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We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential
equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations,
we first consider the existence and regularity of solutions of the neutral control systemby using fractional power of operators and the
local Lipschitz continuity of nonlinear term. Our purpose is to obtain the existence of solutions and the approximate controllability
for neutral functional differential control systemswithout usingmany of the strong restrictions considered in the previous literature.
Finally we give a simple example to which our main result can be applied.

1. Introduction

Let 𝐻 and 𝑉 be real Hilbert spaces such that 𝑉 is a dense
subspace in𝐻. Let 𝑈 be a Banach space of control variables.
In this paper, we are concerned with the global existence of
solution and the approximate controllability for the following
abstract neutral functional differential system in a Hilbert
space𝐻:

𝑑

𝑑𝑡
[𝑥 (𝑡) + (𝐵𝑥) (𝑡)] = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + (𝐶𝑢) (𝑡) ,

𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑥
0
, (𝐵𝑥) (0) = 𝑦

0
,

(1)

where𝐴 is an operator associated with a sesquilinear form on
𝑉×𝑉 satisfyingGårding’s inequality,𝑓 is a nonlinearmapping
of [0,𝑇]×𝑉 into𝐻 satisfying the local Lipschitz continuity,𝐵 :
𝐿
2
(0,𝑇;𝑉) → 𝐿

2
(0,𝑇;𝐻) and 𝐶 : 𝐿2(0,𝑇;𝑈) → 𝐿

2
(0,𝑇;𝐻)

are appropriate bounded linear mapping.
This kind of equations arises in population dynamics,

in heat conduction in material with memory and in control
systems with hereditary feedback control governed by an
integrodifferential law.

Recently, the existence of solutions for mild solutions for
neutral differential equations with state-dependence delay
has been studied in the literature in [1, 2]. As for partial
neutral integrodifferential equations, we refer to [3–6]. The
controllability for neutral equations has been studied by
many authors, for example, local controllability of neutral
functional differential systems with unbounded delay in
[7], neutral evolution integrodifferential systems with state
dependent delay in [8, 9], impulsive neutral functional
evolution integrodifferential systems with infinite delay in
[10], and second order neutral impulsive integrodifferential
systems in [11, 12]. Although there are few papers treating
the regularity and controllability for the systems with local
Lipschitz continuity, we can just find a recent article byWang
[13] in case of semilinear systems. Similar considerations of
semilinear systems have been dealt with in many references
[14–17].

In this paper, we propose a different approach from the
earlier works (briefly introduced in [1–6] about the mild
solutions of neutral differential equations. Our approach
is that results of the linear cases of Di Blasio et al. [18]
and semilinear cases of [19] on the 𝐿2-regularity remain
valid under the above formulation of the neutral differential
equation (1). For the basics of our study, the existence of local
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solutions of (1) is established in 𝐿2(0,𝑇;𝑉)∩𝑊1,2
(0,𝑇;𝑉∗) →

𝐶([0,𝑇];𝐻) for some 𝑇 > 0 by using fractional power of
operators and Sadvoskii’s fixed point theorem. Thereafter, by
showing some variations of constant formula of solutions,
we will obtain the global existence of solutions of (1) and
the norm estimate of a solution of (1) on the solution space.
Consequently, in view of the properties of the nonlinear
term, we can take advantage of the fact that the solution
mapping 𝑢 ∈ 𝐿2(0,𝑇;𝑈) → 𝑥 is Lipschitz continuous, which
is applicable for control problems and the optimal control
problem of systems governed by nonlinear properties.

The second purpose of this paper is to study the approxi-
mate controllability for the neutral equation (1) based on the
regularity for (1); namely, the reachable set of trajectories is a
dense subset of 𝐻. This kind of equations arises naturally in
biology, physics, control engineering problem, and so forth.

The paper is organized as follows. In Section 2, we intro-
duce some notations. In Section 3, the regularity results of
general linear evolution equations besides fractional power of
operators and some relations of operator spaces are stated. In
Section 4, we will obtain the regularity for neutral functional
differential equation (1) with nonlinear terms satisfying local
Lipschitz continuity. The approach used here is similar to
that developed in [13, 19] on the general semilinear evolution
equations, which is an important role to extend the theory of
practical nonlinear partial differential equations. Thereafter,
we investigate the approximate controllability for the problem
(1) in Section 5. Our purpose in this paper is to obtain the
existence of solutions and the approximate controllability for
neutral functional differential control systems without using
many of the strong restrictions considered in the previous
literature.

Finally, we give a simple example towhich ourmain result
can be applied.

2. Notations

Let Ω be a region in an 𝑛-dimensional Euclidean space R𝑛

and closure Ω.

𝐶
𝑚
(Ω) is the set of all𝑚-times continuously differen-

tial functions onΩ.
𝐶
𝑚

0
(Ω) will denote the subspace of 𝐶𝑚(Ω) consisting

of these functions which have compact support inΩ.
𝑊

𝑚,𝑝
(Ω) is the set of all functions 𝑓 = 𝑓(𝑥) whose

derivative 𝐷𝛼𝑓 up to degree 𝑚 in distribution sense
belong to 𝐿𝑝(Ω). As usual, the norm is then given by

𝑓
𝑚,𝑝,Ω

= (∑

𝛼≤𝑚

𝐷
𝛼
𝑓


𝑝

𝑝,Ω
)

1/𝑝

,

1 ≤ 𝑝 < ∞,

(2)

𝑓
𝑚,∞,Ω

= max
𝛼≤𝑚

𝐷
𝛼
𝑢
∞,Ω
, (3)

where𝐷0𝑓 = 𝑓. In particular,𝑊0,𝑝
(Ω) = 𝐿

𝑝
(Ω) with

the norm ‖ ⋅ ‖
𝑝,Ω

.

𝑊
𝑚,𝑝

0
(Ω) is the closure of 𝐶∞

0
(Ω) in𝑊𝑚,𝑝

(Ω).

For 𝑝 = 2 we denote 𝑊𝑚,2
(Ω) = 𝐻

𝑚
(Ω) and

𝑊
2,𝑝

0
(Ω) = 𝐻

𝑚

0
(Ω).

Let 𝑝 = 𝑝/(𝑝 − 1), 1 < 𝑝 < ∞.𝑊−1,𝑝
(Ω) stands for

the dual space𝑊1,𝑝


0
(Ω)

∗ of𝑊1,𝑝


0
(Ω) whose norm is

denoted by ‖ ⋅ ‖
−1,𝑝,∞

.

If𝑋 is a Banach space and 1 < 𝑝 < ∞,

𝐿
𝑝
(0,𝑇;𝑋) is the collection of all strongly measurable

functions from (0,𝑇) to 𝑋, the 𝑝th powers of norms
are integrable,
𝐶
𝑚
([0,𝑇];𝑋)will denote the set of all𝑚-times contin-

uously differentiable functions from [0,𝑇] to𝑋.
If 𝑋 and 𝑌 are two Banach spaces, 𝐵(𝑋,𝑌) is the
collection of all bounded linear operators from 𝑋 to
𝑌, and 𝐵(𝑋,𝑋) is simply written as 𝐵(𝑋).
For an interpolation couple of Banach spaces 𝑋

0
and

𝑋
1
, (𝑋

0
,X

1
)
𝜃,𝑝

and [𝑋
0
,𝑋

1
]
𝜃
denote the real and

complex interpolation spaces between 𝑋
0
and 𝑋

1
,

respectively.

Let 𝐴 be a closed linear operator in a Banach space. Then

𝐷(𝐴) denotes the domain of (A) and 𝑅(𝐴) the range
of 𝐴;
𝜌(𝐴) denotes the resolvent set of 𝐴, 𝜎(𝐴) the spec-
trum of 𝐴, and 𝜎

𝑝
(𝐴) the point spectrum of 𝐴;

the kernel or null space {𝑥 ∈ 𝐷(𝐴) : 𝐴𝑥 = 0} of 𝐴 is
denoted by Ker(𝐴).

3. Regularity for Linear Equations

If𝐻 is identifiedwith its dual spacewemaywrite𝑉 ⊂ 𝐻 ⊂ 𝑉∗
densely and the corresponding injections are continuous.The
norm on 𝑉,𝐻, and 𝑉∗ will be denoted by ‖ ⋅ ‖, | ⋅ | and ‖ ⋅ ‖

∗
,

respectively. The duality pairing between the element V
1
of

𝑉
∗ and the element V

2
of𝑉 is denoted by (V

1
, V

2
), which is the

ordinary inner product in𝐻 if V
1
, V

2
∈ 𝐻.

