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With increasing passenger flows and construction scale, Shanghai rail transit system (RTS) has entered a new era of networking
operation. In addition, the structure and properties of the RTS network have great implications for urban traffic planning, design,
and management. Thus, it is necessary to acquire their network properties and impacts. In this paper, the Shanghai RTS, as well
as passenger flows, will be investigated by using complex network theory. Both the topological and dynamic properties of the RTS
network are analyzed and the largest connected cluster is introduced to assess the reliability and robustness of the RTS network.
Simulation results show that the distribution of nodes strength exhibits a power-law behavior and Shanghai RTS network shows a
strong weighted rich-club effect.This study also indicates that the intentional attacks are more detrimental to the RTS network than
to the random weighted network, but the random attacks can cause slightly more damage to the random weighted network than
to the RTS network. Our results provide a richer view of complex weighted networks in real world and possibilities of risk analysis
and policy decisions for the RTS operation department.

1. Introduction

There is a rapidly growing literature on the complex networks
present in transport systems and complex network analysis
is a useful method to analyze the structure of transport
systems. For example, studies of worldwide airport networks
have shown small-world property and exhibited heavy tailed
power-law distributions [1]. For the public transportation
systems in Poland, various network properties, such as
the distribution of degree and clustering coefficient, have
been analyzed [2]. Further, the national highway network
of Pakistan has been investigated with weighted complex
network analysis of travel routes on the network [3]. Rail
transit systems are in essence physical networks that are
composed of stations or stops all linked by rails. Latora
and Marchiori [4] found that Boston public transportation
system exhibits the small-world behavior. Angeloudis and
Fisk [5] studied the world’s largest subway systems and found
that systems with substantial shared track are less robust
than dedicated line systems of similar size. Lee et al. [6]

analyzed statistical properties and topological consequences
of the Seoul subway system and found that the flow weight
distribution exhibited a power-law behavior. Soh et al. [7]
contributed a complex weighted network analysis of travel
routes on the Singapore rail and bus transportation systems.
Zhang et al. [8] summarized the universal characteristics of
the urban rail transit networks. Besides topological charac-
teristics of networks, the reliability and robustness of metro
networks were also widely studied. By looking at 33 metro
systems in the world, Derrible and Kennedy [9] analyzed the
complexity and robustness of metro systems and provided
insights/recommendations for increasing the robustness of
metro networks. Based on complex network theory, Zhang
et al. [10] studied the connectivity, robustness, and reliability
of the Shanghai subway network. De-Los-Santos et al. [11]
provided passenger robustness measures for a rail transit
network.

Nevertheless, these literatures, from a complex net-
work perspective, focus more on topological features than
dynamic traffic flow. The quantity of traffic in large transport
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Table 1: Statistical properties of the Shanghai RTS network.

Properties Unweighted network
(network distance)

Weighted network
(physical distance)

Number of nodes,𝑁 286 286
Number of edges,𝑀 317 317
Average shortest path,
⟨𝐿⟩

15.50 24.49 km

Diameter, 𝐷 41 116.20 km
Average clustering, 𝐶 0.0012 0.0024
Efficiency, 𝐸 0.0481 0.0352

infrastructures is fundamental for a full description of these
networks [1]. Therefore, this paper aims at providing a richer
and novel view of statistical properties of weighted complex
networks. Both the topological and dynamic characteristics
can be investigated according to complex network theory
in this paper. In addition, the largest connected cluster is
introduced to assess the reliability and robustness of weighted
complex networks. By proper methods, it is also possible
to explore the correlation between passenger flows and
the topological structure of rail transit network, thereby
providing scientific theoretical guidance for urban rail transit
planning, design, and management.

2. Weighted Networks Data

Shanghai RTS network consists of 286 nodes denoting sta-
tions and 317 edges accounting for a link connecting two
nearest stations. The average degree of the network is ⟨𝑘⟩ =

2𝐸/𝑁 = 2.22, while the maximal degree is 8. As already
observed in previous literatures [8, 10], the topology of the
network exhibits both scale-free and small-world properties.
Datasets that are provided by the Shanghai Shentong Metro
Company list the hourly in and out passenger flows for each
RTS station and passenger flows between adjacent stations. In
this study, passenger flows during morning peak hours from
7:00 to 9:00 in a typical weekday are analyzed, during which
the highest volume on a weekday could be observed.

