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This paper studies the following system of degenerate equations —div(p(x)Vu) + q(x)u = au + pv + g,(x,v) + h;(x), x € Q,
—div(p(x)Vv) + q(x)v = Bu + av + g,(x,u) + hy(x), x € Q, ou/dv = ov/dy = 0, x € 0Q. Here QO c R" is a bounded C? domain,
and 7 is the exterior normal vector on 0Q. The coefficient function p may vanish in Q, g € L' (Q) with r > ns/(2s —n), s > n/2. We
show that the eigenvalues of the operator —div(p(x)Vu) + q(x)u are discrete. Secondly, when the linear part is near resonance, we
prove the existence of at least two different solutions for the above degenerate system, under suitable conditions on h,, h,, g,, and

G-

1. Introduction

In recent decades, many kinds of perturbed problems were
studied by many scholars, such as [1-11]. Here, we want to
say that the authors in [5] studied the following Dirichlet
boundary problem:

“Au=putg(xu)+h(x), xeQ,

)

u=0, xe€o.

When the parameter y is close to an eigenvalue of the
operator —A, they proved that problem (1) has two differ-
ent solutions. Moreover, this result was extended to some
equations and systems; see [6-10]. In particular, Massa and
Rossato [11] studied a nondegenerate elliptic system and
two solutions were obtained by using Galerkin techniques.
On the other hand, we also mention that many scholars
studied some elliptic equations with the Neumann or Robin
boundary; see [12-17] and the references therein. Inspired by

the above results, we study the following system of degenerate
equations:

—div (p (x) Vu) + q(x)u
=au+Pv+g,(x,v)+h (x), xeQ,

—div(p(x) Vv) +q(x) v 2)
=put+av+g, (x,u)+h,(x), xe€Q,

?)_1: = % =0, xe€0dQ,

where QO ¢ R”" is a bounded C* domain, » is the exterior
normal vector on 9Q, «, 8 € R, and h;,h, € L*(Q). The
coefficient p may vanish in Q, g € L'(Q) with r > ns/(2s —
n), s > n/2; that is, problem (2) may be degenerate; see
[18]. As in [11], we will use the critical point theory and
Galerkin techniques to obtain the existence of two different
solutions for the above degenerate system. Now, we introduce


https://core.ac.uk/display/192443381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/2925065

2
the function set & which consists of functions w : Q —
R* U {0} such that
we L, (Q),
wle L}oc Q), 3)

w e L' (Q) with s > g

Throughout the paper, we always assume that there exist w €
Z and k > 1 such that

M ae x € Q. (4)

< p(x) <kw(x),
We also assume that g belongs to L' (Q) with » > ns/(2s — n),
and g; : Q — Risa Carathéodory mapping and satisfies the
following conditions:

(go) For every M € R", there exists [, € L*(Q) such
that, for all |s| < M

lg; (%, 9)] <Ly (x), ae xeQ. (5)

(Goo) limlslﬂoo(gi(x, s)/s) = 0, uniformly in x € Q,
i=1,2.

Although the conditions (g,) and (g,,) were introduced in
[10], it is weaker than (f;) in [5] (or (1.2) in [11]). In fact, let
gi(x,s) = s log(1 +|s]); it is easy to see that g; satisfies (g,,),
but the function g; does not satisfy the condition (f;) in [5]
(or (1.2) in [11]).

In Section 2, we give some preliminary lemmas and our
main results. Meanwhile, we show that the eigenvalues of the
operator —div(p(x)Vu) + q(x)u are discrete under Neumann
boundary condition. In Section 3, we prove our main results
through Galerkin techniques and saddle point theorem.

2. Preliminaries and Main Results

In this section, we first collect some basic facts and then
give the properties of the eigenvalues of the operator
—div(p(x)Vu) + q(x)u. Secondly, we define a new norm and
prove it is equivalent to the usual Sobolev norm. At the end
of this section, we give the main results of this paper.

Firstly, let W(Q, w) denote the completion of C*(Q)
with respect to the norm

Hﬂw=JwaWHWM+uﬂdm VoeF.  (6)

The inner product in W"*(Q, w) is denoted by

U, vy, = J (w (x) VuVv + uv) dx,
@ (7)
Yu,v € wh? (Q,w).

