
Research Article
Kernel Negative 𝜀 Dragging Linear Regression for
Pattern Classification

Yali Peng,1,2,3 Lu Zhang,1,2 Shigang Liu,1,2,3 Xili Wang,1,2 and Min Guo2,3

1Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an 710062, China
2Engineering Laboratory of Teaching Information Technology of Shaanxi Province, Xi’an 710119, China
3School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

Correspondence should be addressed to Shigang Liu; shgliu@snnu.edu.cn

Received 27 August 2017; Accepted 9 November 2017; Published 10 December 2017

Academic Editor: Chuan Zhou

Copyright © 2017 Yali Peng et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linear regression (LR) and its variants have been widely used for classification problems. However, they usually predefine a strict
binary labelmatrix which has no freedom to fit the samples. In addition, they cannot deal with complex real-world applications such
as the case of face recognition where samples may not be linearly separable owing to varying poses, expressions, and illumination
conditions. Therefore, in this paper, we propose the kernel negative 𝜀 dragging linear regression (KNDLR) method for robust
classification on noised and nonlinear data. First, a technique called negative 𝜀 dragging is introduced for relaxing class labels and
is integrated into the LR model for classification to properly treat the class margin of conventional linear regressions for obtaining
robust result.Then, the data is implicitly mapped into a high dimensional kernel space by using the nonlinear mapping determined
by a kernel function to make the data more linearly separable. Finally, our obtained KNDLR method is able to partially alleviate
the problem of overfitting and can perform classification well for noised and deformable data. Experimental results show that the
KNDLR classification algorithm obtains greater generalization performance and leads to better robust classification decision.

1. Introduction

Least squares regression (LSR) has beenwidely used formany
fields of pattern recognition and computer vision. Owing
to LSR being mathematically tractable and computationally
efficient, in the past, many variants have been proposed.
Notable LSR algorithms include weighted LSR [1], partial
LSR [2], and other extensions (e.g., nonnegative least squares
(NNLS) [3]). In the pattern recognition community, LSR is
also referred to as minimum squared error algorithm [4–
6]. Moreover, very competent extensions of least squares
regression such as regularized least squares regression [7] are
also proposed. Among extensions of least squares regression,
sparse regression [8] and low-rank regression [9, 10] can
obtain notable performance. The relationship between the
regression and other methods such as locally linear embed-
ding and local tangent space alignment is also studied [11].
In addition, LSR is also applied to semisupervised learning.
Nie et al. [12] proposed adaptive loss minimization for
semisupervised elastic embedding. Fang et al. [13] proposed

learning a nonnegative sparse graph for linear regression
for semisupervised learning, in which linear regression and
graph learning were simultaneously performed to guarantee
an overall optimum.

LSR can be simply described as follows. Before con-
ventional least squares regression (CLSR) is applied for
classification [3, 14, 15], it assigns different fixed class labels
to training samples of different classes. Then it employs the
least squares regression algorithm to achieve a mapping that
is able to transform training samples into approximations of
their class labels. Finally CLSR uses the obtained mapping
to predict the class label of every test sample. In addition
to classification problems, least squares regression is also
applied to subspace segmentation [16], matrix recovery [17],
and feature selection [18].

The sparse representation classification (SRC) [19–21],
recently proposed, can be regarded as a special form of least
squares regression. Differing fromLSR, it achieves an approx-
imation of a test sample via a sparse linear combination of all
training samples. Also collaboration representation [22] and

Hindawi
Complexity
Volume 2017, Article ID 2691474, 14 pages
https://doi.org/10.1155/2017/2691474

https://doi.org/10.1155/2017/2691474


2 Complexity

linear regression classification [23] are similar. An overview
of sparse representation is provided in [24]. However, for
classification tasks, because SRCmust solve a set of equations
for classifying every sample, CLSR is computationally much
more efficient than SRC.