Due to the method of data capture, it is important to
note that the paper is not only investigating the topological
and functional properties of the RTS network, but also the
passenger flows between the different stations. In this work,
it is assumed that typical travel was bidirectional, and hence
the weight 𝑤

𝑖𝑗
of one edge between a pair of nodes (stations)

𝑖 and 𝑗 is defined to be the sum of passenger flows in both
directions and 𝑤

𝑖𝑗
= 𝑤
𝑗𝑖
.

3. Weighted Network Analysis of Shanghai
Rail Transit Network

In this section, we present a topological and dynamical
analysis of the Shanghai RTS network. Table 1 shows com-
parison analysis of basic network properties of unweighted
network (topological) and weighted network (dynamical). As
mentioned above, the Shanghai RTS network is comprised
of 286 nodes and 317 edges and the average degree of the

network is 2.22. The clustering coefficients of the RTS net-
work (including the unweighted network and the weighted
network) are 0.0012 and 0.0024, respectively, which both
indicate that the local connectivity of the RTS network is
very poor.The characteristic path length 𝐿 of the unweighted
network between two nodes V

𝑖
and V

𝑗
is defined in terms

of the network distance, which represents the minimum
number 𝑛

𝑖𝑗
of links necessary to go from node V

𝑖
to node V

𝑗
.

The network diameter refers to the maximum shortest path
and the diameter 𝑑 = 41 for the unweighted network. The
network efficiency describes the global connectivity of the
network and is given by

𝐸 =
2

𝑁 (𝑁 − 1)
∑

1

𝑛
𝑖𝑗

. (1)

But it is more appropriate to use the physical distance 𝑑
𝑖𝑗

rather than the network distance 𝑛
𝑖𝑗
in measuring the real

network efficiency 𝐸. In terms of the physical distance, the
characteristic path length, diameter, and network efficiency
for the weighted network are given by 𝐿 = 24.49 km, 𝐷 =
116.20 km, and 𝐸 = 0.0352, respectively.

3.1. Degree and Strength Distribution. In a topological net-
work, for a given node 𝑖, its degree is the number of edges
shared with other nodes and defined as 𝑘

𝑖
= ∑
𝑁

𝑗
𝑎
𝑖𝑗
. In

a weighted network, a more meaningful measure of the
network properties is obtained by introducing strength 𝑠

𝑖
,

defined as

𝑠
𝑖
=

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑤
𝑖𝑗
. (2)

This quantity 𝑠
𝑖
combines node degree with edge weight and

reflects centrality of a node 𝑖 in the weighted network.
The probability distribution of 𝑝(𝑠) exhibits heavy tailed

behavior and shows similarities with the degree distribution
𝑝(𝑘) (see Figure 1). Meanwhile, the strengths of stations
appear scale-free (indicating the existence of hub nodes with
very high traffic) and follow a power-law distribution

𝑝 (𝑠) ∼ 𝑠
−𝛾
, (3)

with 𝛾 ≈ 0.487.
When each edge in the network is assigned a weight,

researchers naturally would like to know the correlation
between weight and topology structure of the network. In
order to shed more light on the relation between the node
strength and degree, the dependence of the strength 𝑠

𝑖
on

degree 𝑘
𝑖
is investigated. As it can be seen in Figure 2, the

distribution of the average strength 𝑠(𝑘) as function of the
degree 𝑘 of nodes can be well approximated by the power-law
behavior

𝑠 (𝑘) ∼ 𝑘
𝜃
, (4)

with an exponent 𝜃 ≈ 1.1. This reveals that the strength of
nodes is positively associated with the degree and coincides
with the fact that the more the connections a station is



Discrete Dynamics in Nature and Society 3

y = 3.822x−0.487 y = 0.311x−1.895

103 101104 105 106

10−2

10−1

10−3 10−4

10−3

10−2

10−1

10−1

100

100

p
(s
)

p
(k
)

k (degree)s (rail transit traffic)

Figure 1: Degree and strength distributions for the RTS networks.
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Figure 2: Average strength 𝑠(𝑘) as function of the degree 𝑘 of nodes.

linked to, the more the traffic it handles. This observation
also implies that the rail transit traffic grows much faster
than the number of connections. But it should also be noted
that in the Shanghai RTS network the largest degree node
is the Century Avenue, while the highest strength node is
the People’s Square (see Figure 3). What is more, although
many nodes share similar degree, the traffic handled by
each rail station may differ significantly. In consequence, the
dynamical properties of a network may differ significantly
from its topological properties. To summarize, the node
strength and degree indicate the importance or connectivity
of node in the network from the different angles, and the
node strength is more appropriate to describe the real RTS
network. In addition, the strength of nodes during peak
hours provides ameasure for the characteristic capacity of the
facilities near a station.