From (4), we know that the spaces Wh(Q, w) and W (Q, p)
are equivalent; see [18]. Let v =r/(r=1);fromr > ns/(2s—n)
with s > n/2, one has

2ns

<2t — 22
S on(s+1)-2s

(8)
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Hence, by the Sobolev embedding theorem of [18], we know

that W2(Q, w) is compactly embedded in 8 (Q). Moreover,
it follows from Holder’s inequality that

UQ 41| < gl Il - 9

Now, we use a similar argument to that of Gasinski and
Papageorgiou (see [15]). Let us study the following eigenvalue
problem:

~div(p(x)Vu) +q(x)u = pu, x¢€Q,

(10)
M0 xeoq.
ov

Firstly, from (4) and the Sobolev embedding theorem of [18],
we know that

W (Q, p) — L7 (Q) = L*(Q), an

and the first embedding is compact. Then, for any £ > 0, we
have

2

"u”LZr’(Q

< Il + ¢ Nl fzqy > Y€ WH(Q,p), (12)
for some positive constant ¢;; see [19].
Let us define o : Wl’Z(Q,p) x WH(Q, p)— R, Yu,ve
wh(Q, p)
o u,v) = J (p (x) VuVv + g (x) uv) dx. (13)
Q
It follows from (9) and (12) that

(1-¢lq

2
o) Il < o (u,u)

+ (Cl lq @t 1) ||“||izm) ,  (14)
Vu e W (Q,p).
Choosing € small enough, then from (14) one gets

lull} < ¢ (0 w) + lullzqy), Yue W (Q,p), (15)

for some positive constants ¢,. Hence, by Corollary 7.8 in [20],
we conclude that there exists an eigenvalue sequence {u}
satisfying

Q< <Py Spy S S S — 400, (16)

as k — +0o0 and

by = inf{ T e W2 (0, p)\ {0}} L)

2
"u”LZ(Q)

Let {¢,} be the corresponding eigenfunction sequence; then
{@x} is complete in L*(Q) and ¢, € C"*(Q) for some a €
(0, 1); see [21].

Now, let 9 = max{-p,, 0} + 1; since the coeflicient p may

vanish in Q), we need to define a new norm:

lullg = \/0 (u, 1) + J 9uldx, uew"(Q,p), (18)
Q
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and the corresponding inner product
(u,vyg = 0 (u,v) + J uvdx, Vu,ve W (Q,p). (19)
Q

Lemmal. Letq € L'(Q) withr > ns/(2s — n); then the norms
|- llg and || - I, are equivalent.

Proof. Firstly, it follows from (17) that
x (W) =0 Wwu)+ J 9uldx >0, YueW"(Q,p). (20)
Q

We prove that there exists ¢; > such that
XW) =6 luly, YueW(Qp). (21)

In fact, if (21) is false, by mean of the 2-homogeneity of y,
there exists {u,} ¢ wh2(Q, p) such that ||un||P = 1 for all

n>1and x(u,) — 0" asn — oco. Without loss of generality,
we may assume that

u, —u weaklyin W (Q, p),
, (22)
u, — u stronglyin L" (Q).
By the sequential weak lower semicontinuity of o(u, u) and
the choice of 9, we know that

o (u,u) < lim o (1, 1,) < piy [ullfa (g - (23)
n—00

By (17), one gets o(u,u) = ”M"iz(g) as well as u = pg, for
some constant g. If o = 0, then u,, — 0 in W"*(Q, p), which
contradicts IIu,,IIP = 1,Vn > L;if ¢ # 0, by (23), one has
oo, 91) < plley ”iz(Q); this is a contradiction. Hence, (21) is
true.

On the flip side, from (9), we have

o (u,u) + J 9uldx < J (p (x) [Vul* + 9142) dx
Q Q

2
+ "q Q) ”ullzr’ (24)
< (14 9) Jul? + K gl Il
< max {1+ 9,K |l } 1ull -

Here K is a positive constant. Then, by (21) and (24), one gets

G ||u||; <o(u,u)+ JQ 9utdx
(25)

< max{l +9,K |q U(Q)} ||u||;.

This proved the norms | - lg and || - || pare equivalent. O

From now on, we always assume WI’Z(Q, p) =
(WI’Z(Q> P), ” : ”9) <')'>,9)> "(Pk"{) =1.

Lemma 2. Under the hypotheses of Lemma 1, the embedding
wh(Q, p) — L™(Q) is continuous for [1,2]], compact for
[1,2]).

