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This paper studies the following system of degenerate equations −div(𝑝(𝑥)∇𝑢) + 𝑞(𝑥)𝑢 = 𝛼𝑢 + 𝛽V + 𝑔1(𝑥, V) + ℎ1(𝑥), 𝑥 ∈ Ω,−div(𝑝(𝑥)∇V) + 𝑞(𝑥)V = 𝛽𝑢 + 𝛼V + 𝑔2(𝑥, 𝑢) + ℎ2(𝑥), 𝑥 ∈ Ω, 𝜕𝑢/𝜕] = 𝜕V/𝜕] = 0, 𝑥 ∈ 𝜕Ω. Here Ω ⊂ R𝑛 is a bounded 𝐶2 domain,
and ] is the exterior normal vector on 𝜕Ω. The coefficient function 𝑝 may vanish in Ω, 𝑞 ∈ 𝐿𝑟(Ω) with 𝑟 > 𝑛𝑠/(2𝑠 − 𝑛), 𝑠 > 𝑛/2. We
show that the eigenvalues of the operator −div(𝑝(𝑥)∇𝑢) + 𝑞(𝑥)𝑢 are discrete. Secondly, when the linear part is near resonance, we
prove the existence of at least two different solutions for the above degenerate system, under suitable conditions on ℎ1, ℎ2, 𝑔1, and𝑔2.

1. Introduction

In recent decades, many kinds of perturbed problems were
studied by many scholars, such as [1–11]. Here, we want to
say that the authors in [5] studied the following Dirichlet
boundary problem:

−Δ𝑢 = 𝜇𝑢 ± 𝑔 (𝑥, 𝑢) + ℎ (𝑥) , 𝑥 ∈ Ω,
𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(1)

When the parameter 𝜇 is close to an eigenvalue of the
operator −Δ, they proved that problem (1) has two differ-
ent solutions. Moreover, this result was extended to some
equations and systems; see [6–10]. In particular, Massa and
Rossato [11] studied a nondegenerate elliptic system and
two solutions were obtained by using Galerkin techniques.
On the other hand, we also mention that many scholars
studied some elliptic equations with the Neumann or Robin
boundary; see [12–17] and the references therein. Inspired by

the above results, we study the following system of degenerate
equations:

− div (𝑝 (𝑥) ∇𝑢) + 𝑞 (𝑥) 𝑢
= 𝛼𝑢 + 𝛽V + 𝑔1 (𝑥, V) + ℎ1 (𝑥) , 𝑥 ∈ Ω,

− div (𝑝 (𝑥) ∇V) + 𝑞 (𝑥) V
= 𝛽𝑢 + 𝛼V + 𝑔2 (𝑥, 𝑢) + ℎ2 (𝑥) , 𝑥 ∈ Ω,

𝜕𝑢𝜕] = 𝜕V𝜕] = 0, 𝑥 ∈ 𝜕Ω,

(2)

where Ω ⊂ R𝑛 is a bounded 𝐶2 domain, ] is the exterior
normal vector on 𝜕Ω, 𝛼, 𝛽 ∈ R, and ℎ1, ℎ2 ∈ 𝐿2(Ω). The
coefficient 𝑝 may vanish in Ω, 𝑞 ∈ 𝐿𝑟(Ω) with 𝑟 > 𝑛𝑠/(2𝑠 −𝑛), 𝑠 > 𝑛/2; that is, problem (2) may be degenerate; see
[18]. As in [11], we will use the critical point theory and
Galerkin techniques to obtain the existence of two different
solutions for the above degenerate system. Now, we introduce
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the function set F which consists of functions 𝜔 : Ω →
R+ ∪ {0} such that

𝜔 ∈ 𝐿1loc (Ω) ,
𝜔−1 ∈ 𝐿1loc (Ω) ,
𝜔−𝑠 ∈ 𝐿1 (Ω) with 𝑠 > 𝑛2 .

(3)

Throughout the paper, we always assume that there exist 𝜔 ∈
F and 𝜅 ≥ 1 such that

𝜔 (𝑥)𝜅 ≤ 𝑝 (𝑥) ≤ 𝜅𝜔 (𝑥) , a.e. 𝑥 ∈ Ω. (4)

We also assume that 𝑞 belongs to 𝐿𝑟(Ω) with 𝑟 > 𝑛𝑠/(2𝑠 − 𝑛),
and 𝑔𝑖 : Ω → R is a Carathéodory mapping and satisfies the
following conditions:

(𝑔0) For every 𝑀 ∈ R+, there exists 𝑙𝑀 ∈ 𝐿2(Ω) such
that, for all |𝑠| ≤ 𝑀󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥, 𝑠)󵄨󵄨󵄨󵄨 ≤ 𝑙𝑀 (𝑥) , a.e. 𝑥 ∈ Ω. (5)

(𝑔∞) lim|𝑠|→∞(𝑔𝑖(𝑥, 𝑠)/𝑠) = 0, uniformly in 𝑥 ∈ Ω,𝑖 = 1, 2.
Although the conditions (𝑔0) and (𝑔∞) were introduced in
[10], it is weaker than (𝑓1) in [5] (or (1.2) in [11]). In fact, let𝑔𝑖(𝑥, 𝑠) = 𝑠−1 log(1 + |𝑠|); it is easy to see that 𝑔𝑖 satisfies (𝑔∞),
but the function 𝑔𝑖 does not satisfy the condition (𝑓1) in [5]
(or (1.2) in [11]).

In Section 2, we give some preliminary lemmas and our
main results. Meanwhile, we show that the eigenvalues of the
operator −div(𝑝(𝑥)∇𝑢) + 𝑞(𝑥)𝑢 are discrete under Neumann
boundary condition. In Section 3, we prove our main results
through Galerkin techniques and saddle point theorem.

2. Preliminaries and Main Results

In this section, we first collect some basic facts and then
give the properties of the eigenvalues of the operator−div(𝑝(𝑥)∇𝑢) + 𝑞(𝑥)𝑢. Secondly, we define a new norm and
prove it is equivalent to the usual Sobolev norm. At the end
of this section, we give the main results of this paper.

Firstly, let 𝑊1,2(Ω, 𝜔) denote the completion of 𝐶∞(Ω)
with respect to the norm

‖𝑢‖𝜔 = √∫
Ω

(𝜔 (𝑥) |∇𝑢|2 + 𝑢2) 𝑑𝑥, ∀𝜔 ∈ F. (6)

The inner product in 𝑊1,2(Ω, 𝜔) is denoted by

⟨𝑢, V⟩𝜔 = ∫
Ω

(𝜔 (𝑥) ∇𝑢∇V + 𝑢V) 𝑑𝑥,
∀𝑢, V ∈ 𝑊1,2 (Ω, 𝜔) .

(7)

From (4), we know that the spaces𝑊1,2(Ω, 𝜔) and𝑊1,2(Ω, 𝑝)
are equivalent; see [18]. Let 𝑟󸀠 = 𝑟/(𝑟−1); from 𝑟 > 𝑛𝑠/(2𝑠−𝑛)
with 𝑠 > 𝑛/2, one has

2𝑟󸀠 < 2∗𝑠 = 2𝑛𝑠𝑛 (𝑠 + 1) − 2𝑠 . (8)

Hence, by the Sobolev embedding theorem of [18], we know
that𝑊1,2(Ω, 𝜔) is compactly embedded in 𝐿2𝑟󸀠(Ω). Moreover,
it follows from Hölder’s inequality that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω 𝑞 (𝑥) 𝑢2𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω) ‖𝑢‖2
𝐿2𝑟
󸀠
(Ω)

. (9)

Now, we use a similar argument to that of Gasiński and
Papageorgiou (see [15]). Let us study the following eigenvalue
problem:

−div (𝑝 (𝑥) ∇𝑢) + 𝑞 (𝑥) 𝑢 = 𝜇𝑢, 𝑥 ∈ Ω,
𝜕𝑢𝜕] = 0, 𝑥 ∈ 𝜕Ω. (10)

Firstly, from (4) and the Sobolev embedding theorem of [18],
we know that

𝑊1,2 (Ω, 𝑝) 󳨅→ 𝐿2𝑟󸀠 (Ω) 󳨅→ 𝐿2 (Ω) , (11)

and the first embedding is compact. Then, for any 𝜀 > 0, we
have

‖𝑢‖2
𝐿2𝑟
󸀠
(Ω)

≤ 𝜀 ‖𝑢‖2𝑝 + 𝑐1 ‖𝑢‖2𝐿2(Ω) , ∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) , (12)

for some positive constant 𝑐1; see [19].
Let us define 𝜎 : 𝑊1,2(Ω, 𝑝) × 𝑊1,2(Ω, 𝑝) → R, ∀𝑢, V ∈𝑊1,2(Ω, 𝑝)