3.2. Topological and Dynamical Clustering. The clustering
coefficient is ameasure of local cohesiveness and connectivity

k (degree)

People’s Square

Century Avenue

1086420

s
(s

tre
ng

th
)

104

103

105

106

Figure 3: Distribution of strength as a function of the degree.

of the network. It is defined for any node 𝑖 as the fraction of
connected neighbors and can be expressed by the following
equation:

𝐶
𝑖
=

2𝐸
𝑖

𝑘
𝑖
(𝑘
𝑖
− 1)

=
2

𝑘
𝑖
(𝑘
𝑖
− 1)

∑

𝑗,ℎ

𝑎
𝑖,𝑗
𝑎
𝑖,ℎ
𝑎
𝑗,ℎ

, (5)

where 𝐸
𝑖
refers to the number of edges between the neighbor

nodes of node 𝑖. The average clustering coefficient 𝐶
𝑖
is aver-

aged over clustering coefficient of all nodes in the network
and can be expressed by

⟨𝐶⟩ =
∑
𝑁

1
𝐶
𝑖

𝑁
. (6)

It is important to note that 𝐶
𝑖
is defined solely on topological

grounds. Edge weights and their correlationsmay change our
view of the hierarchical and structural organization of the
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Figure 4: Examples of local configurations whose topological and
weighted quantities are different [1].

network (see Figure 4). In order to solve the previous incon-
gruities, Barrat et al. [1] introduce the weighted clustering
coefficient 𝐶𝑤

𝑖
which takes into account the weights of edges:

𝐶
𝑤

𝑖
=

1

𝑠
𝑖
(𝑘
𝑖
− 1)

∑

𝑗,𝑘

𝑤
𝑖𝑗
+ 𝑤
𝑖𝑘

2
𝑎
𝑖𝑗
𝑎
𝑗𝑘
𝑎
𝑘𝑖
. (7)

Similarly, the average weighted clustering coefficient is
given by

⟨𝐶
𝑤
⟩ =

∑
𝑁

1
𝐶
𝑤

𝑖

𝑁
. (8)

If the weights are completely uncorrelated in the network,
𝐶
𝑤

= 𝐶 and 𝐶
𝑤
(𝑘) = 𝐶(𝑘) [13]. However, weights in real-

world networks are often correlated, leading to two possible
situations. When ⟨𝐶

𝑤
⟩ is larger than ⟨𝐶⟩, triangles in the

network are more likely connected by edges with larger
weights. Conversely, when ⟨𝐶

𝑤
⟩ is smaller than ⟨𝐶⟩, the

topological clustering is generated by edges with smaller
weights.

In this case, the weighted clustering coefficient of the
Shanghai RTSnetwork is ⟨𝐶𝑤⟩ = 0.0024, approximately twice
as large as their topological measures (see Table 1). As ⟨𝐶𝑤⟩ is
larger than ⟨𝐶⟩, it can be concluded that triangles are more
likely constructed by edges with larger weights. However,
although Shanghai RTS network features the longest mileage
in the world, ⟨𝐶⟩ and ⟨𝐶

𝑤
⟩ of the Shanghai RTS network are

significantly smaller than other international metropolises
such as Tokyo,NewYork, and London [8].This result suggests
that connectivity of the network should also be considered
when the RTS networks are planned and designed.