For 𝑙 ∈ 𝑉∗ we denote (𝑙,V) by the value 𝑙(V) of 𝑙 at V ∈ 𝑉.
The norm of 𝑙 as element of 𝑉∗ is given by

‖𝑙‖∗ = sup
V∈𝑉

|𝑙, V|
‖V‖
. (4)

Therefore, we assume that 𝑉 has a stronger topology than𝐻
and, for brevity, we may consider

‖𝑢‖∗ ≤ |𝑢| ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝑉. (5)

Let 𝑎(⋅, ⋅) be a bounded sesquilinear form defined in𝑉×𝑉
and satisfying Gårding’s inequality:

Re 𝑎 (𝑢, 𝑢) ≥ 𝛿‖𝑢‖2, 𝛿 > 0. (6)

Let 𝐴 be the operator associated with this sesquilinear form:

(𝐴𝑢, V) = 𝑎 (𝑢, V) , 𝑢, V ∈ 𝑉. (7)
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Then 𝐴 is a bounded linear operator from 𝑉 to 𝑉∗ by the
Lax-Milgram theorem.The realization of𝐴 in𝐻which is the
restriction of 𝐴 to

𝐷 (𝐴) = {𝑢 ∈ 𝑉 : 𝐴𝑢 ∈ 𝐻} (8)

is also denoted by 𝐴. From the following inequalities

𝛿‖𝑢‖
2
≤ Re 𝑎 (𝑢, 𝑢) ≤ 𝐶 |𝐴𝑢| |𝑢| ≤ 𝐶‖𝑢‖𝐷(𝐴) |𝑢| , (9)

where

‖𝑢‖𝐷(𝐴) = (|𝐴𝑢|
2
+ |𝑢|

2
)
1/2 (10)

is the graph norm of 𝐷(𝐴), it follows that there exists a
constant 𝐶

0
> 0 such that

‖𝑢‖ ≤ 𝐶0‖𝑢‖
1/2

𝐷(𝐴)
|𝑢|

1/2
. (11)

Thus we have the following sequence:

𝐷 (𝐴) ⊂ 𝑉 ⊂ 𝐻 ⊂ 𝑉
∗
⊂ 𝐷(𝐴)

∗
, (12)

where each space is dense in the next one and continuous
injection.

Lemma 1. With the notations (11), (12), one has

(𝑉, 𝑉
∗
)
1/2,2
= 𝐻,

(𝐷 (𝐴) ,𝐻)1/2,2 = 𝑉,

(13)

where (𝑉,𝑉∗)
1/2,2

denotes the real interpolation space between
𝑉 and 𝑉∗(Section 1.3.3 of [20]).

It is also well known that 𝐴 generates an analytic semi-
group 𝑆(𝑡) in both 𝐻 and 𝑉∗. The following lemma is from
Lemma 3.6.2 of [21].

Lemma 2. Let 𝑆(𝑡) be the semigroup generated by −𝐴. Then
there exists a constant𝑀 such that

|𝑆 (𝑡)| ≤ 𝑀, ‖𝑠 (𝑡)‖∗ ≤ 𝑀. (14)

For all 𝑡 > 0 and every 𝑥 ∈ 𝐻 or 𝑉∗ there exists a constant
𝑀 > 0 such that the following inequalities hold:

|𝑆 (𝑡) 𝑥| ≤ 𝑀𝑡
−1/2
‖𝑥‖∗, ‖𝑆 (𝑡) 𝑥‖ ≤ 𝑀𝑡

−1/2
|𝑥| . (15)

By virtue of (6), we have that 0 ∈ 𝜌(𝐴) and the closed half
plane {𝜆 : Re 𝜆 ≥ 0} is contained in the resolvent set of 𝐴. In
this case, there exists a neighborhood 𝑈 of 0 such that

𝜌 (𝐴) ⊃ {𝜆 :
arg 𝜆

 > 𝜔} ∪ 𝑈. (16)

Hence, we can choose that the path Γ runs in the resolvent set
of 𝐴 from∞𝑒𝑖𝜃 to∞𝑒−𝑖𝜃, 𝜔 < 𝜃 < 𝜋, avoiding the negative
axis. For each 𝛼 > 0, we put

𝐴
−𝛼
=
1

2𝜋𝑖
∫
Γ

𝜆
−𝛼
(𝐴 − 𝜆)

−1
𝑑𝜆, (17)

where 𝜆−𝛼 is chosen to be for 𝜆 > 0. By assumption, 𝐴−𝛼 is a
bounded operator. So we can assume that there is a constant
𝑀

0
> 0 such that

𝐴
−𝛼L(𝐻)

≤ 𝑀
0
,

𝐴
−𝛼L(𝑉

∗
,𝑉)
≤ 𝑀

0
. (18)

For each 𝛼 ≥ 0, we define an operator 𝐴𝛼 as follows:

𝐴
𝛼
= {
(𝐴

−𝛼
)
−1 for 𝛼 > 0,

𝐼 for 𝛼 = 0.
(19)

The subspace𝐷(𝐴𝛼) is dense in𝐻 and the expression

‖𝑥‖𝛼 =
𝐴

𝛼
𝑥
 , 𝑥 ∈ 𝐷 (𝐴

𝛼
) (20)

defines a norm on𝐷(𝐴𝛼).

Lemma 3. (a) 𝐴𝛼 is a closed operator with its domain dense.
(b) If 0 < 𝛼 < 𝛽, then𝐷(𝐴𝛼) ⊃ 𝐷(𝐴𝛽).
(c) For any 𝑇 > 0, there exists a positive constant 𝐶

𝛼
such

that the following inequalities hold for all 𝑡 > 0:

𝐴
𝛼
𝑆 (𝑡)
L(𝐻)

≤
𝐶
𝛼

𝑡𝛼
,

𝐴
𝛼
𝑆 (𝑡)
L(𝐻,𝑉)

≤
𝐶
𝛼

𝑡3𝛼/2
. (21)

Proof. From [21, Lemma 3.6.2] it follows that there exists a
positive constant 𝐶 such that the following inequalities hold
for all 𝑡 > 0 and every 𝑥 ∈ 𝐻 or 𝑉∗:

|𝐴𝑆 (𝑡) 𝑥| ≤
𝐶

𝑡
|𝑥| , ‖𝐴𝑆 (𝑡) 𝑥‖ ≤

𝐶

𝑡3/2
|𝑥| , (22)

which implies (21) by properties of fractional power of𝐴. For
more details about the above lemma, we refer to [21, 22].

Let the solution spaces W(𝑇) and W
1
(𝑇) of strong

solutions be defined by

W (𝑇) = 𝐿
2
(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊

1,2
(0, 𝑇;𝐻) ,

W
1 (𝑇) = 𝐿

2
(0, 𝑇; 𝑉) ∩𝑊

1,2
(0, 𝑇; 𝑉

∗
) .

(23)

Here, we note that by using interpolation theory, we have

W (𝑇) ⊂ 𝐶 ([0, 𝑇] ; 𝑉) , W
1
(𝑇) ⊂ 𝐶 ([0, 𝑇] ;𝐻) . (24)

Thus, there exists a constant𝑀
1
> 0 such that

‖𝑥‖𝐶([0,𝑇];𝑉) ≤ 𝑀1‖𝑥‖W(𝑇)
, ‖𝑥‖𝐶([0,𝑇];𝐻) ≤ 𝑀1‖𝑥‖W

1
(𝑇)
.

(25)

First of all, consider the following linear system:

𝑥

(𝑡) + 𝐴𝑥 (𝑡) = 𝑘 (𝑡) ,

𝑥 (0) = 𝑥0.

(26)

By virtue ofTheorem 3.3 of [6] (orTheorem 3.1 of [3, 21]),
we have the following result on the corresponding linear
equation of (26).
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Lemma 4. Suppose that the assumptions for the principal
operator 𝐴 stated above are satisfied. Then the following
properties hold:

(1) for 𝑥
0
∈ 𝑉 = (𝐷(𝐴),𝐻)

1/2,2
(see Lemma 1) and 𝑘 ∈

𝐿
2
(0,𝑇;𝐻), 𝑇 > 0, there exists a unique solution 𝑥 of

(26) belonging toW(𝑇) ⊂ 𝐶([0,𝑇];𝑉) and satisfying

‖𝑥‖W(𝑇)
≤ 𝐶

1
(
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝐻)) , (27)

where 𝐶
1
is a constant depending on 𝑇;

(2) let 𝑥
0
∈ 𝐻 and 𝑘 ∈ 𝐿2(0,𝑇;𝑉∗), 𝑇 > 0; then there

exists a unique solution𝑥 of (26) belonging toW
1
(𝑇) ⊂

𝐶([0,𝑇];𝐻) and satisfying

‖𝑥‖W
1
(𝑇)
≤ 𝐶

1
(
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝑉∗)) , (28)

where 𝐶
1
is a constant depending on 𝑇.