𝜎 (𝑢, V) = ∫
Ω

(𝑝 (𝑥) ∇𝑢∇V + 𝑞 (𝑥) 𝑢V) 𝑑𝑥. (13)

It follows from (9) and (12) that

(1 − 𝜀 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω)) ‖𝑢‖2𝑝 ≤ 𝜎 (𝑢, 𝑢)
+ (𝑐1 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω) + 1) ‖𝑢‖2𝐿2(Ω) ,

∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) .
(14)

Choosing 𝜀 small enough, then from (14) one gets

‖𝑢‖2𝑝 ≤ 𝑐2 (𝜎 (𝑢, 𝑢) + ‖𝑢‖2𝐿2(Ω)) , ∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) , (15)

for somepositive constants 𝑐2. Hence, byCorollary 7.8 in [20],
we conclude that there exists an eigenvalue sequence {𝜇𝑘}
satisfying

−𝑐2 < 𝜇1 < 𝜇2 ≤ 𝜇3 ≤ ⋅ ⋅ ⋅ ≤ 𝜇𝑘 ≤ ⋅ ⋅ ⋅ 󳨀→ +∞, (16)

as 𝑘 → +∞ and

𝜇1 = inf { 𝜎 (𝑢, 𝑢)
‖𝑢‖2𝐿2(Ω) : 𝑢 ∈ 𝑊1,2 (Ω, 𝑝) \ {0}} . (17)

Let {𝜑𝑘} be the corresponding eigenfunction sequence; then{𝜑𝑘} is complete in 𝐿2(Ω) and 𝜑𝑘 ∈ 𝐶1,𝛼(Ω) for some 𝛼 ∈(0, 1); see [21].
Now, let 𝜗 = max{−𝜇1, 0} + 1; since the coefficient 𝑝 may

vanish in Ω, we need to define a new norm:

‖𝑢‖𝜗 = √𝜎 (𝑢, 𝑢) + ∫
Ω

𝜗𝑢2𝑑𝑥, 𝑢 ∈ 𝑊1,2 (Ω, 𝑝) , (18)
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and the corresponding inner product

⟨𝑢, V⟩𝜗 = 𝜎 (𝑢, V) + ∫
Ω

𝜗𝑢V 𝑑𝑥, ∀𝑢, V ∈ 𝑊1,2 (Ω, 𝑝) . (19)

Lemma 1. Let 𝑞 ∈ 𝐿𝑟(Ω) with 𝑟 > 𝑛𝑠/(2𝑠 − 𝑛); then the norms‖ ⋅ ‖𝜗 and ‖ ⋅ ‖𝑝 are equivalent.
Proof. Firstly, it follows from (17) that

𝜒 (𝑢) = 𝜎 (𝑢, 𝑢) + ∫
Ω

𝜗𝑢2𝑑𝑥 ≥ 0, ∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) . (20)

We prove that there exists 𝑐3 > such that

𝜒 (𝑢) ≥ 𝑐3 ‖𝑢‖2𝑝 , ∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) . (21)

In fact, if (21) is false, by mean of the 2-homogeneity of 𝜒,
there exists {𝑢𝑛} ⊂ 𝑊1,2(Ω, 𝑝) such that ‖𝑢𝑛‖𝑝 = 1 for all𝑛 ≥ 1 and 𝜒(𝑢𝑛) → 0+ as 𝑛 → ∞. Without loss of generality,
we may assume that

𝑢𝑛 ⇀ 𝑢 weakly in 𝑊1,2 (Ω, 𝑝) ,
𝑢𝑛 󳨀→ 𝑢 strongly in 𝐿𝑟󸀠 (Ω) . (22)

By the sequential weak lower semicontinuity of 𝜎(𝑢, 𝑢) and
the choice of 𝜗, we know that

𝜎 (𝑢, 𝑢) ≤ lim
𝑛→∞

𝜎 (𝑢𝑛, 𝑢𝑛) ≤ 𝜇1 ‖𝑢‖2𝐿2(Ω) . (23)

By (17), one gets 𝜎(𝑢, 𝑢) = 𝜇1‖𝑢‖2𝐿2(Ω) as well as 𝑢 = 󰜚𝜑1 for
some constant 󰜚. If 󰜚 = 0, then 𝑢𝑛 → 0 in 𝑊1,2(Ω, 𝑝), which
contradicts ‖𝑢𝑛‖𝑝 = 1, ∀𝑛 ≥ 1; if 󰜚 ̸= 0, by (23), one has𝜎(𝜑1, 𝜑1) < 𝜇1‖𝜑1‖2𝐿2(Ω); this is a contradiction. Hence, (21) is
true.

On the flip side, from (9), we have

𝜎 (𝑢, 𝑢) + ∫
Ω

𝜗𝑢2𝑑𝑥 ≤ ∫
Ω

(𝑝 (𝑥) |∇𝑢|2 + 𝜗𝑢2) 𝑑𝑥
+ 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω) ‖𝑢‖22𝑟󸀠

≤ (1 + 𝜗) ‖𝑢‖2𝑝 + 𝐾 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω) ‖𝑢‖2𝑝
≤ max {1 + 𝜗, 𝐾 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω)} ‖𝑢‖2𝑝 .

(24)

Here 𝐾 is a positive constant.Then, by (21) and (24), one gets

𝑐3 ‖𝑢‖2𝑝 ≤ 𝜎 (𝑢, 𝑢) + ∫
Ω

𝜗𝑢2𝑑𝑥
≤ max {1 + 𝜗, 𝐾 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩𝐿𝑟(Ω)} ‖𝑢‖2𝑝 .

(25)

This proved the norms ‖ ⋅ ‖𝜗 and ‖ ⋅ ‖𝑝 are equivalent.
From now on, we always assume 𝑊1,2(Ω, 𝑝) =(𝑊1,2(Ω, 𝑝), ‖ ⋅ ‖𝜗, ⟨⋅, ⋅⟩𝜗), ‖𝜑𝑘‖𝜗 = 1.

Lemma 2. Under the hypotheses of Lemma 1, the embedding𝑊1,2(Ω, 𝑝) 󳨅→ 𝐿𝑚(Ω) is continuous for [1, 2∗𝑠 ], compact for[1, 2∗𝑠 ).

Proof. By Lemma 1 and the CompactnessTheorem in [18], we
directly conclude Lemma 2.

In addition, from Lemma 2, there exists ℓ > 0 such that‖𝑢‖𝐿𝑚(Ω) ≤ ℓ‖𝑢‖𝜗. For simplicity, we will assume that ℓ = 1;
that is,

‖𝑢‖𝐿𝑚(Ω) ≤ ‖𝑢‖𝜗 , ∀𝑢 ∈ 𝑊1,2 (Ω, 𝑝) . (26)

Now, let 𝐺𝑖(𝑥, 𝑠) = ∫𝑠

0
𝑔𝑖(𝑥, 𝑡)𝑑𝑡 andF = {𝜇𝑖}𝑖∈N. For fixed𝑘 ≥ 1, suppose that 𝜇𝑘 is an eigenvalue of multiplicity 𝜏 and

denote by 𝐸𝑘
𝜇 the eigenspace associated with the eigenvalue

𝜇𝑘, 𝑍± = span {(𝜑, ±𝜑): 𝜑 ∈ 𝐸𝑘
𝜇}. The main results are as

follows.

Theorem 3. Let 𝜇𝑙 ∈ F be the first value above 𝛼 − 𝛽 and
suppose that conditions (𝑔0) and (𝑔∞) hold. Also,

lim
|𝑠|→∞

𝐺𝑖 (𝑥, 𝑠) = +∞, 𝑖 = 1, 2, (27)

uniformly in 𝑥 ∈ Ω, and

∫
Ω

(ℎ1𝜙 + ℎ2𝜓) 𝑑𝑥 = 0, ∀ (𝜙, 𝜓) ∈ 𝑍+. (28)

Then for any 𝜂 > 0, there exists 𝛾0 > 0 such that 𝛼 + 𝛽 ∈(𝜇𝑘 − 𝛾0, 𝜇𝑘); if dist(𝛼− 𝛽,F) > 𝜂, then problem (2) has at least
two different solutions.

Theorem 4. If we replace condition (27) of Theorem 3 with

lim
|𝑠|→∞

𝐺𝑖 (𝑥, 𝑠) = −∞, 𝑖 = 1, 2, (29)

uniformly in 𝑥 ∈ Ω, then for any 𝜂 > 0, there exists 𝛾1 > 0 such
that 𝛼 + 𝛽 ∈ (𝜇𝑘, 𝜇𝑘 + 𝛾1); if dist(𝛼 − 𝛽,F) > 𝜂, then problem
(2) has at least two different solutions.