3.3. Degree-Degree Correlation. Degree-degree correlation
demonstrates the extent of a node’s degree related to the
average degree of its neighbors and reflects the node’s con-
nection preference [14]. If high-degree nodes in the network
tend to link with each other, the network is considered
to be assortative. On the contrary, if high-degree nodes
tend to connect with low-degree nodes, the network is a
disassortative network.The average nearest neighbors degree
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Figure 5: Degree-degree correlation of the RTS network.

is one of the common indexes in measuring degree-degree
correlation and is defined as

𝑘nn,𝑖 =
1

𝑘
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑘
𝑗
. (9)

Further information can be gathered by inspecting the
function 𝑘nn(𝑘); it represents the average degree of all 𝑘-
degree nodes 𝑁

𝑖
(neighbors of all nodes with 𝑘-degree) and

can be expressed as

𝑘nn (𝑘) =
1

𝑁𝑝 (𝑘)
∑

𝑖/𝑘𝑖

𝑘nn. (10)

If 𝑘nn(𝑘) is an increasing function of 𝑘, the network is
assortative. If 𝑘nn(𝑘) is a decreasing function of 𝑘, the network
is disassortative.

In weighted networks, the weighted average nearest
neighbors degree is defined by

𝑘
𝑤

nn,𝑖 = ∑

𝑗∈𝑁𝑖

𝑤
𝑖𝑗

𝑆
𝑖

𝑎
𝑖𝑗
𝑘
𝑗
=

1

𝑆
𝑖

∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑤
𝑖𝑗
𝑘
𝑗
. (11)

This quantity measures the affinity of a node to connect
to high or low-degree neighbors. This depends on the edge
weights between itself and neighbors. If 𝑘𝑤nn,𝑖 is larger than
𝑘nn,𝑖, the heavily weighted edges connect to the large-degree
neighbors. Conversely, the edges with the smaller weights are
pointing to the neighbors with lower degree when 𝑘

𝑤

nn,𝑖 <

𝑘nn,𝑖.
Returning to the Shanghai RTS network, Figure 5 shows

that both the weighted network and the unweighted network
are definitely assortative at least up till 𝑘 = 6. It is surprising
to find that both 𝑘

𝑤

nn(𝑘) and 𝑘nn(𝑘) decrease at 𝑘 = 8. After
conducting a deep research, we find that the network has one
and only one node with degree 𝑘 = 8. Therefore, from the
overall trend, the Shanghai RTS network can be considered
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Figure 6: Schematic representation of a weighted network [12].

to be assortative. This finding is in line with findings in other
studies mentioned above [1]. Also, since 𝑘

𝑤

nn,𝑖 > 𝑘nn,𝑖 in the
whole 𝑘 spectrum, the heavily weighted edges are linked to
the large-degree neighbors; in other words, edges with the
larger flow of passengers pass through more well-connected
locations.

3.4. Topological and Dynamical Rich-Club Coefficient. Rich-
club coefficient (RCC) is an important quantity and intro-
duced as a measure of the interconnectivity between hub
nodes. For the set of 𝑁

>𝑘
rich nodes whose degree is larger

than 𝑘, the RCC is defined as

𝜑 (𝑘) =
2𝐸
>𝑘

𝑁
>𝑘

(𝑁
>𝑘

− 1)
, (12)

where 𝐸
>𝑘

represents the number of edges between 𝑁
>𝑘

rich
nodes in the club. In other words the RCC 𝜑(𝑘) measures
whether or not connections are established among rich
nodes. If there are no edges between rich nodes, then 𝜑(𝑘) =

0, whereas 𝜑(𝑘) reaches the value of 1 when all the possible
edges are present. However, it is easy to find that, even
without any correlation, one edge is more likely to be shared
between two rich nodes rather than two low-degree nodes. In
particular, Colizza et al. [15] find that in anuncorrelated graph
the RCC increases as 𝑘2 for large 𝑘. In order to overcome this
problem, they compared 𝜑(𝑘) measured on the real network
with the corresponding 𝜑null(𝑘) obtained from an appropriate
null model and proposed the ratio

𝜌 (𝑘) =
𝜑 (𝑘)

𝜑null (𝑘)
. (13)

Similarly, Opsahl et al. [12] extended the definition of𝜑(𝑘)
and 𝜌(𝑘) for weighted networks. They made a generalization
by defining a rich-club coefficient for the weighted case as