Proof. By Lemma 1 and the Compactness Theorem in [18], we
directly conclude Lemma 2.

In addition, from Lemma 2, there exists £ > 0 such that
lullmqy < €llully. For simplicity, we will assume that £ = 1;
that is,

lull ey < lull, Yu e W2 (Q,p). (26)
O

Now, let G;(x, s) = I; g;(x, t)dt and § = {y4;};n- For fixed
k > 1, suppose that 4 is an eigenvalue of multiplicity T and
denote by E]; the eigenspace associated with the eigenvalue
te Z© = span {((p, tp): @€ Eﬁ} The main results are as
follows.

Theorem 3. Let y; € & be the first value above « — [3 and
suppose that conditions (g,) and (g,,) hold. Also,

lim G; (x,s) = +o0,

|s|—00

i = 1,2, (27)

uniformly in x € Q, and

jQ (o +hy)dx=0, V(py)eZ'.  (28)

Then for any n > 0, there exists y, > 0 such that « + f3 €
(e = Voo the); if dist(a— 3, §F) > #, then problem (2) has at least
two different solutions.

Theorem 4. If we replace condition (27) of Theorem 3 with

|llim G;(x,s) =—-00, i=1,2, (29)

uniformly in x € Q, then for any n > 0, there exists y, > 0 such
that o + B € (e, Wy + yy); if dist(x — B, F) > , then problem
(2) has at least two different solutions.

Theorem 5. In addition to conditions (g,), (go,)> and (29),
suppose that y € § is the first value above o + 3 and

| g smyyax=o vgwyez. @
Q

Then for any n > 0, there exists y, > 0 such that « — f3 €
(e = Vo> the); if dist(a + 3, §F) > #, then problem (2) has at least
two different solutions.

Theorem 6. Let p; be the first eigenvalue above « + 3 and
conditions (g,), (9gso)> (27), and (30) hold. Then for any n >
0, there exists y; > 0 such that o — B € (e, 4y + v3); if
dist(e + 3, ) > 1, then problem (2) has at least two different
solutions.

3. Proof of Main Results

In this section, we firstly prove some preliminary lemmas,
and then we prove our main results through variational
methods and Galerkin techniques.



For the sake of simplicity, let DW = wh(Q, p) X
W"(Q, p) and DL = L*(Q) x L*(Q), with the norms

2 2
Izl ow = llully + VIl

2 2
lzllon = Vel gy + V12 gy

(31)

the inner products (-, ) oy and (-, -) pr, respectively. In addi-
tion, we will always use the notation z = (u,v), w = (¢, ) €
DW, unless otherwise specified.

DefineG: DW — Rand H: DW — R, Vz € DW

G(z) = JQ (G, (x,v) + G, (x,u)) dx,
(32)
H(z) = J- (hyv + hyu) dx.
Q

For every & > 0, we claim that there exist positive constants
M, and C,, such that

€
G @) < 2 Izl + 2M; 12w
(33)

H (z) < Cy lzllpw »
(G @), w)]| < (ellzllpw +2M,) [wlpyy »

|<H' (2) ,w>' < Gy lwlpy -

In fact, by means of (g,), (go,)> and (26), the arguments of
(33) and (34) are quite similar to that of Lemma 3.1 in [11]
and so is omitted.

Now, we define the functional J(z) : DW — R, Vz €
DW

(34)

1
J(2) = 2B(2,2) - G(2) - H(2), (35)
where B: DW x DW — R, Vz,w € DW, given by

B(z,w) = J-Q P (x) (VuVy + VvVe¢) dx

+ j q (x) (uy +v) dx
Q (36)

—ocJ'Q(m//+v¢)dx—ﬁJ-Q(u¢+vw)dx

=z, W)py — (e +9) (z,w)p; — Bz w)py >
where w = (y, ¢). By means of (g,) and (g,,), one has J €
C'(DW, R) and
<]' (z),w> =B(z,w) - <G' (z),w> - <H' (z),w>, (37)

which implies that the critical points of ] are exactly weak
solutions of problem (2).