Xiang et al. proposed discriminative least squares regres-
sion (DLSR) [25]. The core idea is, under the conceptual
framework of least squares regression, to achieve a larger
class margin than the class margin obtained using CLSR for
classification algorithms by using the 𝜀 dragging technique,
which plays a similar role in enlarging the margin as other
largemargin classifiers proposed in [26–28].The idea of using
slack variable to relax the model has been widely used in the
related field [29]. When the distribution of training samples
is in accordance with that of test samples, the classifier
learned from training samples can well adapt to test samples.
Under the condition, since the classifier learned from training
samples has a very large class margin, it can also obtain
a satisfactory class margin for test samples. Accordingly
the original 𝜀 dragging technique can perform well. In
other words, a high classification accuracy can be produced.
However, in real-world applications, owing to the noise or
deformability of the object, the difference between training
samples and test samples from the same class may be much.
For example, it is well known that face images are a kind
of deformable objects (owing to varying poses, expressions,
and illumination conditions). Two-face images from the same
subject have much difference. This difference may be even
greater than that of two-face images obtained from two
distinctive subjects. In this case, a large margin classifier
obtained by using training samples is not usually suitable for
test samples. In other words, it probably performs badly in
classifying the test samples. On the contrary, reducing the
class margin usually achieves better classification accuracy
for classification problems on noised data. Thus, we focus
on determining a proper margin by using the negative 𝜀
dragging technique and producing a robust classifier for
pattern classification on noised and deformable data.

Furthermore, we focus on introducing the kernel trick
to improve the 𝜀 dragging linear regression. In machine
learning, the kernel trick is originally utilized to construct
nonlinear support vector machines (SVMs) [30–32]. In the
last more than 10 years, many kernel based approaches
have been proposed, such as well-known kernel principal
component analysis (KPCA) [33, 34] and kernel Fisher
discriminant analysis (KFDA) [35]. For classification, Yu et
al. presented the kernel nearest neighbor (KERNEL-NN)
classifier [36]. KERNEL-NN applies the nearest neighbor
classification method in the high dimensional feature space.
The KERNEL-NN classifier could perform better than the
NN classifier by utilizing an appropriate kernel. Kernel sparse
representation classification (KSRC) is also presented [37,
38]. So far, by using kernel tricks [39], almost all linear
learning methods can be generalized to the corresponding
nonlinear ones.The kernel trick [40] goes a large step toward
the goal of classifying heterogeneous data.These kernel based
algorithms improve the computational ability of the linear
algorithms. They first implicitly map the data in the input
space into a high or even infinite dimensional kernel feature

space [18, 41] by a nonlinearmapping and then perform linear
processing in the kernel feature space by using the inner
products, which can be computed by a kernel function. As
a result, these kernel based algorithms perform a nonlinear
transformation with respect to the input space.

As is well known, kernel approach can change the
distribution of samples by the nonlinear mapping. If an
appropriate kernel function is utilized, kernel approach is able
to make the data of different classes more linearly separable.
Therefore, kernel based algorithms can perform classification
well.This motivated us to integrate kernel method into linear
regression for classification. If an appropriate kernel function
is utilized, more samples from the same class are close to
each other and samples from distinct classes are far from
each other in the high dimensional feature space. Hence,
in the high dimensional feature space, it is easy to learn a
mapping that can well convert training samples into their
class labels. Namely, linear transformation matrix learned in
the high dimensional feature space can more appropriately
map samples into their class labels and has more powerful
discriminating ability.

Based on the above two aspects, we propose the kernel
negative 𝜀 dragging linear regression (KNDLR) method in
this paper. For KNDLR, samples are implicitly mapped
into a high dimensional feature space first, and then linear
regression with the negative 𝜀 dragging is performed in
this new feature space. We prove that KNDLR in the high
dimensional feature space can be formulated in terms of
the inner products, while the inner products could be
computed by kernel function. Thus KNDLR is easy to be
implemented and has low computation cost.The classifier can
generalize well because we propose and use the negative 𝜀
dragging technique, and kernel approach is also integrated
into KNDLR. Comprehensive experiments demonstrated
the superior characteristics of KNDLR. In summary, the
contributions of the proposed method are as follows.

(1) It relaxes the strict binary label matrix that is used
in conventional LR into a slack variable matrix which has
more freedom to fit the sample. The proper margins between
different classes are achieved by using the negative 𝜀 dragging
technique. Previously researchers usually focus on enlarging
the margin between different classes, whereas the negative𝜀 dragging technique proposed by us seems to be a new
contrary idea, which is useful to overcome the overfitting
problem and to enhance the robustness of the algorithm on
unseen samples, for example, test samples.

(2) The kernel approach is also integrated into our
method. We show that KNDLR in the high dimensional
feature space can be formulated in terms of the inner
products, and the inner products could be computed by the
kernel function. Thus KNDLR only needs to calculate the
kernel function rather than directly calculating data in the
high dimensional feature space corresponding to the kernel
function.

(3) An algorithm named KNDLR is devised for the
proposed method. The validity of the algorithms is tested on
six image datasets.