𝜑
𝑤 (𝑟) =

𝑊
>𝑟

∑
𝐸>𝑟

𝑛=1
𝑤rank
𝑛

, (14)

where 𝑟 is a richness parameter, such as strength. 𝑊
>𝑟

is the
sum of weights between nodes whose richness is larger than

𝑟 and 𝐸
>𝑟

is the number of nodes whose richness is larger
than 𝑟. 𝑤rank

𝑛
is the 𝑛th weight in 𝐸

>𝑟
strongest links within

the whole network. For example, Figure 6 shows a schematic
representation of a weighted network. The nodes and links
in the rich club are highlighted, giving 𝐸

>𝑟
= 6 links and

𝑤
>𝑟

= 4 + 2 + 2 + 3 + 1 + 2 = 14 [Figure 6(a)]. The strongest
𝐸
>𝑟

= 6 links of network are heighted and ∑
𝐸>𝑟

𝑛=1
𝑤

rank
𝑛

=

4 + 4 + 4 + 3 + 3 + 3 = 21. Thus, the 𝜑𝑤(𝑟) obtained is equal to
14/21 [Figure 6(b)]. Finally, the weighted rich-club effect can
be detected by measuring the ratio

𝜌
𝑤
(𝑟) =

𝜑
𝑤
(𝑟)

𝜑
𝑤

null (𝑟)
, (15)

where 𝜑
𝑤

null(𝑟) refers to the weighted rich-club effect assessed
on the proper null model.Weight reshuffle is used to produce
the null model in this paper; thus the topology of the
null model remains intact, and weights are randomly and
globally redistributed over the links of the network [12].
When 𝜌

𝑤
(𝑟) > 1, the original network has a positive

weighted rich-club effect, with rich nodes being intertwined
with other rich nodes more tightly than randomly expected.
In contrast, if 𝜌

𝑤
(𝑟) < 1, the links among rich nodes are

weaker than expected from randomness. In this case, the
richness parameter 𝑟 is defined as the strength of nodes
in order to examine whether the active nodes control the
exchange of passenger flows. As it can be seen in Figure 7, the
weighted rich-club ratio 𝜌

𝑤 grows remarkably as a function
of the strength of stations. Therefore, the RTS network
shows a strong weighted rich-club effect. This finding agrees
with previous studies that reported the weighted rich-club
effect in the worldwide airport network [12]. Active nodes
that handle heavy passenger flows preferentially direct their
efforts towards one another, and this tendency becomesmore
pronounced as the strength of nodes in network increases.
Connections among hub stations in the RTS network are
characterized by large passenger flows.

3.5. Reliability Analysis of the Shanghai RTS Network. The
reliability of Shanghai RTS network is investigated in this
section. Several topological parameters can be applied to
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Figure 7: Weighted rich-club effect in the RTS network.

evaluate the reliability and vulnerability of the RTS network,
such as the largest connected cluster, network efficiency, and
network size. In this paper, the largest connected cluster
(LCC) is adopted to illustrate the performance changes of
RTS network [16, 17], which indicates the connectivity of
network. In the unweighted networks, the largest connected
cluster is defined as follows:

LCC =
𝑁

𝑁
0

, (16)

where 𝑁 is the number of nodes on the largest connected
subgraph after attacks and 𝑁

0
is the number of nodes on

largest connected graph of the initial network. In order to
assess the reliability and robustness of the weighted networks,
the strength 𝑠 is integrated with the largest connected cluster
for the weighted case and LCC𝑤 is defined by the following
equation:

LCC𝑤 =
𝑆

𝑆
0

, (17)

where 𝑆 is the sum of strength of nodes on the largest
connected subgraph after attacks and 𝑆

0
is the sumof strength

of nodes on largest connected graph of the initial network.
It is generally known that when the RTS network is

attacked by intentional attacks or random attacks, this will
result in failure of some nodes and their connections, and
the network might be compromised and even breaks down.
If the failure ratio of nodes exceeds the critical threshold,
the network will disintegrate into smaller subnetworks and
become disconnected. Cohen et al. [13, 18] discussed the
critical fraction 𝑝

𝑐
of the Internet when subjected to random

removal and intentional removal, respectively. Zhang et al.
[10] had done similar researches for the subway network.
Combining previous literatures and characteristics of the RTS
network failure, the critical threshold 𝑝

𝑐
of the fraction of

removed nodes is defined as follows. When the nodes are
removed from the network one by one and the removed
fraction𝑝 < 𝑝

𝑐
, the network has troubles but cannot collapse;

0.0 1.0

Fraction of removed nodes
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C

0.80.60.40.2

0.4
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0.2
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RWR
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Figure 8: Performance changes of the largest connected cluster
under different attack strategies.

otherwise the network almost breaks down when 𝑝 ≥ 𝑝
𝑐
;

in this case, the largest connected cluster for the weighted
network is less than 0.05. In this section, the weighted largest
connected cluster LCC𝑤 is considered as a function of friction
of removed nodes 𝑝.