Next, we need to consider the eigenvalue problem:
B(z,w) = Mz, ¢) pyy» for A € R; that is,

B(z,w) = A L {p (x) (VuVe + VvVy) 69)

+(q(x) +9) (ug +vy)} dx.
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Firstly, for any u,v € w2, p),onehasu = Y2, a,¢; and
v = Y5 by for some a;,b; € R. Now, by [lglly = 1 and

using (¢, ) = (¢;,0) and (¢, ) = (0,¢;) in (38), then a
straightforward calculation shows that (38) is equivalent to

Ay +9) + B (a;
A )<b

1

( o ) 0. (39)
M+ 9) + B -
Obviously, (a;, b,) # 0ifand only if (a— ;) — {A(9+p;) + B} =
0. Hence, we obtain two sequences of eigenvalues

A = _ﬁi(.ui_“))

Vi eN, (40)
O+

and the corresponding eigenfunctions

bsi = \/75 (st ;), VieN, (41)

are the corresponding eigenfunctions.
Let Z, = Z \ {0}, for i, j € Z; a simple calculation yields

[y = 1.

(9085) = 80>

i (908) = O
B($:.9;) = w8/,

(42)

where 8ij denotes the Kronecker symbol. Moreover, if z =
Yicz, %®i> then

2
lzlow = Y as

i€z,
B(Z,Z) = Zliaiz, (43)
i€z,
-1 2
lzllpr = Z Wi 9
i€Z,

In addition, for every y > 0, if  + 3 € (pg — y, 1), from (40)
one gets

0<A"=Mk9+“ykﬁ<9:);4k' (44)
Let us fix k > 1 and define
°={iezy:) =X},
I"={ieZy A # A A; <0},
I"={ieZy A A A; >0},
(45)

Z = span{¢;: i€},
V =span{¢$;: iel},

X = span{¢;: iel'}.
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Meanwhile, we denote by By, By, By, and B,y the unitary
closed balls, with respect to the norm || - || 5y, in the spaces V/,
VeZ, X,and Ze X, respectively, and by Sy, Sy, Sx, and Sx
their relative boundaries.

Lemma 7. Suppose that g; satisfies (g,), (goo)> £ 3 ¢ §. For
fixed k > 1, let y, and y; be the first eigenvalue above o+ 5 and
o — f3, respectively.

Ifdist(a — B, F) > 1 > 0, then we have

J()>C! ., VzeZaX,

ﬁ)
(46)

J(2) <Chp VZ€pSy, p=p e

for some constants CZ+;; € Rand PZ+;3 > 0.

Further, if condition (27) also is satisfied, then there exists
a positive constant y, such that, for « + 3 € (4. — o> te)> there
exist D,, CZ+;§ €R PZ+/5 > R, > 0 such that (46) hold and

J(2)2D,, VzeX, (47)
J(z) <D, -1, Vz€RSy, (48)
J(2) <D, -1, Vz eV with |zlpw >R,.  (49)

Here, a value D, with index 0 represents that D, depend on J,
and other cases are similar.

Proof. Firstly,ifk > 2,then py_; < a+ 8 < yy; if k = 1, then
a+f<p.

For k > 2,if 9 + « + § > 0, then the sequence {}; =
1-O+a+p)/®+ )} is nondecreasing, which implies

|/'\,-|2min{1—9+a+‘8,—1+9+“+/3} 50,
9+ py I+ ey

(50)
Vi e N.

If 9+a+f < 0, then the sequence {A; = 1-(O+a+f)/(O+u;)}
is nonincreasing, which implies

A > lim <1—M>=1, VieN.  (51)
k—00 9+ |2
Similarly, for k = 1, thatis, « + B < p, if 9+ + § > 0,
then the sequence {A; = 1 — (9 + « + B)/(O + y;)} is also
nondecreasing, which implies

>0, VieN. (52)

If 9+a+f < 0, then the sequence {A; = 1-(O+a+f)/(O+u;)}
is nonincreasing, which implies A; > 1 for every i € N.
In a word, for fixed k > 1, there exists P,, 3 > 0 such that

Ail 2 Ppyps VieN. (53)
Secondly, because of the fact that  is the first eigenvalue

above o — B and dist(x — 5, F) > 1 > 0, thusax - < p; — 6, if
I=Liw ,+6<a—-p <u—0,ifl > 2. Proceeding as in the

proof of the first step, we can also conclude that there exists
P, > 0 such that

AL =P, VieN. (54)
Let P;’Jrﬁ = min{PMﬁ,Pq} > 0; we have by (53) and (54)
sl 2 Plp VieN. (55)
Hence, as in the proof of Lemma 4.1 in [11], we know that
B(z,z) < —P;7+ﬁ Izl Yz eV, (56)
B(2,2) 2 Pl slzlyy, VzeZoX. (57)

From (33) and (56), we get

&
1@ <= (Bl = 5 ) Izl + (M, + C,) Izl

58)
Vz e V.
From (33) and (57), we get
€
1@ > (Bl 5 ) Wl - (M, + Gzl
59)

VzeZa X.