Theorem 5. In addition to conditions (𝑔0), (𝑔∞), and (29),
suppose that 𝜇𝑙 ∈ F is the first value above 𝛼 + 𝛽 and

∫
Ω

(ℎ1𝜙 + ℎ2𝜓) 𝑑𝑥 = 0, ∀ (𝜙, 𝜓) ∈ 𝑍−. (30)

Then for any 𝜂 > 0, there exists 𝛾2 > 0 such that 𝛼 − 𝛽 ∈(𝜇𝑘 − 𝛾2, 𝜇𝑘); if dist(𝛼+ 𝛽,F) > 𝜂, then problem (2) has at least
two different solutions.

Theorem 6. Let 𝜇𝑙 be the first eigenvalue above 𝛼 + 𝛽 and
conditions (𝑔0), (𝑔∞), (27), and (30) hold. Then for any 𝜂 >0, there exists 𝛾3 > 0 such that 𝛼 − 𝛽 ∈ (𝜇𝑘, 𝜇𝑘 + 𝛾3); if
dist(𝛼 + 𝛽,F) > 𝜂, then problem (2) has at least two different
solutions.

3. Proof of Main Results

In this section, we firstly prove some preliminary lemmas,
and then we prove our main results through variational
methods and Galerkin techniques.
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For the sake of simplicity, let 𝐷𝑊 = 𝑊1,2(Ω, 𝑝) ×𝑊1,2(Ω, 𝑝) and 𝐷𝐿 = 𝐿2(Ω) × 𝐿2(Ω), with the norms

‖𝑧‖𝐷𝑊 = √‖𝑢‖2𝜗 + ‖V‖2𝜗,
‖𝑧‖𝐷𝐿 = √‖𝑢‖2𝐿2(Ω) + ‖V‖2𝐿2(Ω),

(31)

the inner products ⟨⋅, ⋅⟩𝐷𝑊 and ⟨⋅, ⋅⟩𝐷𝐿, respectively. In addi-
tion, we will always use the notation 𝑧 = (𝑢, V), 𝑤 = (𝜙, 𝜓) ∈𝐷𝑊, unless otherwise specified.

Define 𝐺 : 𝐷𝑊 → R and 𝐻 : 𝐷𝑊 → R, ∀𝑧 ∈ 𝐷𝑊
𝐺 (𝑧) = ∫

Ω
(𝐺1 (𝑥, V) + 𝐺2 (𝑥, 𝑢)) 𝑑𝑥,

𝐻 (𝑧) = ∫
Ω

(ℎ1V + ℎ2𝑢) 𝑑𝑥.
(32)

For every 𝜀 > 0, we claim that there exist positive constants𝑀𝜀 and 𝐶ℎ such that

|𝐺 (𝑧)| ≤ 𝜀2 ‖𝑧‖2𝐷𝑊 + 2𝑀𝜀 ‖𝑧‖𝐷𝑊 ,
𝐻 (𝑧) ≤ 𝐶ℎ ‖𝑧‖𝐷𝑊 , (33)

󵄨󵄨󵄨󵄨󵄨⟨𝐺󸀠 (𝑧) , 𝑤⟩󵄨󵄨󵄨󵄨󵄨 ≤ (𝜀 ‖𝑧‖𝐷𝑊 + 2𝑀𝜀) ‖𝑤‖𝐷𝑊 ,
󵄨󵄨󵄨󵄨󵄨⟨𝐻󸀠 (𝑧) , 𝑤⟩󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶ℎ ‖𝑤‖𝐷𝑊 . (34)

In fact, by means of (𝑔0), (𝑔∞), and (26), the arguments of
(33) and (34) are quite similar to that of Lemma 3.1 in [11]
and so is omitted.

Now, we define the functional 𝐽(𝑧) : 𝐷𝑊 → R, ∀𝑧 ∈𝐷𝑊
𝐽 (𝑧) = 12𝐵 (𝑧, 𝑧) − 𝐺 (𝑧) − 𝐻 (𝑧) , (35)

where 𝐵 : 𝐷𝑊 × 𝐷𝑊 → R, ∀𝑧, 𝑤 ∈ 𝐷𝑊, given by

𝐵 (𝑧, 𝑤) = ∫
Ω

𝑝 (𝑥) (∇𝑢∇𝜓 + ∇V∇𝜙) 𝑑𝑥
+ ∫

Ω
𝑞 (𝑥) (𝑢𝜓 + V𝜙) 𝑑𝑥

− 𝛼 ∫
Ω

(𝑢𝜓 + V𝜙) 𝑑𝑥 − 𝛽 ∫
Ω

(𝑢𝜙 + V𝜓) 𝑑𝑥
= ⟨𝑧, 𝑤⟩𝐷𝑊 − (𝛼 + 𝜗) ⟨𝑧, 𝑤⟩𝐷𝐿 − 𝛽 ⟨𝑧, 𝑤⟩𝐷𝐿 ,

(36)

where 𝑤 = (𝜓, 𝜙). By means of (𝑔0) and (𝑔∞), one has 𝐽 ∈𝐶1(𝐷𝑊,R) and
⟨𝐽󸀠 (𝑧) , 𝑤⟩ = 𝐵 (𝑧, 𝑤) − ⟨𝐺󸀠 (𝑧) , 𝑤⟩ − ⟨𝐻󸀠 (𝑧) , 𝑤⟩ , (37)

which implies that the critical points of 𝐽 are exactly weak
solutions of problem (2).

Next, we need to consider the eigenvalue problem:𝐵(𝑧, 𝑤) = 𝜆⟨𝑧, 𝜙⟩𝐷𝑊, for 𝜆 ∈ R; that is,

𝐵 (𝑧, 𝑤) = 𝜆 ∫
Ω

{𝑝 (𝑥) (∇𝑢∇𝜙 + ∇V∇𝜓)
+ (𝑞 (𝑥) + 𝜗) (𝑢𝜙 + V𝜓)} 𝑑𝑥.

(38)

Firstly, for any 𝑢, V ∈ 𝑊1,2(Ω, 𝑝), one has 𝑢 = ∑∞
𝑘=1 𝑎𝑖𝜑𝑖 and

V = ∑∞
𝑖=1 𝑏𝑖𝜑𝑖 for some 𝑎𝑖, 𝑏𝑖 ∈ R. Now, by ‖𝜑𝑖‖𝜗 = 1 and

using (𝜙, 𝜓) = (𝜑𝑖, 0) and (𝜙, 𝜓) = (0, 𝜑𝑖) in (38), then a
straightforward calculation shows that (38) is equivalent to

( 𝛼 − 𝜇𝑖 𝜆 (𝜇𝑖 + 𝜗) + 𝛽
𝜆 (𝜇𝑖 + 𝜗) + 𝛽 𝛼 − 𝜇𝑖 ) (𝑎𝑖𝑏𝑖) = 0. (39)

Obviously, (𝑎𝑖, 𝑏𝑖) ̸= 0 if and only if (𝛼−𝜇𝑖)2−{𝜆(𝜗+𝜇𝑖)+𝛽}2 =0. Hence, we obtain two sequences of eigenvalues

𝜆±𝑖 = −𝛽 ± (𝜇𝑖 − 𝛼)
𝜗 + 𝜇𝑖 , ∀𝑖 ∈ N, (40)

and the corresponding eigenfunctions

𝜙±𝑖 = √22 (𝜑𝑖, ± 𝜑𝑖) , ∀𝑖 ∈ N, (41)

are the corresponding eigenfunctions.
Let Z0 = Z \ {0}, for 𝑖, 𝑗 ∈ Z0; a simple calculation yields

󵄩󵄩󵄩󵄩𝜙𝑖󵄩󵄩󵄩󵄩𝐷𝑊 = 1,
⟨𝜙𝑖, 𝜙𝑗⟩𝐷𝑊 = 𝛿𝑗𝑖 ,

𝜇𝑖 ⟨𝜙𝑖, 𝜙𝑗⟩𝐷𝐿 = 𝛿𝑗𝑖 ,
𝐵 (𝜙𝑖, 𝜙𝑗) = 𝜇−1|𝑖| 𝛿𝑗𝑖 ,

(42)

where 𝛿𝑗𝑖 denotes the Kronecker symbol. Moreover, if 𝑧 =∑𝑖∈Z0
𝑎𝑖𝜙𝑖, then

‖𝑧‖𝐷𝑊 = ∑
𝑖∈Z0

𝑎2𝑖 ,
𝐵 (𝑧, 𝑧) = ∑

𝑖∈Z0

𝜆𝑖𝑎2𝑖 ,
‖𝑧‖𝐷𝐿 = ∑

𝑖∈Z0

𝜇−1|𝑖| 𝑎2𝑖 ,
(43)

In addition, for every 𝛾 > 0, if 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾, 𝜇𝑘), from (40)
one gets

0 < 𝜆𝑘 = 𝜇𝑘 − 𝛼 − 𝛽𝜗 + 𝜇𝑘 < 𝛾𝜗 + 𝜇𝑘 . (44)

Let us fix 𝑘 ≥ 1 and define

I
0 = {𝑖 ∈ Z0: 𝜆𝑖 = 𝜆𝑘} ,
I
− = {𝑖 ∈ Z0: 𝜆𝑖 ̸= 𝜆𝑘, 𝜆𝑖 < 0} ,
I
+ = {𝑖 ∈ Z0: 𝜆𝑖 ̸= 𝜆𝑘, 𝜆𝑖 > 0} ,
𝑍 = span {𝜙𝑖: 𝑖 ∈ I0},
𝑉 = span {𝜙𝑖: 𝑖 ∈ I−},
𝑋 = span {𝜙𝑖: 𝑖 ∈ I+}.