Lemma5. For every 𝑘 ∈ 𝐿2(0,𝑇;𝐻), let𝑥(𝑡) = ∫𝑡
0
𝑆(𝑡−𝑠)𝑘(𝑠)𝑑𝑠

for 0 ≤ 𝑡 ≤ 𝑇. Then there exists a constant 𝐶
2
such that

‖𝑥‖𝐿2(0,𝑇;𝑉) ≤ 𝐶2
√𝑇‖𝑘‖𝐿2(0,𝑇;𝐻). (29)

Proof. By (27) we have

‖𝑥‖𝐿2(0,𝑇;𝐷(𝐴)) ≤ 𝐶1‖𝑘‖𝐿2(0,𝑇;𝐻). (30)

Since

‖𝑥‖
2

𝐿
2
(0,𝑇;𝐻)

= ∫

𝑇

0



∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑘 (𝑠) 𝑑𝑠



2

𝑑𝑡

≤ 𝑀∫

𝑇

0

(∫

𝑡

0

|𝑘 (𝑠)| 𝑑𝑠)

2

𝑑𝑡

≤ 𝑀∫

𝑇

0

𝑡 ∫

𝑡

0

|𝑘 (𝑠)|
2
𝑑𝑠𝑑𝑡

≤ 𝑀
𝑇
2

2
∫

𝑇

0

|𝑘 (𝑠)|
2
𝑑𝑠,

(31)

it follows that

‖𝑥‖𝐿2(0,𝑇;𝐻) ≤ 𝑇
√𝑀/2‖𝑘‖𝐿2(0,𝑇;𝐻). (32)

From (11), (30), and (32) it holds that

‖𝑥‖𝐿2(0,𝑇;𝑉) ≤ 𝐶0√𝐶1𝑇(
𝑀

2
)

1/4

‖𝑘‖𝐿2(0,𝑇;𝐻).
(33)

So, the proof is completed.

4. Semilinear Differential Equations

Consider the following abstract neutral functional differen-
tial system:

𝑑

𝑑𝑡
[𝑥 (𝑡) + (𝐵𝑥) (𝑡)] = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑘 (𝑡) ,

𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑥
0
, (𝐵𝑥) (0) = 𝑦

0
.

(34)

Then we will show that the initial value problem (34) has a
solution by solving the integral equation:

𝑥 (𝑡) = 𝑆 (𝑡) [𝑥0 + 𝑦0] − (𝐵𝑥) (𝑡)

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐵𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥 (𝑠)) + 𝑘 (𝑠)} 𝑑𝑠.

(35)

Now we give the basic assumptions on the system (34).

AssumptionB. Let𝐵 : 𝐿2(0,𝑇;𝑉) → 𝐿2(0,𝑇;𝐻) be a bounded
linear mapping such that there exist constants 𝛽 > 1/3, 𝐿 > 0,
and a continuous nondecreasing function 𝑏(𝑡) : [0,𝑇] → R

with 𝑏(0) = 0 such that

𝐴
𝛽
𝐵𝑥
𝐿2(0,𝑡;𝐻)

≤ 𝑏 (𝑡) ‖𝑥‖𝐿2(0,𝑡;𝑉),

∀ (𝑡, 𝑥) ∈ (0, 𝑇] × 𝐿
2
(0, 𝑇; 𝑉) .

(36)

Assumption F. 𝑓 is a nonlinear mapping of [0, 𝑇] × 𝑉 into𝐻
satisfying the following.

(i) There exists a function 𝐿
1
: R

+
→ R such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ≤ 𝐿1 (𝑟)

𝑥 − 𝑦
 , 𝑡 ∈ [0, 𝑇] , (37)

hold for ‖ 𝑥 ‖≤ 𝑟 and ‖ 𝑦 ‖≤ 𝑟.
(ii) The inequality

𝑓 (𝑡, 𝑥)
 ≤ 𝐿1 (𝑟) (‖𝑥‖ + 1) (38)

holds for every 𝑡 ∈ [0,𝑇] and 𝑥 ∈ 𝑉.

Let us rewrite (𝐹𝑥)(𝑡) = 𝑓(𝑡,𝑥(𝑡)) for each 𝑥 ∈ 𝐿2(0,𝑇;𝑉).
Then there is a constant, denoted again by 𝐿

1
(𝑟), such that

‖𝐹𝑥‖𝐿2(0,𝑇;𝐻) ≤ 𝐿1 (𝑟) (‖𝑥‖𝐿2(0,𝑇;𝑉) + 1) ,

𝐹𝑥1 − 𝐹𝑥2
𝐿2(0,𝑇;𝐻)

≤ 𝐿
1
(𝑟)
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝑉)

(39)

hold for𝑥 ∈ 𝐿2(0,𝑇;𝑉) and𝑥
1
,𝑥
2
∈ 𝐵

𝑟
(𝑇) = {𝑥 ∈ 𝐿

2
(0,𝑇;𝑉) :‖

𝑥‖
𝐿
2
(0,𝑇;𝑉)

≤ 𝑟}.

From now on, we establish the following results on the
solvability of (34).

Theorem6. Let Assumptions B and F be satisfied. Assume that
𝑥
0
∈ 𝐻, 𝑘 ∈ 𝐿2(0,𝑇;𝑉∗) for 𝑇 > 0. Then, there exists a solution

𝑥 of (34) such that

𝑥 ∈W
1
(𝑇) ≡ 𝐿

2
(0, 𝑇; 𝑉) ∩𝑊

1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) .

(40)

Moreover, there is a constant 𝐶
3
independent of 𝑥

0
and the

forcing term 𝑘 such that

‖𝑥‖W
1
(𝑇)
≤ 𝐶

3
(1 +
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝑉∗)) . (41)
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One of the main useful tools in the proof of existence
theorems for functional equations is the following Sadvoskii’s
fixed point theorem.

Lemma 7 (see [23]). Suppose that Σ is a closed convex subset
of a Banach space 𝑋. Assume that 𝐾

1
and 𝐾

2
are mappings

from Σ to𝑋 such that the following conditions are satisfied:

(i) (𝐾
1
+ 𝐾

2
)(Σ) ⊂ Σ,

(ii) 𝐾
1
is a completely continuous mapping,

(iii) 𝐾
2
is a contraction mapping.

Then the operator 𝐾
1
+ 𝐾

2
has a fixed point in Σ.

Proof of Theorem 6. Let

𝑟
0
= 2𝐶

1

𝑥0 + 𝑦0
 , (42)

where 𝐶
1
is constant in Lemma 4. Let 𝛽 > 1/3, and choose

0 < 𝑇
1
< 𝑇 such that

𝑇
3𝛽/2

1
[{𝐶

2
𝐿
1
(𝑟
0
) (𝑟

0
+ 1) + 𝐶

2‖𝑘‖𝐿2(0,𝑇
1
;𝑉)
}

+ 2𝑟
0
𝑏 (𝑇

1
) 𝐶

1−𝛽
(3𝛽)

−1/2
(3𝛽 − 2)

−1
]

+ 𝑟
0
𝑀

0
𝑏 (𝑇

1
) ≤ 𝐶

1

𝑥0 + 𝑦0
 ,

(43)

where 𝐶
2
is constant in Lemma 5. Let

�̂� ≡ 𝑇
3𝛽/2

1
{𝐶

2
𝐿
1
(𝑟
0
) + 2(3𝛽)

−1/2
(3𝛽 − 2)

−1
𝐶
1−𝛽
𝑏 (𝑇

1
)}

+𝑀
0
𝑏 (𝑇

1
) < 1.

(44)

Define a mapping 𝐽 : 𝐿2(0,𝑇
1
;𝑉) → 𝐿2(0,𝑇

1
;𝑉) as

(𝐽𝑥) (𝑡) = 𝑆 (𝑡) (𝑥
0
+ 𝑦

0
) − (𝐵𝑥) (𝑡)

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) (𝐵𝑥) (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥 (𝑠)) + 𝑘 (𝑠)} 𝑑𝑠.

(45)

It will be shown that the operator 𝐽 has a fixed point in the
space 𝐿2(0,𝑇

1
;𝑉). By Assumptions B and F, it is easily seen

that 𝐽 is continuous from 𝐶([0,𝑇
1
];𝐻) in itself. Let

Σ = {𝑥 ∈ 𝐿
2
(0, 𝑇

1
; 𝑉) : ‖𝑥‖𝐿2(0,𝑇

1
;𝑉)
≤ 𝑟

0
, 𝑥 (0) = 𝑥

0
} ,

(46)

which is a bounded closed subset of 𝐿2(0,𝑇
1
;𝑉). From (27) it

follows that
𝑆 (⋅) (𝑥0 + 𝑦0)

𝐿2(0,𝑇
1
;𝑉)
≤ 𝐶

1

𝑥0 + 𝑦0
 . (47)

By (21), (25), and assumption B we have

‖𝐵𝑥‖𝐿2(0,𝑇
1
;𝑉)
=

𝐴
−𝛽
𝐴
𝛽
𝐵𝑥
𝐿2(0,𝑇

1
;𝑉)

≤

𝐴
−𝛽L(𝐻,𝑉)


𝐴
𝛽
𝐵𝑥
𝐿2(0,𝑇

1
;𝐻)

≤ 𝑟
0
𝑀

0
𝑏 (𝑇

1
) .

