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We fabricate nanoscale spin-transfer oscillators (STOs) by utilizing colloidal nanoparticles as a lithographicmask. By this approach,
high quality STO devices can be fabricated, and as an example the fabricated STO devices using MgO magnetic tunnel junction
as the basic cell exhibit current-induced microwave emission with a large frequency tunability of 0.22GHz/mA. Compared to the
conventional approaches that involve a step of defining nanoscale elements by means of electron beam lithography, which is not
readily available for many groups, our strategy for STO fabrication does not require the sophisticated equipment (∼million dollars
per unit) and expensive lithography resist, while being cost-effective and easy to use in laboratory level. This will accelerate efforts
to implement STO into on-chip integrated high-radio frequency applications.

1. Introduction

Spin-transfer oscillators (STOs) have recently aroused tre-
mendous and continuous research interest due to their
nanoscale size, frequency tunability, broad temperature oper-
ation range, and Si technology compatibility [1–3]. STO devi-
ces utilize spin-transfer torque (STT) generated by a spin-
polarized current traversing a nanoscale magnetic multilayer
[4, 5], such as spin valve and magnetic tunnel junctions
(MTJs) that consist of a free layer and reference layer sepa-
rated by a nonmagnetic metal or insulator layer. STT can
excite steady processions of the free layer magnetization,
leading to emission of amicrowave signal [6–10]. In 2003, the
microwave signal generated by STT was firstly demonstrated
in Co/Cu/Co spin valve nanopillars [6]. However, the output
power is far low (on the level of pW). Since that, many efforts,
including optimization of device geometry and material
structure, and the control of appliedmagnetic field directions,
have been made to improve STO performances, that is,
enhancing output power, narrowing spectral linewidth, or
removing the need of the external magnetic field [11–17].

Formost experiments performed to date, in order to fabricate
nanoscale STO devices, the high-performance electron beam
lithography (EBL) system was required [6]. However, the
expensive EBL system is not readily available tomany groups.
Furthermore, EBL process is time consuming and limited
to small scales. These issues of EBL may partly hinder STO
research.

It is well known that the colloidal nanospheres are
widely used to fabricate nanostructures with a wide range of
sizes [18]. Recently, Wang et al. [19] demonstrated that mag-
netic tunnel junction device can be fabricated by using nano-
spheres (∼400 nm in diameter) as the lithographic mask.The
fabricated MTJs showed an obvious switching for magnetic
random access memory. They also mentioned that it is chal-
lenging to produce small nanopillars (∼100 nm) due to diffi-
culties in the lift-off of nanospheres after SiO

2
deposition.

However, for spin-torque nano-oscillators, in order to
observe microwave signal, it is generally required to fabricate
the smaller nanopillars (∼100 nm in lateral) for enabling large
d.c. current density to excite magnetization. In this study,
we used the nanospheres with a diameter of 160 nm as a
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Figure 1:Nanopillar fabrication process. (a) Patterning contact pads and themesa by optical lithography andArgon ion etching. (b) Protecting
the contacts by photoresist and coating the polystyrene nanospheres. (c) Argon ion etching. (d)Depositing SiO

2
insulating layer and removing

the nanospheres and photoresist. (e) Depositing the contacts through photolithography and e-beam evaporation.

mask and have fabricated successfully smaller nanopillars by
optimizing the lift-off process. The STOs fabricated by this
approach exhibited a steady-state magnetization procession,
which can be controlled by d.c. current ormagnetic field. Our
findings show that the strategy of combination of colloidal
lithography and optical lithography provides an alternative,
simple, and cost-effective method for STO research and
applications.

2. Experimental Details

The fabrication process begins a MTJ stack of bottom
contact/PtMn 15/Co
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Fe
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2.3/Ru 0.85/Co

40
Fe
40
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20
2.4/MgO
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1.8/top contact (the thicknesses are in
nanometers), sputtered onto the thermally oxidized Si wafer
by sputter system.The synthetic antiferromagnetic Co
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Fe
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/

Ru/Co
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Fe
40
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20

reference layer, exchange biased by a PtMn
layer, is designed to have an in-plane easy axis. The
Co
20
Fe
60
B
20

free layer has also an in-plane easy axis at
zero external magnetic field, but with strong perpendicular
magnetic anisotropy at the interface of the CoFeB layer with
the MgO tunnel barrier [11]. This perpendicular anisotropy
can partially cancel the demagnetization field in the free
layer [13]; thus this structure in essence enables to excite
large-amplitude magnetization precession under a small bias
current.