By (58) and (59) and choosing € < 2P;Z+ p We conclude that
there exist C, ; € Rand p],; > 0 satisfying (46).

In addition, if & + 8 is near enough to yy, in particular, if
a+ > 0and dist(ax + 5, F \ {i4}) > d > 0, we claim that
there exists QZ > 0 such that

B(z,2) < ~Qjlzlpy, VzeV, (60)
B(z,2) > Qllzly, VzeX. (61)

In fact,ifa+f > O and dist(ax+ 3, F\{pe}) > d > 0,fork > 2,

we have

min A
ieN\{k,....k+7—1}

) V+a+p I9+a+p
=minyl— ,—1+ (62)
O+ eer O+ ey
. { d d }
> min R > 0.
Ot e 9+ gy
And, for k = 1, we have
inf =B _d (63)
ieN\{1} I+ u, V+u,
Hence, for fixed k > 1, there exists Q] > 0 such that
A >Ql VieZy\fk,....k+7—1}. (64)

From this we easily get the estimates (60) and (61).



Next, we prove (47), (48), and (49). Let d =
(1/2) dist(py, T\ {pe}) and y,y € (0,d). e+ B € (pg — Yoo i)
then dist(a + B3, § \ {ur}) > d.

If z € X, it follows from (33) and (61) that

1@ 2 (@)= 2 ) Izl - M+ C) lellow - (69

By choosing & = Q'}, then there exists D, € R satisfying (47).
If z € V, by (33) and (60), we obtain

1@ <= (@)= 5 ) lellwy + (M +C) Izl - (66)

Let us choose & small enough; then there exists R > 0
satisfying (49) for R, > R.

Now, we prove the estimate (48). If (48) is not true, then,
for any sequences y, — 0* and R, > R, there exist z,, € R,Sy,
and «,,, B, € R such that

o, + ﬁn € ([’lk ~Vw ["k) >
dist (et, = B, &\ {te}) > 1, (67)
Ju(2,) 2D, — 1.

Here B,, (or ],) denotes the form B (or the functional J) with
a = a,and B = f,. And, {A]};c7, denotes the eigenvalues of
the bilinear form B,,.

Letz, = @, + 1, € V& Z, and suppose R, — oo and
y.R2 — 0asn — 00. By (44), one has 0 < A} < y,/(9 + ),
which implies B, (7, ,) < (y,/(9 + yk))||Tn||f)W. So, by (60),
we get

Bn (z}’l’ z}’l) S Bn ((Dﬂ’ (Dﬂ) + B}’l (Tn’ T}’l)
Y (68)

2 2
S 9 p “Tn"DW - QZ "‘DnHDW’

for all positive integers n; we get by (68)
Dn -1< In (zn)

Yn

2 2
9+ e "Tn“DW - Qg ”a)n”DW -G (Zn) (69)

- H(z,).
It follows from (33) and (69) that

(@)l (1)l

D, -1
R

(2M, + Cy,) lzllpw
+ R .
n

(70)

We note that ||7,llpy < lz,lpw = R,; then from (70) we
obtain

2
”(DV!"DW < SI, (71)

R2

n

lim sup
n—o00
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where ¢’ = s/(ZQZ — ¢). Note that dim Z < co

2 2
“‘DnHZDW "Tn”DW -1, M c/. (72)
Rn Rfl Rn
Then, we get by (71)
g 17l > V1-¢,
n—00 n
(73)

n—00

ooy
Rl’l

LetZ, = @, + 7,, where ®, = ®,/R,,, T, = 7,/R,,. Then, by
(73), there exists Z, = @, + T, € DW with [|Z,| oy = 1, such
that

,}E& IZallow = [Tollow = V1-¢',

(74)
,}Hgo 1]l ow = 1@o]l o < Ve
Let z = (P,z, P,z) € DW. Then, we have
Zulow = 1(PiZr P2 [y
—~ = —\2
= |(P,@, + P,7,, P,®, + P,T,,)|| 75)

= 1P@, 5 + 127l + B2, + P75
=1

From this and (74), without loss of generality, we assume

!