(45)
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Meanwhile, we denote by 𝐵𝑉, 𝐵𝑉𝑍, 𝐵𝑋, and 𝐵𝑍𝑋 the unitary
closed balls, with respect to the norm ‖ ⋅ ‖𝐷𝑊, in the spaces 𝑉,𝑉⊕𝑍, 𝑋, and 𝑍⊕𝑋, respectively, and by 𝑆𝑉, 𝑆𝑉𝑍, 𝑆𝑋, and 𝑆𝑍𝑋
their relative boundaries.

Lemma 7. Suppose that 𝑔𝑖 satisfies (𝑔0), (𝑔∞), 𝛼 ± 𝛽 ∉ F. For
fixed 𝑘 ≥ 1, let 𝜇𝑘 and 𝜇𝑙 be the first eigenvalue above 𝛼+𝛽 and𝛼 − 𝛽, respectively.

If dist(𝛼 − 𝛽,F) > 𝜂 > 0, then we have

𝐽 (𝑧) ≥ 𝐶𝜂

𝛼+𝛽
, ∀𝑧 ∈ 𝑍 ⊕ 𝑋,

𝐽 (𝑧) < 𝐶𝜂

𝛼+𝛽
, ∀𝑧 ∈ 𝜌𝑆𝑉, 𝜌 ≥ 𝜌𝜂

𝛼+𝛽
, (46)

for some constants 𝐶𝜂

𝛼+𝛽
∈ R and 𝜌𝜂

𝛼+𝛽
> 0.

Further, if condition (27) also is satisfied, then there exists
a positive constant 𝛾0 such that, for 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾0, 𝜇𝑘), there
exist 𝐷𝜂, 𝐶𝜂

𝛼+𝛽
∈ 𝑅, 𝜌𝜂

𝛼+𝛽
> 𝑅𝜂 > 0 such that (46) hold and

𝐽 (𝑧) ≥ 𝐷𝜂, ∀𝑧 ∈ 𝑋, (47)

𝐽 (𝑧) < 𝐷𝜂 − 1, ∀𝑧 ∈ 𝑅𝜂𝑆𝑉𝑍, (48)

𝐽 (𝑧) < 𝐷𝜂 − 1, ∀𝑧 ∈ 𝑉 with ‖𝑧‖𝐷𝑊 > 𝑅𝜂. (49)

Here, a value 𝐷𝜂 with index 𝛿 represents that 𝐷𝜂 depend on 𝛿,
and other cases are similar.

Proof. Firstly, if 𝑘 ≥ 2, then 𝜇𝑘−1 < 𝛼 + 𝛽 < 𝜇𝑘; if 𝑘 = 1, then𝛼 + 𝛽 < 𝜇1.
For 𝑘 ≥ 2, if 𝜗 + 𝛼 + 𝛽 ≥ 0, then the sequence {𝜆𝑖 =1 − (𝜗 + 𝛼 + 𝛽)/(𝜗 + 𝜇𝑖)} is nondecreasing, which implies

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 ≥ min{1 − 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇𝑘 , −1 + 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇𝑘−1 } > 0,

∀𝑖 ∈ N.
(50)

If 𝜗+𝛼+𝛽 < 0, then the sequence {𝜆𝑖 = 1−(𝜗+𝛼+𝛽)/(𝜗+𝜇𝑖)}
is nonincreasing, which implies

𝜆𝑖 ≥ lim
𝑘→∞

(1 − 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇𝑘 ) = 1, ∀𝑖 ∈ N. (51)

Similarly, for 𝑘 = 1, that is, 𝛼 + 𝛽 < 𝜇1, if 𝜗 + 𝛼 + 𝛽 ≥ 0,
then the sequence {𝜆𝑖 = 1 − (𝜗 + 𝛼 + 𝛽)/(𝜗 + 𝜇𝑖)} is also
nondecreasing, which implies

𝜆𝑖 ≥ 𝜆1 = 1 − 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇1 > 0, ∀𝑖 ∈ N. (52)

If 𝜗+𝛼+𝛽 < 0, then the sequence {𝜆𝑖 = 1−(𝜗+𝛼+𝛽)/(𝜗+𝜇𝑖)}
is nonincreasing, which implies 𝜆𝑖 ≥ 1 for every 𝑖 ∈ N.

In a word, for fixed 𝑘 ≥ 1, there exists 𝑃𝛼+𝛽 > 0 such that

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 ≥ 𝑃𝛼+𝛽, ∀𝑖 ∈ N. (53)

Secondly, because of the fact that 𝜇𝑙 is the first eigenvalue
above 𝛼 − 𝛽 and dist(𝛼 − 𝛽,F) > 𝜂 > 0, thus 𝛼 − 𝛽 < 𝜇1 − 𝛿, if𝑙 = 1; 𝜇𝑙−1 + 𝛿 < 𝛼 − 𝛽 < 𝜇𝑙 − 𝛿, if 𝑙 ≥ 2. Proceeding as in the

proof of the first step, we can also conclude that there exists𝑃𝜂 > 0 such that

󵄨󵄨󵄨󵄨𝜆−𝑖
󵄨󵄨󵄨󵄨 ≥ 𝑃𝜂, ∀𝑖 ∈ N. (54)

Let 𝑃𝜂

𝛼+𝛽
= min{𝑃𝛼+𝛽, 𝑃𝜂} > 0; we have by (53) and (54)

󵄨󵄨󵄨󵄨𝜆±𝑖
󵄨󵄨󵄨󵄨 ≥ 𝑃𝜂

𝛼+𝛽
, ∀𝑖 ∈ N. (55)

Hence, as in the proof of Lemma 4.1 in [11], we know that

𝐵 (𝑧, 𝑧) ≤ −𝑃𝜂

𝛼+𝛽 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑉, (56)

𝐵 (𝑧, 𝑧) ≥ 𝑃𝜂

𝛼+𝛽 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑍 ⊕ 𝑋. (57)

From (33) and (56), we get

𝐽 (𝑧) ≤ − (𝑃𝜂

𝛼+𝛽
− 𝜀2) ‖𝑧‖2𝐷𝑊 + (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊 ,

∀𝑧 ∈ 𝑉. (58)

From (33) and (57), we get

𝐽 (𝑧) ≥ (𝑃𝜂

𝛼+𝛽
− 𝜀2) ‖𝑧‖2𝐷𝑊 − (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊 ,

∀𝑧 ∈ 𝑍 ⊕ 𝑋. (59)

By (58) and (59) and choosing 𝜀 < 2𝑃𝜂

𝛼+𝛽
, we conclude that

there exist 𝐶𝜂

𝛼+𝛽
∈ R and 𝜌𝜂

𝛼+𝛽
> 0 satisfying (46).

In addition, if 𝛼 + 𝛽 is near enough to 𝜇𝑘, in particular, if𝛼 + 𝛽 > 0 and dist(𝛼 + 𝛽,F \ {𝜇𝑘}) > 𝑑 > 0, we claim that
there exists 𝑄𝜂

𝑑
> 0 such that

𝐵 (𝑧, 𝑧) ≤ −𝑄𝜂

𝑑 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑉, (60)

𝐵 (𝑧, 𝑧) ≥ 𝑄𝜂

𝑑 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑋. (61)

In fact, if 𝛼+𝛽 > 0 and dist(𝛼+𝛽,F\{𝜇𝑘}) > 𝑑 > 0, for 𝑘 ≥ 2,
we have

min
𝑖∈N\{𝑘,...,𝑘+𝜏−1}

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

= min{1 − 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇𝑘+𝜏 , −1 + 𝜗 + 𝛼 + 𝛽𝜗 + 𝜇𝑘−1 }
> min{ 𝑑𝜗 + 𝜇𝑘+𝜏 , 𝑑𝜗 + 𝜇𝑘−1 } > 0.