Standard photolithography and Ar ion milling were used
to pattern the contact pads and the 6 × 50𝜇m2 mesas as
shown in Figure 1(a). Then the second photolithography step
was introduced to open a window that allows the polystyrene
nanospheres to adhere to the top of the mesas. The pho-
toresist was also used to protect the contact pads from the
nanospheres and SiO

2
insulator deposition. The next step is

a key part of the fabrication process that defines the MTJ
nanopillars by colloidal lithography. The nanospheres with
a diameter of 160 nm (see Figure 2(a)) were suspended in
a deionized- (DI-) based solvent by ultrasound 3 minutes

in order to improve dispersity. Before coating spheres, the
wafer was coated with hexamethyldisilazane (HMDS) that
strengthens adhesion between wafer and nanospheres; the
spheres were spin-coated on the surface to act as etching
mask for subsequent etching (Figure 1(b)). After that the
Argon ion milling was used to etch the materials without
protection by photoresist and nanospheres (Figures 1(c)
and 2(b)). This was followed by depositing a 50 nm SiO

2

insulator layer by Inductively Coupled Plasma CVD (ICP-
CVD) systemat low temperature (∼75∘C).Next, thewaferwas
dipped in dichloromethane and resist-remover to remove the
spheres as well as the photoresist (Figures 1(d) and 2(c)). The
fabrication of devices is completed by contacting the nanopil-
lars and the two ground contacts to form a Ti (10 nm)/Au
(100 nm) ground-signal-ground (GSG) waveguide, deposited
using electron beam evaporation and patterned using optical
lithography and lift-off (Figure 1(e)).Thefinal device is shown
in Figure 2(d).

Themeasurement setup of STT-inducedmicrowave oscil-
lation is similar to that described in the previous work [13]. In
the experiments, the d.c. current was applied to the device
through a bias Tee, where we define the positive current
𝐼d.c. as electrons flowing from the polarizer to the free layer.
The microwave voltages generated by STT were recorded by
a spectrum analyzer with an amplification of 40 dB and a
baseline taken at 𝐼d.c. = 0mA was subtracted from the meas-
ured spectral data. All measurements were carried out at
room temperature.

3. Results and Discussion

Before microwave signal generation study, we measured the
transport properties under an external magnetic field for
understanding the magnetization states. Figure 3(a) presents
a magnetoresistance loop corresponding to the switching of
the free layer between the low-resistance (𝑅P) parallel state
and the high-resistance (𝑅AP) antiparallel alignment with a
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Figure 2: (a) Scanning electron microscopy (SEM) image of polystyrene nanospheres on wafer. (b) SEM image for MTJ nanopillar with
nanosphere after Argon ion etching, (c) SEM image of nanopillar after removing nanosphere and SiO

2
, and (d) optical image of the final STO

device.

bias current 𝐼d.c. = 10 𝜇A. The TMR ratio, defined as TMR =
100× (𝑅AP −𝑅P)/𝑅P, and the resistance-area (RA) product in
the parallel statewere 93%and 1.1Ω𝜇m2, respectively.The low
RA allows the sufficient d.c. current to excite the microwave
oscillations [11]. A small loop shift was observed, which is due
to the ferromagnetic coupling through barrier roughness and
antiferromagnetic dipolar interaction between layers [9].

All devices exhibited microwave signal generation when
driven with sufficiently large d.c. current, even without
the application of external magnetic field. For the device
presented above, we observed obvious high-frequency signal
for currents above 𝐼d.c. = 0.3mA, which corresponds to a
critical threshold current density (𝐽th) of 1.5MA/cm2 for
microwave generation. Note that the 𝐽c value can be reduced
if the thinner CoFeB free layer is used since the interfacial
perpendicular anisotropy between the CoFeB electrodes and
the tunnel barrier of the MTJ increases with decreasing
the thickness of the CoFeB free layer [20]. For currents
above 0.3mA, two peaks with Lorentzian line shape were
observed for each current as shown in Figure 3(b).The lower-
frequency peak may be attributed to a centre precession
mode while the higher-frequency peak probably arises from
a mode with large amplitude at the sides of the nanopil-
lar. Quantitative data are gathered in Figure 4, where we
report the frequencies, powers, and linewidths of the centre
precession mode as a function of applied current. First,
a blueshift in the oscillation frequencies with increasing