(48)

By virtue of (29) in Lemma 5, for 0 < 𝑡 < 𝑇
1
, it holds that



∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥 (𝑠)) + 𝑘 (𝑠)} 𝑑𝑠

𝐿2(0,𝑇
1
;𝑉)

≤ 𝐶
2
√𝑇

1‖𝐹𝑥 + 𝑘‖𝐿2(0,𝑇
1
;𝐻)

≤ 𝐶
2
√𝑇

1
{𝐿

1
(𝑟
0
) (‖𝑥‖𝐿2(0,𝑇

1
;𝑉)
+ 1) + ‖𝑘‖𝐿2(0,𝑇

1
;𝑉)
}

≤ 𝐶
2
√𝑇

1
{𝐿

1
(𝑟
0
) (𝑟

0
+ 1) + ‖𝑘‖𝐿2(0,𝑇

1
;𝑉)
} .

(49)

Since (21) and Assumption F the following inequality holds:

‖𝐴𝑆 (𝑡 − 𝑠) 𝐵𝑥 (𝑠)‖ =

𝐴
1−𝛽
𝑆 (𝑡 − 𝑠) 𝐴

𝛽
𝐵𝑥 (𝑠)



≤

𝐶
1−𝛽

(𝑡 − 𝑠)
3(1−𝛽)/2

𝑟
0
𝑏 (𝑇

1
) .

(50)

Let

(𝑊𝑥) (𝑡) = ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐵𝑥 (𝑠) 𝑑𝑠. (51)

Then there holds

‖𝑊𝑥‖𝐿2(0,𝑇
1
;𝑉)
= [∫

𝑇
1

0



∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐵𝑥 (𝑠) 𝑑𝑠



2

𝑑𝑡]

1/2

≤ [∫

𝑇
1

0

(∫

𝑡

0

𝐶
1−𝛽

(𝑡 − 𝑠)
3(1−𝛽)/2

𝑟
0
𝑏 (𝑇

1
) 𝑑𝑠)

2

𝑑𝑡]

1/2

≤ 2𝑟
0
𝑏 (𝑇

1
) 𝐶

1−𝛽
(3𝛽 − 2)

−1
(∫

𝑇
1

0

𝑡
3𝛽−1
𝑑𝑡)

1/2

= 2𝑟
0
𝑏 (𝑇

1
) 𝐶

1−𝛽
(3𝛽)

−1/2
(3𝛽 − 2)

−1
𝑇
3𝛽/2

1
.

(52)

Therefore, from (43), (47)–(52) it follows that

‖𝐽𝑥‖𝐿2(0,𝑇
1
;𝑉)

≤ 𝐶
1

𝑥0 + 𝑦0
 + 𝑟0𝑀0

𝑏 (𝑇
1
)

+ 𝑇
3𝛽/2

1
[ {𝐶

2
𝐿
1
(𝑟
0
) (𝑟

0
+ 1) + 𝐶

2‖𝑘‖𝐿2(0,𝑇
1
;𝑉)
}

+ 2(3𝛽)
−1/2
(3𝛽 − 2)

−1
𝑟
0
𝑏 (𝑇

1
) 𝐶

1−𝛽
] ≤ 𝑟

0
,

(53)

and hence 𝐽maps Σ into Σ.
Define mapping𝐾

1
+ 𝐾

2
on 𝐿2(0,𝑇

1
;𝑉) by the formula

(𝐽𝑥) (𝑡) = (𝐾1𝑥) (𝑡) + (𝐾2𝑥) (𝑡) ,

(𝐾
1
𝑥) (𝑡) = − (𝐵𝑥) (𝑡) ,

(𝐾
2
𝑥) (𝑡) = 𝑆 (𝑡) (𝑥

0
+ 𝑦

0
)

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) (𝐵𝑥) (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥 (𝑠)) + 𝑘 (𝑠)} 𝑑𝑠.

(54)
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We cannow employ Lemma 7withΣ. Assume that a sequence
{𝑥

𝑛
} of 𝐿2(0,𝑇

1
;𝑉) converges weakly to an element 𝑥

∞
∈

𝐿
2
(0,𝑇

1
;𝑉); that is, 𝑤 − lim

𝑛→∞
𝑥
𝑛
= 𝑥

∞
. Then we will show

that

lim
𝑛→∞

𝐾1𝑥𝑛 − 𝐾1𝑥∞
 = 0, (55)

which is equivalent to the completely continuity of 𝐾
1
since

𝐿
2
(0,𝑇

1
;𝑉) is reflexive. For a fixed 𝑡 ∈ [0,𝑇

1
], let 𝑥∗

𝑡
(𝑥) =

(𝐾
1
𝑥)(𝑡) for every𝑥 ∈ 𝐿2(0,𝑇

1
;𝑉).Then𝑥∗

𝑡
∈ 𝐿

2
(0,𝑇

1
;𝑉∗) and

we have lim
𝑛→∞

𝑥
∗

𝑡
(𝑥

𝑛
) = 𝑥

∗

𝑡
(𝑥

∞
) since 𝑤 − lim

𝑛→∞
𝑥
𝑛
=

𝑥
∞
. Hence,

lim
𝑛→∞

(𝐾
1
𝑥
𝑛
) (𝑡) = (𝐾1𝑥∞) (𝑡) , 𝑡 ∈ [0, 𝑇1] . (56)

By (21), (25), and assumption B we have

(𝐾1𝑥) (𝑡)
 = ‖(𝐵𝑥) (𝑡)‖ =


𝐴
−𝛽
𝐴
𝛽
𝐵𝑥 (𝑡)



≤

𝐴
−𝛽L(𝐻,𝑉)


𝐴
𝛽
𝐵𝑥
𝐿2(0,𝑇

1
;𝐻)
≤ ∞.

(57)

Therefore, by Lebesgue’s dominated convergence theorem it
holds that

lim
𝑛→∞

∫

𝑇
1

0

(𝐾1𝑥𝑛) (𝑡)


2
𝑑𝑡 = ∫

𝑇
1

0

(𝐾1𝑥∞) (𝑡)


2
𝑑𝑡; (58)

that is, lim
𝑛→∞

‖𝐾
1
𝑥
𝑛
‖
𝐿
2
(0,𝑇
1
;𝑉)
= ‖𝐾

1
𝑥
∞
‖
𝐿
2
(0,𝑇
1
;𝑉)
. Since

𝐿
2
(0,𝑇

1
;𝑉) is a Hilbert space, the relation (55) holds. Next,

we prove that 𝐾
2
is a contraction mapping on Σ. Indeed, for

every 𝑥
1
and 𝑥

2
∈ Σ, we have

(𝐾
2
𝑥
1
) (𝑡) − (𝐾2𝑥2) (𝑡)

= ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) {(𝐵𝑥
1
) (𝑠) − (𝐵𝑥

2
) (𝑡)} 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥
1
(𝑠)) − 𝑓 (𝑠, 𝑥

2
(𝑠))} 𝑑𝑠.

(59)

Similar to (49) and (52), we have

𝐾2𝑥1 − 𝐾2𝑥2
𝐿2(0,𝑇

1
;𝑉)

≤ 𝑇
3𝛽/2

1
{𝐶

2
𝐿
1
(𝑟
0
) + 2(3𝛽)

−1/2

× (3𝛽 − 2)
−1
𝐶
1−𝛽
𝑏 (𝑇

1
) }

×
𝑥1 − 𝑥2

𝐿2(0,𝑇
1
;𝑉)
.

(60)

So by virtue of condition (44) the contraction mapping
principle gives that the solution of (34) exists uniquely in
[0,𝑇

1
].
So by virtue of condition (44), 𝐾

2
is contractive. Thus,

Lemma 7 gives that the equation of (34) has a solution in
W

1
(𝑇

1
).

From now on we establish a variation of constant formula
(41) of solution of (34). Let𝑥 be a solution of (34) and𝑥

0
∈ 𝐻.

Then we have that from (47)-(52) it follows that
‖𝑥‖𝐿2(0,𝑇

1
;𝑉)

≤ 𝐶
1

𝑥0 + 𝑦0
 + 𝑀0

𝑏 (𝑇
1
) ‖𝑥‖𝐿2(0,𝑇

1
;𝑉)

+ 𝑇
3𝛽/2

1
[{𝐶

2
𝐿
1
(𝑟
0
) (‖𝑥‖𝐿2(0,𝑇

1
;𝑉
∗
)
+ 1)

+𝐶
2‖𝑘‖𝐿2(0,𝑇

1
;𝑉
∗
)
} + 2(3𝛽)

−1/2

× (3𝛽 − 2)
−1
𝐶
1−𝛽
𝑏 (𝑇

1
) ‖𝑥‖𝐿2(0,𝑇

1
;𝑉)
] .

(61)

Taking into account (44) there exists a constant 𝐶
3
such that

‖𝑥‖𝐿2(0,𝑇
1
;𝑉)

≤ (1 − �̂�)
−1

× [𝐶
1

𝑥0 + 𝑦0
 + 𝑟0𝑀0

𝑏 (𝑇
1
) + 𝑇

3𝛽/2

1

× {𝐶
2
𝐿
1
(𝑟
0
) + 𝐶

2‖𝑘‖𝐿2(0,𝑇
1
;𝑉
∗
)
}]

≤ 𝐶
3
(1 +
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇1 ;𝑉

∗
)
)

(62)

which obtain the inequality (41). Since the conditions (43)
and (44) are independent of initial value and by (25)

𝑥 (𝑇1)
 ≤ ‖𝑥‖𝐶([0,𝑇1 ;𝐻])

≤ 𝑀
1‖𝑥‖W

1
(𝑇)
, (63)

by repeating the above process, the solution can be extended
to the interval [0,𝑇].