1-¢
P74 = s
Pl J ; 6
[Pi@lls < Ve

By dimZ < oo, one has [P Tll;1q) > CV(1-¢')/2 for
some positive constant C. Besides, from (26) and the second

inequality of (76), we obtain [|P,@yll;1q) < Ve'. Thus, by
choosing € small enough, there exists { > 0 such that

"Pﬁo"Ll(m > 3¢,

_ (77)
“Pl(DO"Ll(Q) <.

From this and (74), there exist # > 0 and n, > 0 such that
'QPIEJ =[{xeQ: |PZ,(x)|>n}|>n forn>n, (78)

By (g,) and (27), proceeding as in the proof of
Proposition 4.6 in [11], we have

lim inf J G, (x,RP,Z,) dx = +00. (79)
o

R—oon>nyg

Further, because of the fact that fn G,(x,RP,Z,)dx is
bounded from below, we get

lim G (z,) = lim G (R,z,) = +oo. (80)

n—o0
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In addition, for fixed d and #, from (54) and (64), we can
choose y small enough such that y; = g, i =k,...,k+7-1;
then we get Z = Z". Hence, by (28), it is easy to see that
QZII&)nIIfDW > —§, for some positive constant §,. Moreover,
it follows from (69) that

Vn
G <
(zn) 9 + ‘uk

[l =Dy + 1480 (81)

Recall that |7, |lpy < R, and yanl — 0asn — o0, which
contradicts with (80). Hence, there exist R, > R > 0 and
Yo € (0,d) which satisfy (48).

Finally, by the process of the above proof, we easily
know that all the constants of the estimates above are not
contradictory; then we finished the proof of Lemma 7. OJ

Remark 8. In fact, from (46), we can get a solution of
problem (2). And, from (47), (48), and (49), we can also get
a solution of problem (2). But we do not know whether they
are different. So we will use Galerkin techniques to show the
existence of two different solutions.

Now, we assume thatn > k+ 1

DWn = span {‘p—n’ tee ’¢n} >

V, =V nDW,, (82)
X, = XN DW,.

It follows from this that Z ¢ DW,. Asbefore, let B, = B,NV",
By, =B, N(V,®Z),By =B N(Z&X,),Sy Sy, and S,
represent their relative boundary. In addition, we know that
all the estimates of Lemma 7 are true when the conditions of
Theorem 3 are satisfied. Further, if dist(e — 3, &) > n > 0
and o + 8 € (4 — V> 44)> we can also check that the similar
estimates of Lemma 7, with respect to the functional J,,, hold
on the spaces V,,, Z, and X,,.

Lemma 9. Fixn > k + 7, assume that « + 3 ¢ G, hy,h, €
L*(Q), and g, and g, satisfy (g,) and (g, ). In addition, let
{z;} ¢ DW,, satisfy

|(J' (z)w)| < 8 lwlpw > Yw=(¢,y) € DW,, (83)

where §; — 0 asi — o00. Then, there exists a subsequence
{z; } € {z;} such that {z; } converges in DW,,.
k k

Proof. Ifi € Z,, then A; # 0. Hence, we may divide the space
DW in the two orthogonal components

DW™ =span{¢;: i€ ZyA; <0},
(84)
DW* =DW \ DW".

For j > k+1,let DVV].)r = DW+ﬂDW'j, DW']._ = DW nDW;.
In addition, because of A; — +1 asi — *00, then we may set
Ao = inf {|A;]: i € Z;} > 0, and then

B(z,2) < ~MAg |zllhy > VzeDW', (85)

B(z,z) = A lzllpy > Vz e DW™. (86)

Setting z; = z; +z; € DW~ @ DW", by testing (83) with
w = z; we have

|B(z027) = (G (2) .2 ) - (H'(2).5 )|

] (87)
< 8 |l [l oy -
From this, (34), (42), and (85), we get
Moz | pw < 8+ ezl pw + 2M, + Gy (88)
In the same way, by testing (83) with w = z;" we have
Mol |l pw < 8+ elzill pw + 2M, + Gy, (89)
From (88) and (89), we have
(Ao — 2¢) ||zi]| pyy < 26; + 4M, +2C,,. (90)

Let us choose € < Ay/2; then {z;} is bounded in DW,. By
dim DW, < oo, then there exists {zik} C {z;} such that {zik}
converges in DW,.

From the proof of Lemma 9, we can also get Lemma 10
below.