(62)

And, for 𝑘 = 1, we have
inf

𝑖∈N\{1}

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 = 𝜇2 − 𝛼 − 𝛽𝜗 + 𝜇2 ≥ 𝑑𝜗 + 𝜇2 > 0. (63)

Hence, for fixed 𝑘 ≥ 1, there exists 𝑄𝜂

𝑑
> 0 such that

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 ≥ 𝑄𝜂

𝑑
, ∀𝑖 ∈ Z0 \ {𝑘, . . . , 𝑘 + 𝜏 − 1} . (64)

From this we easily get the estimates (60) and (61).
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Next, we prove (47), (48), and (49). Let 𝑑 =(1/2) dist(𝜇𝑘,F \ {𝜇𝑘}) and 𝛾0 ∈ (0, 𝑑). If 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾0, 𝜇𝑘),
then dist(𝛼 + 𝛽,F \ {𝜇𝑘}) > 𝑑.

If 𝑧 ∈ 𝑋, it follows from (33) and (61) that

𝐽 (𝑧) ≥ (𝑄𝜂

𝑑
− 𝜀2) ‖𝑧‖2𝐷𝑊 − (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊 . (65)

By choosing 𝜀 = 𝑄𝜂

𝑑
, then there exists 𝐷𝜂 ∈ R satisfying (47).

If 𝑧 ∈ 𝑉, by (33) and (60), we obtain

𝐽 (𝑧) ≤ − (𝑄𝜂

𝑑
− 𝜀2) ‖𝑧‖2𝐷𝑊 + (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊 . (66)

Let us choose 𝜀 small enough; then there exists 𝑅̃ > 0
satisfying (49) for 𝑅𝜂 > 𝑅̃.

Now, we prove the estimate (48). If (48) is not true, then,
for any sequences 𝛾𝑛 → 0+ and𝑅𝑛 > 𝑅̃, there exist 𝑧𝑛 ∈ 𝑅𝑛𝑆𝑉𝑍
and 𝛼𝑛, 𝛽𝑛 ∈ R such that

𝛼𝑛 + 𝛽𝑛 ∈ (𝜇𝑘 − 𝛾𝑛, 𝜇𝑘) ,
dist (𝛼𝑛 − 𝛽𝑛,F \ {𝜇𝑘}) > 𝜂,

𝐽𝑛 (𝑧𝑛) ≥ 𝐷𝜂 − 1.
(67)

Here 𝐵𝑛 (or 𝐽𝑛) denotes the form 𝐵 (or the functional 𝐽) with𝛼 = 𝛼𝑛 and 𝛽 = 𝛽𝑛. And, {𝜆𝑛𝑖 }𝑖∈Z0 denotes the eigenvalues of
the bilinear form 𝐵𝑛.

Let 𝑧𝑛 = 𝜛𝑛 + 𝜏𝑛 ∈ 𝑉 ⊕ 𝑍, and suppose 𝑅𝑛 → ∞ and𝛾𝑛𝑅2
𝑛 → 0 as 𝑛 → ∞. By (44), one has 0 < 𝜆𝑛𝑘 < 𝛾𝑛/(𝜗 + 𝜇𝑘),

which implies 𝐵𝑛(𝜏𝑛, 𝜏𝑛) ≤ (𝛾𝑛/(𝜗 + 𝜇𝑘))‖𝜏𝑛‖2𝐷𝑊. So, by (60),
we get

𝐵𝑛 (𝑧𝑛, 𝑧𝑛) ≤ 𝐵𝑛 (𝜛𝑛, 𝜛𝑛) + 𝐵𝑛 (𝜏𝑛, 𝜏𝑛)
≤ 𝛾𝑛𝜗 + 𝜇𝑘

󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩2𝐷𝑊 − 𝑄𝜂

𝑑

󵄩󵄩󵄩󵄩𝜛𝑛
󵄩󵄩󵄩󵄩2𝐷𝑊 , (68)

for all positive integers 𝑛; we get by (68)
𝐷𝜂 − 1 ≤ 𝐽𝑛 (𝑧𝑛)

≤ 𝛾𝑛𝜗 + 𝜇𝑘
󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩2𝐷𝑊 − 𝑄𝜂

𝑑

󵄩󵄩󵄩󵄩𝜛𝑛
󵄩󵄩󵄩󵄩2𝐷𝑊 − 𝐺 (𝑧𝑛)

− 𝐻 (𝑧𝑛) .
(69)

It follows from (33) and (69) that

(𝑄𝜂

𝑑
− 𝜀2) 󵄩󵄩󵄩󵄩𝜛𝑛

󵄩󵄩󵄩󵄩2𝐷𝑊𝑅2
𝑛

≤ ( 𝛾𝑛𝜗 + 𝜇𝑘 + 𝜀2) 󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩2𝐷𝑊𝑅2
𝑛

− 𝐷𝜂 − 1
𝑅2
𝑛

+ (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊𝑅2
𝑛

.
(70)

We note that ‖𝜏𝑛‖𝐷𝑊 ≤ ‖𝑧𝑛‖𝐷𝑊 = 𝑅𝑛; then from (70) we
obtain

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝜛𝑛
󵄩󵄩󵄩󵄩2𝐷𝑊𝑅2
𝑛

≤ 𝜀󸀠, (71)

where 𝜀󸀠 = 𝜀/(2𝑄𝜂

𝑑
− 𝜀). Note that dim𝑍 < ∞

󵄩󵄩󵄩󵄩𝜛𝑛
󵄩󵄩󵄩󵄩2𝐷𝑊𝑅2
𝑛

+ 󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩2𝐷𝑊𝑅2
𝑛

= 1, 󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩𝐷𝑊𝑅𝑛

∈ 𝑍. (72)

Then, we get by (71)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩𝐷𝑊𝑅𝑛

≥ √1 − 𝜀󸀠,
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜛𝑛
󵄩󵄩󵄩󵄩𝐷𝑊𝑅𝑛

≤ √𝜀󸀠.
(73)

Let 𝑧̃𝑛 = 𝜛̃𝑛 + 𝜏̃𝑛, where 𝜛̃𝑛 = 𝜛𝑛/𝑅𝑛, 𝜏̃𝑛 = 𝜏𝑛/𝑅𝑛. Then, by
(73), there exists 𝑧̃0 = 𝜛̃0 + 𝜏̃0 ∈ 𝐷𝑊 with ‖𝑧̃0‖𝐷𝑊 = 1, such
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜏̃𝑛󵄩󵄩󵄩󵄩𝐷𝑊 = 󵄩󵄩󵄩󵄩𝜏̃0󵄩󵄩󵄩󵄩𝐷𝑊 ≥ √1 − 𝜀󸀠,
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜛̃𝑛
󵄩󵄩󵄩󵄩𝐷𝑊 = 󵄩󵄩󵄩󵄩𝜛̃0

󵄩󵄩󵄩󵄩𝐷𝑊 ≤ √𝜀󸀠. (74)

Let 𝑧 = (𝑃1𝑧, 𝑃2𝑧) ∈ 𝐷𝑊. Then, we have
󵄩󵄩󵄩󵄩𝑧̃𝑛󵄩󵄩󵄩󵄩2𝐷𝑊 = 󵄩󵄩󵄩󵄩(𝑃1𝑧̃𝑛, 𝑃2𝑧̃𝑛)󵄩󵄩󵄩󵄩2𝐷𝑊

= 󵄩󵄩󵄩󵄩(𝑃1𝜛̃𝑛 + 𝑃1𝜏̃𝑛, 𝑃2𝜛̃𝑛 + 𝑃2𝜏̃𝑛)󵄩󵄩󵄩󵄩2𝐷𝑊
= 󵄩󵄩󵄩󵄩𝑃1𝜛̃𝑛

󵄩󵄩󵄩󵄩2𝜗 + 󵄩󵄩󵄩󵄩𝑃1𝜏̃𝑛󵄩󵄩󵄩󵄩2𝜗 + 󵄩󵄩󵄩󵄩𝑃2𝜛̃𝑛
󵄩󵄩󵄩󵄩2𝜗 + 󵄩󵄩󵄩󵄩𝑃2𝜏̃𝑛󵄩󵄩󵄩󵄩2𝜗

= 1.
(75)

From this and (74), without loss of generality, we assume

󵄩󵄩󵄩󵄩𝑃1𝜏̃0󵄩󵄩󵄩󵄩𝜗 ≥ √ 1 − 𝜀󸀠2 ,
󵄩󵄩󵄩󵄩𝑃1𝜛̃0

󵄩󵄩󵄩󵄩𝜗 ≤ √𝜀󸀠.
(76)

By dim𝑍 < ∞, one has ‖𝑃1𝜏̃0‖𝐿1(Ω) > 𝐶√(1 − 𝜀󸀠)/2 for
some positive constant 𝐶. Besides, from (26) and the second
inequality of (76), we obtain ‖𝑃1𝜛̃0‖𝐿1(Ω) < √𝜀󸀠. Thus, by
choosing 𝜀 small enough, there exists 𝜁 > 0 such that

󵄩󵄩󵄩󵄩𝑃1𝜏̃0󵄩󵄩󵄩󵄩𝐿1(Ω) > 3𝜁,
󵄩󵄩󵄩󵄩𝑃1𝜛̃0

󵄩󵄩󵄩󵄩𝐿1(Ω) < 𝜁. (77)