Corollary 8. If 𝑀
0
𝑏(𝑇

1
) < 1, then the uniqueness of the

solution of (34) inW
1
(𝑇) is obtained.

Proof. Let𝑀
0
𝐿 < 1. Then instead of condition (44), we can

choose 𝑇
1
such that

𝑀
0
𝑏 (𝑇

1
) + 𝑇

3𝛽/2

1
{𝐶

2
𝐿
1
(𝑟
0
) + 2(3𝛽)

−1/2

× (3𝛽 − 2)
−1
𝐶
1−𝛽
𝑏 (𝑇

1
)} < 1.

(64)

For every 𝑥
1
and 𝑥

2
∈ Σ, we have

(𝐽𝑥
1
) (𝑡) − (𝐽𝑥2) (𝑡)

= (𝐵𝑥
2
) (𝑡) − (𝐵𝑥

1
) (𝑡)

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) {𝐵𝑥
1
(𝑠) − 𝐵𝑥

2
(𝑡)} 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥1 (𝑠)) − 𝑓 (𝑠, 𝑥2 (𝑠))} 𝑑𝑠.

(65)

Similar to (49) and (52), we have
𝐽𝑥1 − 𝐽𝑥2

𝐿2(0,𝑇
1
;𝑉)

≤ [𝑀
0
𝑏 (𝑇

1
) + 𝑇

3𝛽/2

1
{𝐶

2
𝐿
1
(𝑟
0
) + 2(3𝛽)

−1/2
(3𝛽 − 2)

−1

×𝐶
1−𝛽
𝑏 (𝑇

1
) }]
𝑥1 − 𝑥2

𝐿2(0,𝑇
1
;𝑉)
.

(66)
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So by virtue of condition (64) the contraction mapping
principle gives that the solution of (34) exists uniquely in
[0, 𝑇

1
].

Remark 9. Let Assumptions B and F be satisfied and (𝑥
0
,𝑘) ∈

𝐷(𝐴) × 𝐿
2
(0,𝑇;𝐻). Then by the argument of the proof of

Theorem 6 term by term, we also obtain that there exists a
solution 𝑥 of (34) such that

𝑥 ∈W (𝑇)

≡ 𝐿
2
(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊

1,2
(0, 𝑇;𝐻) ⊂ 𝐶 ([0, 𝑇] ; 𝑉) .

(67)

Moreover, there exists a constant 𝐶
3
such that

‖𝑥‖W(𝑇)
≤ 𝐶

3
(1 +
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝐻)) , (68)

where 𝐶
3
is a constant depending on 𝑇.

The following inequality is refered to as the Young
inequality.

Lemma 10 (Young inequality). Let 𝑎 > 0, 𝑏 > 0, and 1/𝑝 +
1/𝑞 = 1, where 1 ≤ 𝑝 < ∞, and 1 < 𝑞 < ∞. Then for every
𝜆 > 0 one has

𝑎𝑏 ≤
𝜆
𝑝
𝑎
𝑝

𝑝
+
𝑏
𝑞

𝜆𝑞𝑞
. (69)

From the following result, we obtain that the solution
mapping is continuous, which is useful for physical applica-
tions of the given equation.

Theorem 11. Let Assumptions B and F be satisfied and
(𝑥

0
,𝑦
0
,𝑘) ∈ 𝐻 × 𝐻 × 𝐿2(0,𝑇;𝑉∗). Then the solution 𝑥 of (34)

belongs to 𝑥 ∈ W
1
(𝑇) ≡ 𝐿

2
(0,𝑇;𝑉) ∩ 𝑊1,2

(0,𝑇;𝑉∗) and the
mapping

𝐻 ×𝐻 × 𝐿
2
(0, 𝑇; 𝑉

∗
) ∋ (𝑥

0
, 𝑦

0
, 𝑘) → 𝑥 ∈W

1
(𝑇) (70)

is continuous.

Proof. From Theorem 6, it follows that if (𝑥
0
,𝑘) ∈ 𝐻 ×

𝐿
2
(0,𝑇;𝑉∗), then 𝑥 belongs to W

1
(𝑇). Let (𝑥

0𝑖
,𝑦
0𝑖
,𝑘
𝑖
) ∈ 𝐻 ×

𝐻 × 𝐿
2
(0,𝑇;𝑉∗) and let 𝑥

𝑖
∈ W

1
(𝑇) be the solution of (34)

with (𝑥
0𝑖
,𝑦
0𝑖
,𝑘
𝑖
) in place of (𝑥

0
,𝑦
0
,𝑘) for 𝑖 = 1,2. Let 𝑥

𝑖
(𝑖 =

1,2) ∈ Σ. Then as seen inTheorem 6, it holds that

𝑑

𝑑𝑡
[𝑥

1
(𝑡) − 𝑥

2
(𝑡) + (𝐵𝑥

1
) (𝑡) − (𝐵𝑥

2
) (𝑡)]

= 𝐴 (𝑥
1
(𝑡) − 𝑥

2
(𝑡)) + 𝑓 (𝑡, 𝑥

1
(𝑡)) − 𝑓 (𝑡, 𝑥

2
(𝑡))

+ 𝑘
1
(𝑡) − 𝑘

2
(𝑡) ,

(71)

𝑥
1
(0) − 𝑥

2
(0) = 𝑥

01
− 𝑥

02
. (72)

So the solution of the above equation is represented by

𝑥
1
(𝑡) − 𝑥

2
(𝑡)

= 𝑆 (𝑡) {(𝑥
01
− 𝑥

02
) + (𝑦

01
− 𝑦

02
)}

+ (𝐵𝑥
2
) (𝑡) − (𝐵𝑥1) (𝑡)

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) {(𝐵𝑥1) (𝑡) − (𝐵𝑥2) (𝑡)} 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥
1
(𝑡))

− 𝑓 (𝑠, 𝑥
2
(𝑠) + 𝑘

1
(𝑠) − 𝑘

2
(𝑠) } 𝑑𝑠.

(73)

And, hence, it holds that
𝑥1 − 𝑥2

𝐿2(0,𝑇
1
;𝑉)

≤ 𝐶
1
(
𝑥01 − 𝑥02

 +
𝑦01 − 𝑦02

)

+ 𝐶
2
𝑇
3𝛽/2

1

𝑘1 − 𝑘2
𝐿2(0,𝑇

1
;𝑉
∗
)

+ 𝑇
3𝛽/2

1
{𝑀

0
𝐿 + 𝐶

2
𝐿
1 (𝑟) + 2(3𝛽)

−1/2

× (3𝛽 − 2)
−1
𝑏 (𝑇

1
) 𝐶

1−𝛽
}

×
𝑥1 − 𝑥2

𝐿2(0,𝑇
1
;𝑉)
.

(74)

From (43), we have
𝑥1 − 𝑥2

𝐿2(0,𝑇
1
;𝑉)

≤ (1 − �̂�)
−1

(𝐶
1
(
𝑥01 − 𝑥02

 +
𝑦01 − 𝑦02

)

+𝐶
2
𝑇
3𝛽/2

1

𝑘1 − 𝑘2
𝐿2(0,𝑇

1
;𝑉
∗
)
) .

(75)

Hence, repeating this process as seen in Theorem 6, we
conclude that the solution mapping is continuous.

For 𝑘 ∈ 𝐿2(0,𝑇;𝑉∗), let 𝑥
𝑘
be the solution of (34) with 𝑘

instead of 𝐵𝑢.

Theorem 12. Let one assume that the embedding 𝑉 ⊂ 𝐻 is
compact. For 𝑘 ∈ 𝐿2(0,𝑇;𝑉∗) let 𝑥

𝑘
be the solution of (34).

Then the mapping 𝑘 → 𝑥
𝑘
is compact from 𝐿2(0,𝑇;𝑉∗) to

𝐿
2
(0,𝑇;𝐻). Moreover, if one defines the operatorF by

F (𝑘) = 𝑓 (⋅, 𝑥
𝑘
) , (76)

then F is also a compact mapping from 𝐿2(0,𝑇;𝑉∗) to
𝐿
2
(0,𝑇;𝐻).

Proof. If (𝑥
0
,𝑘) ∈ 𝐻× 𝐿2(0,𝑇;𝑉∗), then in view ofTheorem 6
𝑦𝑘
W
1
(𝑇)
≤ 𝐶

2
(
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝑉∗)) . (77)

Since 𝑥
𝑘
∈ 𝐿

2
(0,𝑇;𝑉), we have 𝑓(⋅,𝑥

𝑘
) ∈ 𝐿

2
(0,𝑇;𝐻).