In this paper, the critical fraction 𝑝
𝑐
of Shanghai RTS

network is discussed and compared to random weighted
network produced by weight and link reshuffle (i.e., the ties
of the network, with their attached weights, are reshuffled
in a way that the degree distribution 𝑝(𝑘) is preserved [19]).
Figure 8 presents the performance changes of the largest
connected cluster of the Shanghai RTS network under dif-
ferent attack strategies. Here, WR represents random attacks
on the RTS network, WI represents intentional attacks on
the RTS network, RWR denotes random attacks on the
random weighted network, and RWI denotes intentional
attacks on the random weighted network. Meanwhile, the
intentional attacks indicate that the largest strength nodes
are removed from the network one by one. From Figure 8,
the performance and critical thresholds of the RTS network
under different attack strategies can be obtained. The critical
thresholds for different network failures are 𝑝

𝑐
(WR) =

0.5664, 𝑝
𝑐
(WI) = 0.2203, 𝑝

𝑐
(RWR) = 0.5210, and

𝑝
𝑐
(RWI) = 0.2517. From the above critical thresholds of

the fraction of removed nodes of the RTS network, it is
obvious that the intentional attacks can cause more damage
than random attacks both to the RTS network and to random
weighted network. Furthermore, the intentional attacks are
more detrimental to the RTS network than to the random
weighted network, but the random attacks can cause slightly
more damage to the random weighted network than to the
RTS network.

4. Conclusions and Future Research

In this paper, Shanghai RTS network of China is investigated
by using complex network theory.The topological properties
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and the connectivity, robustness, and reliability of the RTS
network are studied from a complex weighted networks
perspective.

Simulation results show that the behavior of strength
follows a power-law distribution and exhibits heavy tailed
behavior; that is, the network possesses hub nodes with high
traffic.Moreover, the dynamical properties of a weighted net-
work may differ significantly from its topological properties.
Although many nodes possess the same degree, the traffic
handled by each rail station may differ significantly.

The weighted clustering coefficient is a measure of the
local cohesiveness and provides global information on the
correlation between weights and topology by comparing
them with their topological clustering. As ⟨𝐶

𝑤
⟩ is larger

than ⟨𝐶⟩, it can be concluded that triangles are more likely
constructed by edgeswith largerweights.However, compared
with other international metropolises, the local connectivity
of the RTS network is very poor. Along with the weighted
clustering coefficient, the weighted average nearest neighbors
degree is also introduced in this paper and this study finds
that the heavily weighted edges are linked to the large-degree
neighbors.

Consistently with previous research in worldwide airport
network, the RTS network has a positive weighted rich-
club effect, indicating that active nodes handling heavy
passenger flows are more likely to direct their efforts
towards one another. Furthermore, this tendency becomes
more pronounced as the strength of nodes in network
increases.

The reliability of Shanghai RTS network is investigated
in the last section and the findings disclose that the damage
caused by intentional attacks is larger than random attacks
both to the RTS network and random weighted network.
Moreover, the intentional attacks can cause more damage
to the RTS network than to the random weighted network,
but the reliability of Shanghai RTS network is slightly higher
than the randomweighted network subjecting to the random
attacks.

Complex weighted analysis is a powerful tool for under-
standing complex architecture of real weighted networks.
Indeed, the analysis of the weighted quantities and network
reliability provide possibilities for risk analysis and policy
decisions through learning structural organization of the net-
work. From the previous literature and research, it is known
that there are many other attack strategies and topological
parameters for evaluating the reliability and robustness of
networks. It would be interesting to study the performance
changes of the weighted network under different attack
strategies. Another possible extension would be to conduct
a comparison analysis of topological and dynamic properties
for the weekend and weekday RTS networks and this study
may get some interesting results.
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