From this and (74), there exist 𝜂 > 0 and 𝑛0 > 0 such that
󵄨󵄨󵄨󵄨󵄨Ω𝑃1𝑧̃𝑛

󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨{𝑥 ∈ Ω: 󵄨󵄨󵄨󵄨𝑃1𝑧̃𝑛 (𝑥)󵄨󵄨󵄨󵄨 > 𝜂}󵄨󵄨󵄨󵄨 > 𝜂 for 𝑛 > 𝑛0. (78)

By (𝑔0) and (27), proceeding as in the proof of
Proposition 4.6 in [11], we have

lim
𝑅→∞

inf
𝑛>𝑛0

∫
Ω

𝐺2 (𝑥, 𝑅𝑃1𝑧̃𝑛) 𝑑𝑥 = +∞. (79)

Further, because of the fact that ∫
Ω

𝐺1(𝑥, 𝑅𝑃2𝑧̃𝑛)𝑑𝑥 is
bounded from below, we get

lim
𝑛→∞

𝐺 (𝑧𝑛) = lim
𝑛→∞

𝐺 (𝑅𝑛𝑧̃𝑛) = +∞. (80)
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In addition, for fixed 𝑑 and 𝜂, from (54) and (64), we can
choose 𝛾 small enough such that 𝜇𝑖 = 𝜇𝑘, 𝑖 = 𝑘, . . . , 𝑘 + 𝜏 − 1;
then we get 𝑍 = 𝑍+. Hence, by (28), it is easy to see that𝑄𝜂

𝑑
‖𝜛𝑛‖2𝐷𝑊 ≥ −𝛿2 for some positive constant 𝛿2. Moreover,

it follows from (69) that

𝐺 (𝑧𝑛) ≤ 𝛾𝑛𝜗 + 𝜇𝑘
󵄩󵄩󵄩󵄩𝜏𝑛󵄩󵄩󵄩󵄩2𝐷𝑊 − 𝐷𝜂 + 1 + 𝛿2. (81)

Recall that ‖𝜏𝑛‖𝐷𝑊 ≤ 𝑅𝑛 and 𝛾𝑛𝑅2
𝑛 → 0 as 𝑛 → ∞, which

contradicts with (80). Hence, there exist 𝑅𝜂 > 𝑅̃ > 0 and𝛾0 ∈ (0, 𝑑) which satisfy (48).
Finally, by the process of the above proof, we easily

know that all the constants of the estimates above are not
contradictory; then we finished the proof of Lemma 7.

Remark 8. In fact, from (46), we can get a solution of
problem (2). And, from (47), (48), and (49), we can also get
a solution of problem (2). But we do not know whether they
are different. So we will use Galerkin techniques to show the
existence of two different solutions.

Now, we assume that 𝑛 > 𝑘 + 𝜏
𝐷𝑊𝑛 = span {𝜙−𝑛, . . . , 𝜙𝑛} ,

𝑉𝑛 = 𝑉 ∩ 𝐷𝑊𝑛,
𝑋𝑛 = 𝑋 ∩ 𝐷𝑊𝑛.

(82)

It follows from this that𝑍 ⊂ 𝐷𝑊𝑛. As before, let𝐵𝑛
𝑉 = 𝐵1∩𝑉𝑛,𝐵𝑛

𝑉𝑍 = 𝐵1 ∩ (𝑉𝑛 ⊕ 𝑍), 𝐵𝑛
𝑍𝑋 = 𝐵1 ∩ (𝑍 ⊕ 𝑋𝑛), 𝑆𝑛𝑉, 𝑆𝑛𝑉𝑍, and 𝑆𝑛𝑍𝑋

represent their relative boundary. In addition, we know that
all the estimates of Lemma 7 are true when the conditions of
Theorem 3 are satisfied. Further, if dist(𝛼 − 𝛽,F) > 𝜂 > 0
and 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾0, 𝜇𝑘), we can also check that the similar
estimates of Lemma 7, with respect to the functional 𝐽𝑛, hold
on the spaces 𝑉𝑛, 𝑍, and 𝑋𝑛.

Lemma 9. Fix 𝑛 > 𝑘 + 𝜏, assume that 𝛼 ± 𝛽 ∉ F, ℎ1, ℎ2 ∈𝐿2(Ω), and 𝑔1 and 𝑔2 satisfy (𝑔0) and (𝑔∞). In addition, let{𝑧𝑖} ⊂ 𝐷𝑊𝑛 satisfy󵄨󵄨󵄨󵄨󵄨⟨𝐽󸀠 (𝑧𝑖) , 𝑤⟩󵄨󵄨󵄨󵄨󵄨 < 𝛿𝑖 ‖𝑤‖𝐷𝑊 , ∀𝑤 = (𝜙, 𝜓) ∈ 𝐷𝑊𝑛, (83)

where 𝛿𝑖 → 0 as 𝑖 → ∞. Then, there exists a subsequence{𝑧𝑖𝑘} ⊂ {𝑧𝑖} such that {𝑧𝑖𝑘} converges in 𝐷𝑊𝑛.

Proof. If 𝑖 ∈ Z0, then 𝜆𝑖 ̸= 0. Hence, we may divide the space𝐷𝑊 in the two orthogonal components

𝐷𝑊− = span {𝜙𝑖: 𝑖 ∈ Z0, 𝜆𝑖 < 0},
𝐷𝑊+ = 𝐷𝑊 \ 𝐷𝑊−. (84)

For 𝑗 > 𝑘+𝜏, let𝐷𝑊+
𝑗 = 𝐷𝑊+∩𝐷𝑊𝑗, 𝐷𝑊−

𝑗 = 𝐷𝑊−∩𝐷𝑊𝑗.
In addition, because of 𝜆𝑖 → ±1 as 𝑖 → ±∞, then we may set𝜆0 = inf {|𝜆𝑖|: 𝑖 ∈ Z0} > 0, and then

𝐵 (𝑧, 𝑧) ≤ −𝜆0 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝐷𝑊−, (85)

𝐵 (𝑧, 𝑧) ≥ 𝜆0 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝐷𝑊+. (86)

Setting 𝑧𝑖 = 𝑧−𝑖 + 𝑧+𝑖 ∈ 𝐷𝑊− ⊕ 𝐷𝑊+, by testing (83) with𝑤 = 𝑧−𝑖 we have
󵄨󵄨󵄨󵄨󵄨𝐵 (𝑧𝑖, 𝑧−𝑖 ) − ⟨𝐺󸀠 (𝑧𝑖) , 𝑧−𝑖 ⟩ − ⟨𝐻󸀠 (𝑧𝑖) , 𝑧−𝑖 ⟩󵄨󵄨󵄨󵄨󵄨

≤ 𝛿𝑖 󵄩󵄩󵄩󵄩𝑧−𝑖 󵄩󵄩󵄩󵄩𝐷𝑊 . (87)

From this, (34), (42), and (85), we get

𝜆0
󵄩󵄩󵄩󵄩𝑧−𝑖 󵄩󵄩󵄩󵄩𝐷𝑊 ≤ 𝛿𝑖 + 𝜀 󵄩󵄩󵄩󵄩𝑧𝑖󵄩󵄩󵄩󵄩𝐷𝑊 + 2𝑀𝜀 + 𝐶ℎ. (88)

In the same way, by testing (83) with 𝑤 = 𝑧+𝑖 we have

𝜆0
󵄩󵄩󵄩󵄩𝑧+𝑖 󵄩󵄩󵄩󵄩𝐷𝑊 ≤ 𝛿𝑖 + 𝜀 󵄩󵄩󵄩󵄩𝑧𝑖󵄩󵄩󵄩󵄩𝐷𝑊 + 2𝑀𝜀 + 𝐶ℎ. (89)

From (88) and (89), we have

(𝜆0 − 2𝜀) 󵄩󵄩󵄩󵄩𝑧𝑖󵄩󵄩󵄩󵄩𝐷𝑊 ≤ 2𝛿𝑖 + 4𝑀𝜀 + 2𝐶ℎ. (90)

Let us choose 𝜀 < 𝜆0/2; then {𝑧𝑖} is bounded in 𝐷𝑊𝑛. By
dim𝐷𝑊𝑛 < ∞, then there exists {𝑧𝑖𝑘} ⊂ {𝑧𝑖} such that {𝑧𝑖𝑘}
converges in 𝐷𝑊𝑛.

From the proof of Lemma 9, we can also get Lemma 10
below.