the d.c. current is observed. For 0.5mA ≤ 𝐼d.c. ≤ 1.5mA, the
frequencies increase rapidly, resulting in a current modula-
tion capability of 0.22GHz/mA. Further increasing current,
the frequencies exhibit a slight increase. The similar trend
has been also observed in other systems [21], which suggests
that the steady-state excitation corresponds to an out-of-
plane precession. Second, the integrated power of the centre
mode increases gradually with increasing the d.c. current and
reaches 5 nW at 𝐼d.c. = 4mA.

Figure 4(c) shows the linewidth of the centre mode as a
function of the d.c. current. We observed a relatively broad
linewidth of 0.74GHz just above threshold at low currents.
For 0.5mA ≤ 𝐼d.c. ≤ 1.5mA, the linewidth narrows quasi-
linearly as the current is increased, while the linewidth
narrows slightly above 1.5mA. This trend can be understood
as follows. According to the nonlinear theories [2, 22], the
linewidthΔ𝑓 in the above threshold regime depends not only
on the frequency nonlinearity 𝑁 = d𝑓/d𝐼d.c., but also on
the oscillation energy that is proportional to the output power
𝑃; that is, Δ𝑓 ∝ 𝑁/𝑃. It can be seen from Figure 4(a) that
the frequency shift decreases, suggesting the frequency non-
linearity 𝑁 decreases with increasing the currents. Mean-
while, the output power has an ascending dependence on the
currents as shown in Figure 4(b). As a result, it is explicit
that the current dependence of Δ𝑓 observed in this study is
reasonable.
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Figure 3: (a) The device resistance as a function of applied magnetic field alone in-plane easy axis under bias current of 10 uA. The
orange/blue arrow represents the magnetization direction of the reference/free layer. (b) Current-induced magnetoresistance oscillations for
one representative device for positive current between 0.5 𝜇A and 4 𝜇Awith 0.5 𝜇A steps at zero magnetic field. A vertical offset of 2 nW/GHz
is applied to the curves for visual clarity.
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Figure 4: (a) Frequency, (b) integrated power, and (c) linewidth of the centre mode as a function of applied current.

Finally, we study the dependence of the microwave signal
on the external magnetic field (𝐻ext). Figure 5 displays the
magnetic field dependence of the central mode frequency at
𝐼d.c. = 3mA. It can be seen that the oscillation frequency can
be controlled by adjusting the amplitude of the applied mag-
netic field. Assuming that the free layer magnetization aligns
with applied magnetic field direction in all measurements,

the relationship between the frequency 𝑓 and 𝐻ext is
expressed by the Kittel formula [23]:

𝑓 =

𝛾

2𝜋

√
(𝐻ext + 𝐻𝑝) (𝐻ext + 𝐻𝑝 + 4𝜋𝑀eff), (1)

where 𝛾 = 2.8MHz/Oe is the gyromagnetic ratio and
𝐻

𝑝
and 4𝜋𝑀eff are the coupling field and the effective
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Figure 5: The oscillation frequency as a function of applied mag-
netic field at 𝐼d.c. = 3mA.

demagnetization field of the free layer. The results are fitted
well by this formula as shown in Figure 5 (red line), and
𝐻

𝑝
and 4𝜋𝑀eff are evaluated to be about −20 and 8590Oe,

respectively. The perpendicular anisotropy at the interface of
the CoFeB/MgO layer results in this reduced 4𝜋𝑀eff value.

4. Conclusion

In summary, we have successfully fabricated nanoscale STOs
by colloidal lithography and optical lithography instead of
the expensive e-beam lithography.The fabricated STO device
showed microwave signal generation under d.c. currents.
Moreover, the generated microwave signal can be controlled
by adjusting the d.c. current or magnetic field. We believe
that such a simple and affordable bottom-up approach will
drastically speed up the basic research of spin-torque devices
and their potential applications.
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