Consequently, by (25), we know that 𝑥
𝑘
∈ W

1
(𝑇) ⊂
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𝐶([0,𝑇];𝐻). With aid of (𝑎) of Lemma 3, noting that
‖ 𝑥

𝑘
‖
𝐿
2
(0,𝑇;𝑉)

≤‖ 𝑥
𝑘
‖W
1
(𝑇)

, we have
𝑥𝑘
W
1
(𝑇)
≤ 𝐶

3
(1 +
𝑥0
 + ‖𝑘‖𝐿2(0,𝑇;𝑉∗)} . (78)

Hence if 𝑘 is bounded in 𝐿2(0,𝑇;𝑉∗), then so is 𝑥
𝑘
inW

1
(𝑇) ≡

𝐿
2
(0,T;𝑉)∩𝑊1,2

(0,𝑇;𝑉∗). Since𝑉 is compactly embedded in
𝐻 by assumption, the embedding

W
1
(𝑇) ⊂ 𝐿

2
(0, 𝑇;𝐻) (79)

is compact in view ofTheorem 2 of Aubin [24]. Hence 𝑘 → 𝑥
𝑘

is compact from 𝐿2(0,𝑇;𝑉∗). Moreover, we have that F is a
compact mapping of

𝐿
2
(0, 𝑇; 𝑉

∗
) →W

1
(𝑇) → 𝐿

2
(0, 𝑇;𝐻) , (80)

which is of 𝐿2(0,𝑇;𝑉∗) to 𝐿2(0,𝑇;𝐻).

5. Approximate Controllability

In this section, we show that the controllability of the
corresponding linear equation is extended to the nonlinear
differential equation. Let 𝑈 be a Banach space of control
variables. Here𝐶 is a linear bounded operator from𝐿2(0,𝑇;𝑈)
to 𝐿2(0,𝑇;𝐻), which is called a controller. For 𝑥 ∈ 𝐿2(0, 𝑇;𝐻)
we set

(𝐵𝑥) (𝑡) = ∫

𝑡

0

𝑁(𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠, (81)

where 𝑁 : [0,∞) → L(𝐻,𝑉) is strongly continuous.
Then it is immediately seen that 𝐵𝑥 ∈ 𝐶([0,𝑇];𝑉) and hence
𝐴𝑆(𝑠)(𝐵𝑥)(𝑠) = 𝐴𝑆(𝑠)(𝐵𝑥)(𝑠) for 0 ≤ 𝑠 ≤ 𝑇 because 𝐷(𝐴) =
𝑉. Since 𝑡 → 𝑁(𝑡) is strong continuous, by the uniform
boundedness principle, there exists a constant𝑀

𝑁
such that,

for any 𝑇 > 0,

sup
𝑡∈[0,𝑇]

‖𝐴𝑁 (𝑡)‖L(𝐻,𝑉
∗
)
≤ 𝑀

𝑁
. (82)

Consider the following neutral control equation

𝑑

𝑑𝑡
[𝑥 (𝑡) + (𝐵𝑥) (𝑡)] = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (t)) + (𝐶𝑢) (𝑡) ,

𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑥
0
, (𝐵𝑥) (0) = 𝑦

0
.

(83)

Let 𝑥(𝑇;𝐵,𝑓,𝑢) be a state value of the system (83) at time 𝑇
corresponding to the operator 𝐵, the nonlinear term 𝑓, and
the control 𝑢. We note that 𝑆(⋅) is the analytic semigroup
generated by −𝐴. Then the solution 𝑥(𝑡;𝐵,𝑓,𝑢) can be written
as

𝑥 (𝑡; 𝐵, 𝑓, 𝑢)

= 𝑆 (𝑡) (𝑥0 + 𝑦0) − (𝐵𝑥) (𝑡)

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠)

× {𝐴 (𝐵𝑥) (𝑠) 𝑑𝑠 + 𝑓 (𝑠, 𝑥 (𝑠)) + (𝐶𝑢) (𝑠)} 𝑑𝑠.

(84)

And in view of Theorem 6,
𝑥 (⋅; 𝐵, 𝑓, 𝑢)

W
1
(𝑇)
≤ 𝐶

3
(
𝑥0
 + ‖𝐶‖L(𝑈,𝐻)‖𝑢‖𝐿2(0,𝑇;𝑈)) .

(85)

We define the reachable sets for the system (34) as follows:

𝑅 (𝑇) = {𝑥 (𝑇; 𝐵, 𝑓, 𝑢) : 𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑈)} ,

𝐿 (𝑇) = {𝑥 (𝑇; 0, 0, 𝑢) : 𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑈)} .

(86)

Definition 13. The system (83) is said to be approximately
controllable on [0,𝑇] if for every 𝑧

𝑇
∈ 𝐻 and 𝜖 > 0 there

exists a control function 𝑢 ∈ 𝐿2(0,𝑇;𝑈) such that the solution
𝑥(𝑇;𝐵,𝑓,𝑢) of (83) satisfies |𝑥(𝑇;𝑓,𝑢) − 𝑧

𝑇
| < 𝜖; that is,

𝑅
𝑇
(𝑓) = 𝐻, where 𝑅(𝑇) is the closure of 𝑅(𝑇) in𝐻.

We define the linear operator 𝑆 from 𝐿2(0,𝑇;𝐻) to𝐻 by

𝑆𝑝 = ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝑝 (𝑠) 𝑑𝑠 (87)

for 𝑝 ∈ 𝐿2(0,𝑇;𝐻).
We need the following hypothesis.

Assumption S. (i) For any 𝜀 > 0 and 𝑝 ∈ L2(0,𝑇;𝐻), there
exists a 𝑢 ∈ 𝐿2(0,𝑇;𝑈) such that


𝑆𝑝 − 𝑆𝐶𝑢


< 𝜀, (88)

‖𝐶𝑢‖𝐿2(0,𝑡;𝐻) ≤ 𝑞1
𝑝
𝐿2(0,𝑡;𝐻)

, 0 ≤ 𝑡 ≤ 𝑇, (89)

where 𝑞
1
is a constant independent of 𝑝.

(ii) 𝑓 is a nonlinear mapping of [0,𝑇] × 𝐻 into 𝐻
satisfying the following.

There exists a function 𝐿
1
: R

+
→ R such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ≤ 𝐿1 (𝑟)

𝑥 − 𝑦
 , 𝑡 ∈ [0, 𝑇] , (90)

hold for |𝑥| ≤ 𝑟 and |𝑦| ≤ 𝑟.

By virtue of condition (i) of Assumption S we note that
𝐴𝑆(𝑡 − 𝑠)𝐵𝑥 = 𝑆(𝑡 − 𝑠)𝐴𝐵𝑥 for each 𝑥 ∈ 𝑉. Therefore, the
system (83) is approximately controllable on [0,𝑇] if for any
𝜀 > 0 and 𝑧

𝑇
∈ 𝐻 there exists a control 𝑢 ∈ 𝐿2(0,𝑇;𝑈) such

that
𝑆 (𝑇) (𝑥0 + 𝑦0) − (𝐵𝑥) (𝑇)

+𝑆 {𝐴𝐵𝑥 + 𝐹𝑥 + 𝐶𝑢} − 𝑧
𝑇


< 𝜀,

(91)

where (𝐹𝑥)(𝑡) = 𝑓(𝑡,𝑥(𝑡)) for 𝑡 ≥ 0. Throughout this section,
invoking (85), we can choose a constant 𝑟

1
such that

𝑟
1
> 𝐶

3
(
𝑥0
 + ‖𝐶‖L(𝑈,𝐻)‖𝑢‖𝐿2(0,𝑇;𝑈)) , (92)

and set

𝐺 (𝑠, 𝑥) = 𝐴 (𝐵𝑥) (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠)) . (93)



The Scientific World Journal 9

Lemma 14. Let 𝑢
1
and 𝑢

2
be in 𝐿2(0,𝑇;𝑈). Then under the

Assumption S, one has that, for 0 ≤ 𝑡 ≤ 𝑇,

𝑥 (𝑡; 𝐵, 𝑓, 𝑢1) − 𝑥 (𝑡; 𝐵, 𝑓, 𝑢2)


≤ 𝑀𝑒
𝑀
2√𝑡
𝐶𝑢1 − 𝐶𝑢2

𝐿2(0,𝑇;𝐻)
,

(94)

where𝑀
2
= 𝑒

𝑀(𝑀
𝑁
𝑇+𝐿
1
(𝑟
1
)).

Proof. Let 𝑥(𝑡) = 𝑥(𝑡;𝐵,𝑓,𝑢
1
) and 𝑥

2
(𝑡) = 𝑥(𝑡;𝐵,𝑓,𝑢

2
). Then

for 0 ≤ 𝑡 ≤ 𝑇, we have

𝑥
1
(𝑡) − 𝑥

2
(𝑡) = (𝐵𝑥

2
) (𝑡) − (𝐵𝑥

1
) (𝑡)

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝐺 (𝑠, 𝑥
1
) − 𝐺 (𝑠, 𝑥

2
)} 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶 (𝑢1 (𝑠) − 𝑢2 (𝑠)) 𝑑𝑠.