Lemma 10. Assume that 𝛼 ± 𝛽 ∉ F, ℎ1, ℎ2 ∈ 𝐿2(Ω), and 𝑔1
and𝑔2 satisfy (𝑔0) and (𝑔∞). In addition, let {𝑧𝑖} ⊂ 𝐷𝑊𝑖 satisfy󵄨󵄨󵄨󵄨󵄨⟨𝐽󸀠 (𝑧𝑖) , 𝑤⟩󵄨󵄨󵄨󵄨󵄨 < 𝛿𝑖 ‖𝑤‖𝐷𝑊 for every 𝑤 ∈ 𝐷𝑊𝑖, (91)

where 𝛿𝑖 → 0 as 𝑖 → ∞. Then {𝑧𝑖} is bounded in 𝐷𝑊.
Clearly, by using the Saddle PointTheorem, Lemma 9, (46),

(47), and (48), there exist 𝑧𝑛 = (𝑢𝑛, V𝑛) and 𝑤𝑛 in 𝐷𝑊𝑛 such
that 𝐽𝑛(𝑧𝑛) = 𝑐, 𝐽󸀠𝑛(𝑧𝑛) = 0, and 𝐽𝑛(𝑤𝑛) = 𝑠𝑛, 𝐽󸀠𝑛(𝑤𝑛) = 0, where

𝑐𝑛 = inf
𝛾∈Γ𝑛𝑉

sup
𝑧∈𝜌
𝜂

𝛼+𝛽
𝐵𝑛𝑉

𝐽𝑛 (𝛾 (𝑧)) ≥ 𝐶𝜂

𝛼+𝛽
,

𝑠𝑛 = inf
𝛾∈Γ𝑛𝑉𝑍

sup
𝑤∈𝑅𝜂𝐵

𝑛
𝑉𝑍

𝐽𝑛 (𝛾 (𝑧)) ≥ 𝐷𝜂,
Γ𝑛𝑉 = {𝛾 ∈ 𝐶 (𝜌𝜂

𝛼+𝛽
𝐵𝑛
𝑉, 𝐷𝑊𝑛) : 𝛾 (𝑧) = 𝑧, ‖𝑢‖𝐷𝑊

= 𝜌𝜂
𝛼+𝛽

} ,
Γ𝑛𝑉𝑍 = {𝛾 ∈ 𝐶 (𝑅𝜂𝐵𝑛

𝑉𝑍, 𝐷𝑊𝑛) : 𝛾 (𝑤) = 𝑤, ‖𝑤‖𝐷𝑊
= 𝑅𝜂} .

(92)

Lemma 11. Assume that the conditions are the same as
Lemma 7, 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾0, 𝜇𝑘), and dist(𝛼 − 𝛽,F) > 𝜂 > 0.
Then, for all 𝑛 > 𝑘 + 𝜏, there exists 𝑇𝜂 > 0 such that 𝑐𝑛 ∈[𝐶𝜂

𝛼+𝛽
, 𝐷𝜂 − 1] and 𝑠𝑛 ∈ [𝐷𝜂, 𝑇𝜂].

Proof. Firstly, by (92), one gets 𝑐𝑛 ≥ 𝐷𝛼+𝛽 and 𝑠𝑛 ≥ 𝐷𝜂. Define

𝛾0 (𝑝)
= {{{

𝑝, 𝑅𝜂 ≤ 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩𝐷𝑊 ≤ 𝜌𝜂
𝛼+𝛽

,
𝑝 + √𝑅2

𝜂 − 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2𝐷𝑊𝜙𝑘, 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩𝐷𝑊 ≤ 𝑅𝜂.
(93)
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So it follows from (48) and (49) that

sup
𝑧∈𝜌
𝜂

𝛼+𝛽
𝐵𝑛𝑉

𝐽𝑛 (𝛾0 (𝑧)) < 𝐷𝜂 − 1, (94)

which implies 𝑐𝑛 < 𝐷𝜂 − 1. In addition, by Id|𝑅𝜂𝐵𝑛𝑉𝑍 ∈ Γ𝑛𝑉𝑍, one
gets 𝑠𝑛 < sup𝑤∈𝑅𝜂𝐵𝑛𝑉𝑍𝐽(𝑤).

For 𝑧 ∈ 𝑉 ⊕ 𝑍, it follows from 𝛼 + 𝛽 ∈ (𝜇𝑘 − 𝛾0, 𝜇𝑘) that
−𝑃𝜂

𝛼+𝛽
< 0 < 𝜆𝑘 ≤ 𝛾0𝜗 + 𝜇𝑘 . (95)

From this and (33), we get for any 𝑧 ∈ 𝑅𝜂𝐵𝑛
𝑉𝑍

𝐽 (𝑧) ≤ ( 𝛾0𝜗 + 𝜇𝑘 + 𝜀) ‖𝑧‖2𝐷𝑊 + (2𝑀𝜀 + 𝐶ℎ) ‖𝑧‖𝐷𝑊 . (96)

Hence, there exists 𝑇𝜂 > 0 such that 𝑠𝑛 ≤ 𝑇𝜂. This finishes the
proof of Lemma 11.

Now, we start to prove our main theorems.

Proof of Theorem 3. Firstly, by Lemma 11 and without loss of
generality, there exist 𝑐 ∈ [𝐶𝜂

𝛼+𝛽
, 𝐷𝜂−1] and 𝑠 ∈ [𝐷𝜂, 𝑇𝜂] such

that 𝑐𝑛 → 𝑐 and 𝑠𝑛 → 𝑠 as 𝑛 → +∞.
Next, we prove that there exists 𝑧 ∈ 𝐷𝑊 such that 𝐽(𝑧) = 𝑐

and 𝐽󸀠(𝑧) = 0. In fact, for all 𝑛 > 𝑘 + 𝜏, we have
𝐽𝑛 (𝑧𝑛) = 𝑐𝑛, (97)

⟨𝐽󸀠𝑛 (𝑧𝑛) , 𝑤⟩ = 0, ∀𝑤 ∈ 𝐷𝑊𝑛. (98)

Then, it follows from Lemma 10 that {𝑧𝑛} is bounded in 𝐷𝑊.
Hence, without loss of generality, there exists 𝑧 ∈ 𝐷𝑊 such
that

𝑧𝑛 ⇀ 𝑧 in 𝐷𝑊,
𝑧𝑛 󳨀→ 𝑧 in 𝐷𝐿. (99)

For ℓ > 𝑘 + 𝜏, let 𝑤 = (𝜙, 0) ∈ 𝐷𝑊ℓ and 𝑤 = (0, 𝜓) ∈ 𝐷𝑊ℓ

in (98), respectively. From a direct calculation, we have for all𝑛 > ℓ
⟨𝑢𝑛, 𝜓⟩𝜗 = (𝛼 + 𝜗) ∫

Ω
𝑢𝑛𝜓 𝑑𝑥 + 𝛽 ∫

Ω
V𝑛𝜓 𝑑𝑥

+ ∫
Ω

𝑔1 (𝑥, V𝑛) 𝜓 𝑑𝑥 + ∫
Ω

ℎ1𝜓 𝑑𝑥,
⟨V𝑛, 𝜙⟩𝜗 = (𝛼 + 𝜗) ∫

Ω
V𝑛𝜙 𝑑𝑥 + 𝛽 ∫

Ω
𝑢𝑛𝜙 𝑑𝑥

+ ∫
Ω

𝑔2 (𝑥, 𝑢𝑛) 𝜙 𝑑𝑥 + ∫
Ω

ℎ2𝜙 𝑑𝑥.

(100)

Let 𝑛 → ∞; we get ⟨𝐽󸀠(𝑧), 𝑤⟩ = 0 for any 𝑤 ∈ 𝐷𝑊ℓ. It follows
from 𝐷𝑊 = ∪ℓ∈N𝐷𝑊ℓ that 𝐽󸀠(𝑧) = 0. That is, 𝑧 = (𝑢, V) is a
critical point of the functional 𝐽.

Next, we prove 𝐽(𝑧) = 𝑐. Firstly, let us define the
orthogonal projection

𝑃𝑛 : 𝑊1,2 (Ω, 𝑝) 󳨀→ span {𝜑1, . . . , 𝜑𝑛} , (101)

which implies 𝑃𝑛𝑢 → 𝑢, 𝑃𝑛V → V in 𝑊1,2(Ω, 𝑝). Then

lim
𝑛→∞

(󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑃𝑛𝑢󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩V𝑛 − 𝑃𝑛V󵄩󵄩󵄩󵄩𝐿2(Ω)) = 0,
󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝐿2(Ω) + 󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝐿2(Ω) < ∞. (102)

It follows from (102) that

𝛼 ∫
Ω

𝑢𝑛 (𝑢𝑛 − 𝑃𝑛𝑢) 𝑑𝑥 + 𝛽 ∫
Ω
V𝑛 (𝑢𝑛 − 𝑃𝑛𝑢) 𝑑𝑥

+ ∫
Ω

𝑔1 (𝑥, V𝑛) (𝑢𝑛 − 𝑃𝑛𝑢) 𝑑𝑥 󳨀→ 0,
𝛼 ∫

Ω
V𝑛 (V𝑛 − 𝑃𝑛V) 𝑑𝑥 + 𝛽 ∫

Ω
𝑢𝑛 (V𝑛 − 𝑃𝑛V) 𝑑𝑥

+ ∫
Ω

𝑔2 (𝑥, 𝑢𝑛) (V𝑛 − 𝑃𝑛V) 𝑑𝑥 󳨀→ 0,
∫
Ω

ℎ1 (𝑢𝑛 − 𝑃𝑛𝑢) 𝑑𝑥 + ∫
Ω

ℎ2 (V𝑛 − 𝑃𝑛V) 𝑑𝑥 󳨀→ 0.