Lemma 10. Assume that x + B ¢ . hy,h, € L*(Q), and g,
and g, satisfy (g,) and (g, ). In addition, let {z;} ¢ DW, satisfy

|<]’ (z;) ,w>| <8;|lwlpw forevery we DW;,  (91)

where §; — 0 asi — oo. Then {z;} is bounded in DW.
Clearly, by using the Saddle Point Theorem, Lemma 9, (46),

(47), and (48), there exist z,, = (u,,v,) and w, in DW, such

that ],(z,) = ¢, ],,,(Zn) =0,and J,(w,) =s,, ],;(w,,) = 0, where

c, = mrf" sup J,(y(2)) = C2+ﬁ>

el ZEPZ-MBB{‘/

s, = inf sup J,(y(2)) 2D,

€ly,
Yelyz weR, By,

I ={r e C(pL Bl DW,): ¥ =2 lulpw (o)

= pZJrﬁ} >
Iy, = {Y € C(RUB\H/Z’DWn) sy (W) =w, |wlpw
= er}'

Lemma 11. Assume that the conditions are the same as
Lemma 7, & + B € (4 — Vo> pie)> and dist(ax — 5, F) > n > 0.
Then, for all n > k + 7, there exists T, > 0 such that ¢, €

[CZ+;;’ D, - 1] ands, € [D,’,Tn].

Proof. Firstly, by (92), one getsc, > Dy, gands, > D,. Define
Yo (p)

) {p, Ry <|plow < Php  (93)

e+ VR - lplhnde 1ol <Ry



So it follows from (48) and (49) that

sup J, (o (2)) <D, - 1,

zePZﬂ;Bg

(94)

which implies ¢, < D, — 1. In addition, by Id| R,B), € Iy, one
gets s, < supyep gy J (w).
For z € V @ Z, it follows from & + 3 € (4, — V> t4) that

_P’7 YO )
9+ iy

wrp <0 <Ap <

(95)

From this and (33), we get for any z € R, By,

J(z)s( i

EE + s> IzI5 + (2M, + Cp) Izl pw - (96)

Hence, there exists T, > 0 such that s, < T,. This finishes the
proof of Lemma 11. O

Now, we start to prove our main theorems.

Proof of Theorem 3. Firstly, by Lemma 11 and without loss of
generality, there exist ¢ € [CZ P D, - 1]ands € [Dn’ Tn] such
that¢, — cand s, — sasn — +00.

Next, we prove that there exists z € DW such that J(z) = ¢
and J'(z) = 0. In fact, for all n > k + 7, we have

]n (Zn) = Cn’ (97)
(I (z,),w) =0, VYw e DW,. (98)

Then, it follows from Lemma 10 that {z,} is bounded in DW.
Hence, without loss of generality, there exists z € DW such
that

z, — z in DW,

(99)
in DL.

z,— 2z

For€ > k+ 1,letw = (¢,0) € DW, and w = (0,y) € DW,
in (98), respectively. From a direct calculation, we have for all
n>~¢

(s W) = (+9) J u,ydx + ﬁj v,y dx
Q o

+ J. g, (x,v,) wdx + J. hyydx,
“ “ (100)

(v ®)5 = (a+9) L v dx+ B L ¢ dx

+ L 9, (x,u,) pdx + L h,¢ dx.

Letn — o0; we get {J'(z),w) = 0 for any w € DW,. It follows
from DW = U, DW, that J'(z) = 0. That is, z = (u,v) is a
critical point of the functional J.

Next, we prove J(z) = c. Firstly, let us define the
orthogonal projection
(101)

PB,: W (Q,p) — spani{py,.... .},
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which implies P,u — u, P,v — vin wh2(Q, p). Then

lim ("”n - Pnu”LZ(Q) + "Vn - PHVHLZ(Q)) =0,

n—-00

(102)
””n“LZ(Q) + ""n"LZ(Q) < 0.
It follows from (102) that
o J u, (u, — P,u)dx + J v, (u, — P,u) dx
Q Q
+ J g, (x,v,) (u, — Pu)dx — 0,
Q
" J v,(v,—Pv)dx+p J u, (v, — P,v)dx (103)
Q Q
+ J g, (x,u,) (v, — P,v)dx — 0,
Q
J- hy (u, — Pu)dx + I h, (v, - P,v)dx — 0.
Q Q
Letw = (v, — P,v,u,, — P,u) in (98); one gets
(I (2,), (v, = Pyvau, = Pyu))y =0, Vn>k+1. (104)
From this, (103), we obtain
J- {p (x)Vu,V (u, — Pu) + q (x)u, (u, — Pu)}t dx
Q
+ J {p(x) Vv,V (v, - P,v) (105)
Q
+q(x)v, (v,-Pyv)ldx — 0,
which implies
J {p (x) (|Vun|2 + |an|2) dx +q(x) (ui + vfl)} dx
Q
- J {p (x) (VunVu + anVv) +q(x)
Q
(uu+v,v)}dx + JQ p(x) (106)