(95)

So we immediately obtain

𝐴 (𝐵𝑥2) (𝑡) − 𝐴 (𝐵𝑥1) (𝑡)
 ≤ 𝑀𝑁

∫

𝑡

0

𝑥2 (𝑠) − 𝑥1 (𝑠)
 𝑑𝑠,

(96)

and so it holds that


∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐴 {(𝐵𝑥
2
) (𝑠) − (𝐵𝑥

1
) (𝑠)} 𝑑𝑠



≤ 𝑀𝑀
𝑁
𝑇∫

𝑡

0

𝑥2 (𝑠) − 𝑥1 (𝑠)
 𝑑𝑠.

(97)

Moreover, we have



∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝑓 (𝑠, 𝑥
1
(𝑠)) − 𝑓 (𝑠, 𝑥

2
(𝑠))} 𝑑𝑠



≤ 𝑀𝐿
1
(𝑟
1
) ∫

𝑡

0

𝑥2 (𝑠) − 𝑥1 (𝑠)
 𝑑𝑠,



∫

𝑡

0

𝑆 (𝑡 − 𝑠) {𝐶𝑢
1
(𝑠) − 𝐶𝑢

2
(𝑠)} 𝑑𝑠



≤ 𝑀√𝑡
𝐶𝑢1 − 𝐶𝑢2

𝐿2(0,𝑇
1
;𝑉)
.

(98)

Thus, from (95) it follows that
𝑥 (𝑡; 𝐵, 𝑓, 𝑢1) − 𝑥 (𝑡; 𝐵, 𝑓, 𝑢2)



≤ 𝑀√𝑡
𝐶𝑢1 − 𝐶𝑢2

𝐿2(0,𝑇;𝐻)

+ {𝑀𝑀
𝑁
𝑇 +𝑀𝐿

1
(𝑟
1
)} ∫

𝑡

0

𝑥2 (𝑠) − 𝑥1 (𝑠)
 𝑑𝑠.

(99)

Therefore, by using Gronwall’s inequality this lemma follows.

Theorem 15. Under Assumption S, the system (83) is approx-
imately controllable on [0,𝑇].

Proof. We will show that𝐷(𝐴) ⊂ 𝑅
𝑇
(𝑔); that is, for given 𝜀 >

0 and 𝑧
𝑇
∈ 𝐷(𝐴), there exists 𝑢 ∈ 𝐿2(0,𝑇;𝑈) such that

𝑧𝑇 − 𝑥 (𝑇; 𝐵, 𝑓, 𝑢)
 < 𝜀, (100)

where

𝑥 (𝑇; 𝐵, 𝑓, 𝑢)

= 𝑆 (𝑇) (𝑥
0
+ 𝑦

0
) − (𝐵𝑥) (𝑇)

+ ∫

𝑇

0

𝑆 (T − 𝑠) {𝐺 (𝑠, 𝑥 (⋅; 𝐵, 𝑓, 𝑢)) + 𝐶𝑢 (𝑠)} 𝑑𝑠.

(101)

As 𝑧
𝑇
∈ 𝐷(𝐴) there exists 𝑝 ∈ 𝐿2(0,𝑇;𝑍) such that

𝑆𝑝 = 𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥0 + 𝑦0) ; (102)

for instance, take 𝑝(𝑠) = {(𝑧
𝑇
+(𝐵𝑥)(𝑇))−𝑠𝐴(𝑧

𝑇
+(𝐵𝑥)(𝑇))}−

𝑆(𝑠)(𝑥
0
+ 𝑦

0
)/𝑇. Let 𝑢

1
∈ 𝐿

2
(0,𝑇;𝑈) be arbitrary fixed. Since

by Assumption S there exists 𝑢
2
∈ 𝐿

2
(0,𝑇;𝑈) such that


𝑆 (𝑝 − 𝐺 (⋅, 𝑥 (⋅, 𝐵, 𝑓, 𝑢

1
))) − 𝑆𝐶𝑢

2


<
𝜀

4
, (103)

it follows that


𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥0 + 𝑦0)

− 𝑆𝐺 (⋅, 𝑥 (⋅𝐵, 𝑓, 𝑢
1
)) − 𝑆𝐶𝑢

2


<
𝜀

4
.

(104)

We can also choose 𝑤
2
∈ 𝐿

2
(0,𝑇;𝑈) by Assumption S such

that


𝑆 (𝐺 (⋅𝑥 (⋅; 𝐵, 𝑓, 𝑢

2
)) − 𝐺 (⋅𝑥 (⋅; 𝐵, 𝑓, 𝑢

1
))) − 𝑆𝐶𝑤

2



<
𝜀

8

(105)

and by Assumption S

𝐶𝑤2
𝐿2(0,𝑡;𝐻)

≤ 𝑞
1

𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢1))

−𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
2
))
𝐿2(0,𝑡;𝐻)

(106)



10 The Scientific World Journal

for 0 ≤ 𝑡 ≤ 𝑇. Therefore, in view of Lemma 14 and
Assumption S

𝐶𝑤2
𝐿2(0,𝑡;𝐻)

≤ 𝑞
1
{∫

𝑡

0

𝐺 (𝜏, 𝑥 (𝜏; 𝐵, 𝑓, 𝑢2))

−𝐺 (𝜏, 𝑥 (𝜏; 𝐵, 𝑓, 𝑢
1
))


2
𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
)) {∫

𝑡

0

𝑥 (𝜏; 𝐵, 𝑓, 𝑢2)

−𝑥 (𝜏; 𝐵, 𝑓, 𝑢
1
)


2
𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
)) {∫

𝑡

0

(𝑀𝑒
𝑀
2)
2

× 𝜏
𝐶𝑢2 − 𝐶𝑢1



2

𝐿
2
(0,𝜏;𝐻)

𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2

× (∫

𝑡

0

𝜏𝑑𝜏)

1/2

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

= 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2(
𝑡
2

2
)

1/2

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

.

(107)

Put 𝑢
3
= 𝑢

2
− 𝑤

2
. We determine 𝑤

3
such that


𝑆 (𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢

3
)) − 𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢

2
)))

−𝑆𝐶𝑤
3


<
𝜀

8
,

(108)

𝐶𝑤3
𝐿2(0,𝑡;𝐻)

≤ 𝑞
1

𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢3))

−𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
2
))
𝐿2(0,𝑡;𝐻)

(109)

for 0 ≤ 𝑡 ≤ 𝑇. Hence, we have

𝐶𝑤3
𝐿2(0,𝑡;𝐻)

≤ 𝑞
1
{∫

𝑡

0

𝐺 (𝜏, 𝑥 (𝜏; 𝐵, 𝑓, 𝑢3))

−𝐺 (𝜏, 𝑥 (𝜏; 𝐵, 𝑓, 𝑢
2
))


2
𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))

× {∫

𝑡

0

𝑥 (𝜏; 𝐵, 𝑓, 𝑢3) − 𝑥 (𝜏; 𝐵, 𝑓, 𝑢2)


2
𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2

× {∫

𝑡

0

𝜏
𝐶𝑢3 − 𝐶𝑢2



2

𝐿
2
(0,𝜏:𝐻)

𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2

× {∫

𝑡

0

𝜏
𝐶𝑤2



2

𝐿
2
(0,𝜏;𝐻)

𝑑𝜏}

1/2

≤ 𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2

× {∫

𝑡

0

𝜏(𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2)
2 𝜏

2

2

×
𝐶𝑢2 − 𝐶𝑢1



2

𝐿
2
(0,𝜏;𝐻)

𝑑𝜏}

1/2

≤ (𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2)
2

× (∫

𝑡

0

𝜏
3

2
𝑑𝜏)

1/2

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

= (𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2)
2

× (
𝑡
4

2 ⋅ 4
)

1/2

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

.

(110)

By proceeding with this process and from

𝐶 (𝑢𝑛 − 𝑢𝑛+1)
𝐿2(0,𝑡;𝐻)

=
𝐶𝑤𝑛

𝐿2(0,𝑡;𝐻)
≤ (𝑞

1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2)
𝑛−1

× (
𝑡
2𝑛−2

2 ⋅ 4 ⋅ ⋅ ⋅ (2𝑛 − 2)
)

1/2

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

= (
𝑞
1
(𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2𝑡

√2

)

𝑛−1

×
1

√(𝑛 − 1)!

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑡;𝐻)

,

(111)

it follows that
∞

∑

𝑛=1

𝐶𝑢𝑛+1 − 𝐶𝑢𝑛
𝐿2(0,𝑇;𝐻)

≤

∞

∑

𝑛=0

(
𝑞
1
𝑇 (𝑀

𝑁
+ 𝐿 (𝑟

1
))𝑀𝑒

𝑀
2

√2

)

𝑛

×
1

√𝑛!

𝐶𝑢2 − 𝐶𝑢1
𝐿2(0,𝑇;𝐻)

< ∞.