(103)

Let 𝑤 = (V𝑛 − 𝑃𝑛V, 𝑢𝑛 − 𝑃𝑛𝑢) in (98); one gets

⟨𝐽󸀠𝑛 (𝑧𝑛) , (V𝑛 − 𝑃𝑛V, 𝑢𝑛 − 𝑃𝑛𝑢)⟩ = 0, ∀𝑛 > 𝑘 + 𝜏. (104)

From this, (103), we obtain

∫
Ω

{𝑝 (𝑥) ∇𝑢𝑛∇ (𝑢𝑛 − 𝑃𝑛𝑢) + 𝑞 (𝑥) 𝑢𝑛 (𝑢𝑛 − 𝑃𝑛𝑢)} 𝑑𝑥
+ ∫

Ω
{𝑝 (𝑥) ∇V𝑛∇ (V𝑛 − 𝑃𝑛V)

+ 𝑞 (𝑥) V𝑛 (V𝑛 − 𝑃𝑛V)} 𝑑𝑥 󳨀→ 0,
(105)

which implies

∫
Ω

{𝑝 (𝑥) (󵄨󵄨󵄨󵄨∇𝑢𝑛󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2) 𝑑𝑥 + 𝑞 (𝑥) (𝑢2𝑛 + V2𝑛)} 𝑑𝑥
− ∫

Ω
{𝑝 (𝑥) (∇𝑢𝑛∇𝑢 + ∇V𝑛∇V) + 𝑞 (𝑥)

⋅ (𝑢𝑛𝑢 + V𝑛V)} 𝑑𝑥 + ∫
Ω

𝑝 (𝑥)
⋅ {∇𝑢𝑛∇ (𝑢 − 𝑃𝑛𝑢) + ∇V𝑛∇ (V − 𝑃𝑛V)} 𝑑𝑥
+ ∫

Ω
{𝑞 (𝑥) (𝑢𝑛 (𝑢 − 𝑃𝑛𝑢) + V𝑛 (V − 𝑃𝑛V))} 𝑑𝑥

󳨀→ 0.

(106)

By ‖(𝑃𝑛𝑢, 𝑃𝑛V) − (𝑢, V)‖𝐷𝑊 → 0 and (106), one has ‖𝑧𝑛‖𝐷𝑊 →‖𝑧‖𝐷𝑊. From the uniform convexity of 𝐷𝑊, we have ‖𝑧𝑛 −𝑧‖𝐷𝑊 → 0 as 𝑛 → ∞, which implies that 𝐽(𝑧) = 𝑐.
In the same way, we can also prove that there exists 𝑤 ∈𝐷𝑊 such that ‖𝑤𝑛 − 𝑤‖𝐷𝑊 → 0, 𝐽󸀠(𝑤) = 0, and 𝐽(𝑤) = 𝑠.

Note that

𝑐 = 𝐽 (𝑧) ≤ 𝐷𝜂 − 1 < 𝐷𝜂 ≤ 𝐽 (𝜓) = 𝑠. (107)

Hence, we get 𝑧 ̸= 𝑤, which finished the proof of Theorem 3.
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Proof of Theorem 4. Let 𝐵̃(𝑧, 𝑤) = −𝐵(𝑧, 𝑤), and we use the
same approach as before; we also get eigenvalues of 𝐵̃:

𝜆̃±𝑖 = −𝜆±𝑖 = −−𝛽 ± (𝜇𝑖 − 𝛼)
𝜗 + 𝜇𝑖 , ∀𝑖 ∈ N, (108)

and the same eigenfunctions

𝜙±𝑖 = √22 (𝜑𝑖, ± 𝜑𝑖) , 𝑖 ∈ N. (109)

In the same way, we can also define the subspaces 𝑉̃, 𝑍̃, and𝑋̃. If 𝛼 + 𝛽 ∈ (𝜇𝑘, 𝜇𝑘 + 𝛾) for some 𝛾 > 0, then
0 < 𝜆̃𝑘 = 𝛼 + 𝛽 − 𝜇𝑘𝜗 + 𝜇𝑘 < 𝛾𝜗 + 𝜇𝑘 . (110)

Next, we prove that (56), (57), (60), and (61), with respect to𝐵̃, hold on the new subspaces 𝑉̃, 𝑍̃, and 𝑋̃. Firstly, we prove
the following claim.

Assume that 𝜇𝑘 and 𝜇𝑙 are the first eigenvalue above 𝛼 + 𝛽
and 𝛼−𝛽, respectively. If 𝛼±𝛽 ∉ F and dist(𝛼−𝛽,F) > 𝜂 > 0,
then there exists 𝑃𝜂

𝛼+𝛽
> 0 such that

𝐵̃ (𝑧, 𝑧) ≤ −𝑃𝜂

𝛼+𝛽 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑉̃,
𝐵̃ (𝑧, 𝑧) ≥ 𝑃𝜂

𝛼+𝛽 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑍̃ ⊕ 𝑋̃. (111)

Besides, if 𝛼 + 𝛽 is close to 𝜆𝑘, or dist(𝛼 + 𝛽,F \ {𝜇𝑘}) > 𝑑 > 0,
then

𝐵̃ (𝑧, 𝑧) ≤ −𝑄𝜂

𝑑 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑉̃,
𝐵̃ (𝑧, 𝑧) ≥ 𝑄𝜂

𝑑 ‖𝑧‖2𝐷𝑊 , ∀𝑧 ∈ 𝑋̃, (112)

for some positive constant 𝑄𝜂

𝑑
.

Actually, from (108) one can prove that an estimate like
(55) holds for these new eigenvalues 𝜆̃±𝑖, and thenwe get (111).
Moreover, when 𝛼+𝛽 is close to 𝜇𝑘, we can also check that, as
in the proof of (60) and (61), there exists the positive constant𝑄𝜂

𝑑
satisfying (112).
Similarly, we can also choose 𝛾 small enough such that𝑍̃ = 𝑍+. By (111) and (112), we can prove a similar result of

Lemma 7. In other words, if the conditions of Theorem 4 are
satisfied, we can conclude that there exist positive constants𝐶𝜂

𝛼+𝛽
and 𝜌𝜂

𝛼+𝛽
such that the functional 𝐽 satisfies (46) on the

new subspaces 𝑉̃, 𝑍̃, and 𝑋̃. Further, there exists 𝛾1 > 0 such
that if 𝛼+𝛽 ∈ (𝜆𝑘, 𝜆𝑘+𝛾1), then the functional 𝐽 satisfies (46),
(47), (48), and (49). Hence, we can also obtain two critical
point sequences {𝑧̃𝑛} and {𝜓̃𝑛} of 𝐽𝑛 = 𝐽|𝐷𝑊𝑛 , at critical levels𝑐̃𝑛, 𝑠̃𝑛, similar to (92). Next, the remainder of the argument is
similar to the proof of Theorem 3.

Proof ofTheorem 5 (orTheorem 6). In order to take advantage
of the conclusion of Theorem 3 (or Theorem 4), we consider
the following degenerate system:

− div (𝑝 (𝑥) ∇𝑢) + 𝑞 (𝑥) 𝑢
= 𝛼𝑢 + 𝛽̃V + 𝑔̃1 (𝑥, V) + ℎ1 (𝑥) , 𝑥 ∈ Ω,

− div (𝑝 (𝑥) ∇V) + 𝑞 (𝑥) V
= 𝛽̃𝑢 + 𝛼V + 𝑔̃2 (𝑥, 𝑢) + ℎ̃2 (𝑥) , 𝑥 ∈ Ω,

𝜕𝑢𝜕] = 𝜕V𝜕] = 0, 𝑥 ∈ 𝜕Ω,

(113)

where 𝛽̃ = −𝛽, 𝑔̃1(𝑥, V) = 𝑔1(𝑥, −V), 𝑔̃2(𝑥, 𝑢) = −𝑔2(𝑥, 𝑢),
and ℎ̃2 = −ℎ2. Obviously, under the hypotheses ofTheorem 5
(or Theorem 6), the similar hypotheses of Theorem 3 (or
Theorem 4) are satisfied for problem (113). Meanwhile, if(𝑢, V) is a solution of (113), then (𝑢, −V) is a solution of problem
(2). Hence, by the proof of Theorem 3 (or Theorem 4), we
know that Theorem 5 (or Theorem 6) is true.
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