me™ )n (112)
n=0 \/E

1
X \/ﬁ"Cuz - C”IHLZ(O,T;H) < 00.

Therefore, there exists u* € L? (0,T;H) such that

lim Cu, = u* in L*(0,T; H). (113)

n— 00
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From (104), (105) it follows that
|21 + (Bx) (T) = S(T) (xo + y,)
-SG(»x (5B, fiuy)) - §Cu3'
= |z + (Bx) (T) = S(T) (x4 + 7o)
-SG (-, x (3B, fyu;)) — SCu, + SCw,

~S[G(~x (5B, fi11)) = G (+x (5B, frwy))]|

1 1
< (?‘F?)S

(114)
By choosing w,, € L2 (0,T;U) by Assumption B, such that

[S(G (x (5B, fiu,)) = G (x (5B, fyuy 1)) ~ SCuw, |

&€
2n+1’

(115)

putting u,,, = u, — w,, we have

|er + (Bx) (T) = S (T) (xo + yo)

—§G (';x(';B’ﬁ un)) _§Cun+l' (116)

1 1
<<2_2+"'+2"+1>8’

Therefore, for € > 0 there exists integer N such that

[8Cupg,y — SCuy| < g
2+ (Bx) (1) = S (T) (% + )
~5G (+x (5 B. fuy)) - SCuy|
< |z + (Bx) (T) = S(T) (x0 + y) (117)
~5G (2 x (5B, fruy)) ~ SCuy.|

+ '§CuN+1 —§CuN|
1 1 £
<(2—2+"‘+W 8+ES€.

Thus the system (83) is approximately controllable on [0,1']
as N tends to infinity. O

1
Example 16. Let
H=1*(0,m)), V =H, (0,7), v*=H"'(0,71),
_(Tdu(y) dv(y)
@@ ) = J B a4 P
? 5
A=— with D(A)={x € H* (0,7) : x (0)=x (m)=0} .
dy
(118)

The eigenvalue and the eigenfunction of A are A, = —n* and
¢, (y) = (2/71)1/ %sin ny, respectively. Moreover,

(a) {¢,, : n € N} is an orthogonal basis of H,

(b) S()x = ¥, & (x,¢,),, Vx € H, £ >0,

(c) let 0 < « < 1; then the fractional power A* : D(A%) ¢
H — H of Ais given by

A% = 3% (,6,) @ D(A") = [x: A% € H}. (119)
n=1

In particular, AV = Zil(l/”)(%‘/’n)‘/’n and || ATV =
1.

Consider the following neutral differential control sys-
tem:

t

a T
Py [x(t,y) + Jo Jo b(t-s2zy)x(s,z)dzds

=Ax(t,y)+ g (Jx(ty)") x (6 y) + (Cw) (1),

te(0,T],

(120)

x(t,0) = x(t,my) = 0,

where g is a real valued function belonging to C*([0,00))
which satisfies the following conditions:
(i) g(0) =0, g(r) = 0 forr > 0,

(ii) g'(r) <c(r+1)and Ig"(r)l <cforr>=0andc > 0.If
we present

fty) =g (b)) x(ty), (121)

f is a mapping from the whole V' to H by Sobolev’s
imbedding theorem (see [21], Theorem 6.1.6). As an
example of g in the above, we can choose g(r) = y’r+
7’1 /2 (u and 7 are constants). In addition, we need
to impose the following conditions (see [7, 25]).

(iii) The function b is measurable and

ot

L],

(iv) The function (3?/0z*)b is measurable, b(0,y,m) =
b(0,,0), and

j B (t—s.z y)dzdsdy < co.  (122)
0

ot T 2
M, ;:J JJ <%b(t—s,z,y)> dzdsdy < co. (123)

0 Jo Jo
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(v) C : L}*0,T;U) — L*0,T;H) is a bounded linear
operator.

We define B : L*(0,T;V) — L*(0,T;H) by
t T
0= [b@-szyreadyds a2
0 Jo

From (ii) it follows that B is bounded linear and

A (Bx) (t)

12 .
= ;; ((Bx) (t) > SN T’ly) ¢n

&l

- %((le) (t),cosny) ¢,

t T a (125)
J J —b(t-s,z,y)dyds,cos ny) b,
0 Jo ay

where

t (126)

(Bix) (1) = J

L]
—b(t-s,z,v)dyds.
OL 5 ( y)dy

Thus, by (iv) the operator B, is bounded linear with ||B, || <
\/M,, and we have that B € D(A'?) and || AY*Bx]| = |B,x|.
Therefore from Theorem 6, there exists a solution x of (120)
such that

x € L*(0,T;V)nW" (0, T;V*) c C([0,T]; H). (127)
Moreover, from Theorem 15 the neutral system (120) is
approximately controllable on [0, T'].
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