(112)

Therefore, there exists 𝑢∗ ∈ 𝐿2(0,𝑇;𝐻) such that

lim
𝑛→∞
𝐶𝑢

𝑛
= 𝑢

∗ in 𝐿2 (0, 𝑇;𝐻) . (113)
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From (104), (105) it follows that


𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥0 + 𝑦0)

− 𝑆𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
2
)) − 𝑆𝐶𝑢

3



=

𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥

0
+ 𝑦

0
)

−𝑆𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
1
)) − 𝑆𝐶𝑢

2
+ 𝑆𝐶𝑤

2

−𝑆 [𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
2
)) − 𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢

1
))]


< (
1

22
+
1

23
) 𝜀.

(114)

By choosing 𝑤
𝑛
∈ 𝐿

2
(0,𝑇;𝑈) by Assumption B, such that


𝑆 (𝐺 (⋅𝑥 (⋅; 𝐵, 𝑓, 𝑢

𝑛
)) − 𝐺 (⋅𝑥 (⋅; 𝐵, 𝑓, 𝑢

𝑛−1
))) − 𝑆𝐶𝑤

𝑛



<
𝜀

2𝑛+1
,

(115)

putting 𝑢
𝑛+1
= 𝑢

𝑛
− 𝑤

𝑛
, we have


𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥0 + 𝑦0)

− 𝑆𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
𝑛
)) − 𝑆𝐶𝑢

𝑛+1



< (
1

22
+ ⋅ ⋅ ⋅ +

1

2𝑛+1
) 𝜀, 𝑛 = 1, 2, . . . .

(116)

Therefore, for 𝜀 > 0 there exists integer𝑁 such that


𝑆𝐶𝑢

𝑁+1
− 𝑆𝐶𝑢

𝑁


<
𝜀

2
,


𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥0 + 𝑦0)

− 𝑆𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
𝑁
)) − 𝑆𝐶𝑢

𝑁



≤

𝑧
𝑇
+ (𝐵𝑥) (𝑇) − 𝑆 (𝑇) (𝑥

0
+ 𝑦

0
)

− 𝑆𝐺 (⋅, 𝑥 (⋅; 𝐵, 𝑓, 𝑢
𝑁
)) − 𝑆𝐶𝑢

𝑁+1



+

𝑆𝐶𝑢

𝑁+1
− 𝑆𝐶𝑢

𝑁



< (
1

22
+ ⋅ ⋅ ⋅ +

1

2𝑁+1
) 𝜀 +

𝜀

2
≤ 𝜀.

(117)

Thus the system (83) is approximately controllable on [0,𝑇]
as𝑁 tends to infinity.

Example 16. Let

𝐻 = 𝐿
2
(0, 𝜋) , 𝑉 = 𝐻

1

0
(0, 𝜋) , 𝑉

∗
= 𝐻

−1
(0, 𝜋) ,

𝑎 (𝑢, V) = ∫
𝜋

0

𝑑𝑢 (𝑦)

𝑑𝑦

𝑑V (𝑦)
𝑑𝑦
𝑑𝑦,

𝐴 =
𝜕
2

𝜕𝑦2
with 𝐷 (𝐴)={𝑥 ∈ 𝐻2

(0, 𝜋) : 𝑥 (0)=𝑥 (𝜋)=0} .

(118)

The eigenvalue and the eigenfunction of 𝐴 are 𝜆
𝑛
= −𝑛

2 and
𝜙
𝑛
(𝑦) = (2/𝜋)

1/2 sin 𝑛𝑦, respectively. Moreover,

(a) {𝜙
𝑛
: 𝑛 ∈ 𝑁} is an orthogonal basis of𝐻,

(b) 𝑆(𝑡)𝑥 = ∑∞
𝑛=1
𝑒
𝑛
2
𝑡
(𝑥, 𝜙

𝑛
)𝜙

𝑛
, ∀𝑥 ∈ 𝐻, 𝑡 > 0,

(c) let 0 < 𝛼 < 1; then the fractional power𝐴𝛼 : 𝐷(𝐴𝛼) ⊂
𝐻 → 𝐻 of 𝐴 is given by

𝐴
𝛼
𝑥 =

∞

∑

𝑛=1

𝑛
2𝛼
(𝑥, 𝜙

𝑛
) 𝜙

𝑛
, 𝐷 (𝐴

𝛼
) := {𝑥 : 𝐴

𝛼
𝑥 ∈ 𝐻} . (119)

In particular,𝐴−1/2𝑥 = ∑∞
𝑛=1
(1/𝑛)(𝑥,𝜙

𝑛
)𝜙

𝑛
and ‖ 𝐴−1/2 ‖=

1.
Consider the following neutral differential control sys-

tem:
𝜕

𝜕𝑡
[𝑥 (𝑡, 𝑦) + ∫

𝑡

0

∫

𝜋

0

𝑏 (𝑡 − 𝑠, 𝑧, 𝑦) 𝑥 (𝑠, 𝑧) 𝑑𝑧 𝑑𝑠]

= 𝐴𝑥 (𝑡, 𝑦) + 𝑔

(
𝑥 (𝑡, 𝑦)



2
) 𝑥 (𝑡, 𝑦) + (𝐶𝑢) (𝑡) ,

𝑡 ∈ (0, 𝑇] ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋
0
) = 0,

(120)

where 𝑔 is a real valued function belonging to 𝐶2([0,∞))
which satisfies the following conditions:

(i) 𝑔(0) = 0, 𝑔(𝑟) ≥ 0 for 𝑟 > 0,
(ii) 𝑔(𝑟) ≤ 𝑐(𝑟 + 1) and |𝑔(𝑟)| ≤ 𝑐 for 𝑟 ≥ 0 and 𝑐 > 0. If

we present

𝑓 (𝑥 (𝑡, 𝑦)) = 𝑔

(
𝑥 (𝑡, 𝑦)



2
) 𝑥 (𝑡, 𝑦) , (121)

𝑓 is a mapping from the whole 𝑉 to 𝐻 by Sobolev’s
imbedding theorem (see [21], Theorem 6.1.6). As an
example of 𝑔 in the above, we can choose 𝑔(𝑟) = 𝜇2𝑟+
𝜂
2
𝑟
2
/2 (𝜇 and 𝜂 are constants). In addition, we need

to impose the following conditions (see [7, 25]).
(iii) The function 𝑏 is measurable and

∫

𝜋

0

∫

𝑡

0

∫

𝜋

0

𝑏
2
(𝑡 − 𝑠, 𝑧, 𝑦) 𝑑𝑧 𝑑𝑠 𝑑𝑦 < ∞. (122)

(iv) The function (𝜕2/𝜕𝑧2)𝑏 is measurable, 𝑏(0,𝑦,𝜋) =
𝑏(0,𝑦,0), and

𝑀
𝑏
:= ∫

𝜋

0

∫

𝑡

0

∫

𝜋

0

(
𝜕

𝜕𝑧
𝑏 (𝑡 − 𝑠, 𝑧, 𝑦))

2

𝑑𝑧 𝑑𝑠 𝑑𝑦 < ∞. (123)
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(v) 𝐶 : 𝐿2(0,𝑇;𝑈) → 𝐿
2
(0,𝑇;𝐻) is a bounded linear

operator.

We define 𝐵 : 𝐿2(0,𝑇;𝑉) → 𝐿2(0,𝑇;𝐻) by

(𝐵𝑥) (𝑡) = ∫

𝑡

0

∫

𝜋

0

𝑏 (𝑡 − 𝑠, 𝑧, 𝑦) 𝑥 (𝑠, 𝑧) 𝑑𝑦 𝑑𝑠. (124)

From (ii) it follows that 𝐵 is bounded linear and

𝐴
1/2
(𝐵𝑥) (𝑡)

=
1

𝑛

2

𝜋
((𝐵𝑥) (𝑡) , sin 𝑛𝑦) 𝜙

𝑛

=
2

𝜋
(∫

𝑡

0

∫

𝜋

0

𝜕

𝜕𝑦
𝑏 (𝑡 − 𝑠, 𝑧, 𝑦) 𝑑𝑦 𝑑𝑠, cos 𝑛𝑦)𝜙

𝑛

=
2

𝜋
((𝐵

1
𝑥) (𝑡) , cos 𝑛𝑦) 𝜙𝑛,

(125)

where

(𝐵
1
𝑥) (𝑡) = ∫

𝑡

0

∫

𝜋

0

𝜕

𝜕𝑦
𝑏 (𝑡 − 𝑠, 𝑧, 𝑦) 𝑑𝑦𝑑𝑠. (126)

Thus, by (iv) the operator 𝐵
1
is bounded linear with ‖𝐵

1
‖ ≤

√𝑀
𝑏
and we have that 𝐵 ∈ 𝐷(𝐴1/2) and ‖𝐴1/2𝐵𝑥‖ = ‖𝐵

1
𝑥‖.

Therefore from Theorem 6, there exists a solution 𝑥 of (120)
such that

𝑥 ∈ 𝐿
2
(0, 𝑇; 𝑉) ∩ 𝑊

1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) . (127)

Moreover, from Theorem 15 the neutral system (120) is
approximately controllable on [0, 𝑇].
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