AVu,V (u-Pu)+ Vv,V (v-Pwv)}dx

" L {a(x) (t, (= Ps) + v, (v = Bv))} dx
— 0.

By I(P,u, P,v) — (u, V)| pw — 0 and (106), one has |z, /| oy —
lzll oy - From the uniform convexity of DW, we have |z, —
Zlpw — 0asn — oo, which implies that J(z) = c.

In the same way, we can also prove that there exists w €
DW such that |w, - wlpy — 0, J'(w) = 0, and J(w) = s.
Note that

c=J(@)<D,-1<D, <] (y)=s (107)

Hence, we get z # w, which finished the proof of Theorem 3.
O
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Proof of Theorem 4. Let B(z,w) = -B(z,w), and we use the
same approach as before; we also get eigenvalues of B:

A=A, = B N oy
S 9+ 4y
and the same eigenfunctions
bsi = ? (Pt @), ieN. (109)

In the same way, we can also define the subspaces V, Z, and
X. Ifa+ B € (e py + y) for some y > 0, then

0<i - %tP-m v
k \9+[/lk ‘9+Mk.

(110)

Next, we prove that (56), (57), (60), and (61), with respect to
B, hold on the new subspaces V,Z, and X. Firstly, we prove
the following claim.

Assume that g, and y; are the first eigenvalue above o + 3
and a— f3, respectively. If a + § ¢ & and dist(a -3, &) > # > 0,
then there exists P;’ 5> 0 such that

B(z,2) <P Izt VzeV,

) i o (1)
B(z,z) = P;’Jr/3 Iz, VzeZaoX.

Besides, if a + B is close to Ay, or dist(a + 3, F \ {ur}) > d > 0,
then

B(z,2) < -Qjllzlpy, VzeV,
B _ (112)
B(z.2) > Qlllzl7y, VzeX,

for some positive constant QZ.

Actually, from (108) one can prove that an estimate like
(55) holds for these new eigenvalues A, ;, and then we get (111).
Moreover, when « + 3 is close to ., we can also check that, as
in the proof of (60) and (61), there exists the positive constant
QZ satistying (112).

Similarly, we can also choose y small enough such that
Z =7 By (111) and (112), we can prove a similar result of
Lemma 7. In other words, if the conditions of Theorem 4 are
satisfied, we can conclude that there exist positive constants
CZ B and pZ +B such that the functional J satisfies (46) on the

new subspaces V, Z, and X. Further, there exists y, > 0 such
thatifa+f € (A4, A, +7y,), then the functional J satisfies (46),
(47), (48), and (49). Hence, we can also obtain two critical
point sequences {Z,,} and {y, } of ], = J|py, , at critical levels
€, S,, similar to (92). Next, the remainder of the argument is
similar to the proof of Theorem 3. O

Proof of Theorem 5 (or Theorem 6). In order to take advantage
of the conclusion of Theorem 3 (or Theorem 4), we consider
the following degenerate system:

—div(p(x)Vu) + q(x)u
:ocu+Bv+Z]1 () +h (x), xeQ,

—div(p(x)Vv) +q(x)v (113)

=Bu+¢xv+§2(x,u)+ﬁz(x), x €Q,

ou ov

3 —av—O, x € 09,
where 8 = =, G,(x,v) = g,(x,-V), G,(x,u) = —g,(x,u),
and h, = —h,. Obviously, under the hypotheses of Theorem 5
(or Theorem 6), the similar hypotheses of Theorem 3 (or
Theorem 4) are satisfied for problem (113). Meanwhile, if
(u, v) isa solution of (113), then (u, —v) is a solution of problem
(2). Hence, by the proof of Theorem 3 (or Theorem 4), we
know that Theorem 5 (or Theorem 6) is true. O
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