The other parts of the paper are organized as follows.
Section 2 briefly reviews works related to this paper. In



Complexity 3

Section 3, our method is presented. In Section 4, analysis of
our method is provided. Experimental results are reported in
Section 5. Finally, Section 6 offers the conclusion of this paper.

2. Related Works

In this section, we first introduce the CLSR for classification.
Then, the kernel trick is briefly reviewed.

2.1. Conventional Least Squares Regressions for Classification.
The collection of 𝑛 training samples is represented as amatrix
𝑋 = [𝑥1, . . . , 𝑥𝑛]𝑇 ⊂ 𝑅𝑛×𝑚. 𝑥𝑖 is a training sample in the
form of column vector. If the training sample is a two-dimen-
sional image, then it is converted into one column vector in
advance.The objective function of conventional least squares
regression (CLSR) for classification is as follows:

min
𝑊

‖𝑋𝑊 − 𝑌‖2𝐹 + 𝜆 ‖𝑊‖2𝐹 , (1)

where 𝑌 = [𝑦1, . . . , 𝑦𝑛]𝑇 ⊂ 𝑅𝑛×𝑐 (𝑐 ≥ 2 is the number of class)
is the binary class label matrix and the 𝑖th row 𝑦𝑖 of 𝑌 is the
class label vector of the 𝑖th sample.

For a three-class classification problem, in CLSR the class
label matrix of four samples may be

𝑌 =
[[[[[
[

1 0 0
1 0 0
0 0 1
0 1 0

]]]]]
]

∈ R
4×3. (2)

𝑌 indicates that the first and second samples are from the first
class, the third sample is from the third class, and the fourth
sample is from the second class. 𝑊 is the transformation
matrixwhich converts the samplematrix𝑋 into the class label
binarymatrix𝑌. ‖∙‖2𝐹 stands for Frobenius normofmatrix. In
the above CLSR for classification, the class label is predefined
and fixed.

2.2. Kernel Trick. The kernel trick is a very powerful tech-
nique in machine learning. It has been successfully applied
to many methods, such as SVM [31, 32], KPCA [33, 34], and
KFDA [35]. By using kernel tricks, a linear algorithm can be
easily generalized to a nonlinear algorithm.

Mercer kernel is generally used in kernel methods. It
is a continuous, symmetric, positive semidefinite kernel
function. Given a Mercer kernel 𝑘 : 𝜒 × 𝜒 → R, there is a
unique associated reproducing kernel Hilbert space (RKHS)𝐻𝑘. Usually, a Mercer kernel can be expressed as

𝑘 (𝑥, 𝑥󸀠) = Φ (𝑥)𝑇Φ (𝑥󸀠) , (3)

where 𝑇 denotes the transpose of a matrix or vector, 𝑥 and𝑥󸀠 are any two points in 𝜒, and Φ is the implicit nonlinear
mapping associated with the kernel function 𝑘(⋅, ⋅). When
implementing kernel methods, we do not need to know whatΦ is and just adopt the kernel function defined as (3). Here
the kernel function is the connection between the learning
algorithm and data. The linear kernels, polynomial kernels,

Gaussian radial basis function (RBF) kernels, and wavelet
kernels [18, 40, 41] are commonly used kernels in kernel
methods. The polynomial kernel has the form of

𝑘 (𝑥, 𝑥󸀠) = (𝑥𝑇𝑥󸀠 + 𝑐)𝑑 , (4)

where 𝑐 is a constant, 𝑑 is the order of polynomial, and RBF
kernels can be expressed as

𝑘 (𝑥, 𝑥󸀠) = exp (−𝛾 󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑥󸀠󵄩󵄩󵄩󵄩󵄩22) , (5)

where 𝛾 is the parameter for RBF kernels and ‖𝑥 − 𝑥󸀠‖2 is the
distance between two vectors.

3. Our Method

3.1. Solving the Optimization Model. Training samples {𝑥1,𝑥2, . . . , 𝑥𝑛} in the input space 𝜒 are represented as a matrix
𝑋 = [𝑥1, . . . , 𝑥𝑛]𝑇 ⊂ 𝑅𝑛×𝑚. Let Φ be the nonlinear mapping
function corresponding to a kernel 𝑘(⋅, ⋅). Firstly, we implicitly
employ Φ to map the data from input space 𝜒 to a high
dimensional kernel feature space 𝑅𝑓. We have

Φ (𝑋) = [Φ (𝑥1) , Φ (𝑥2) , . . . , Φ (𝑥𝑛)]𝑇 ∈ 𝑅𝑓. (6)
Then, for classification, we should transform samples setΦ(𝑋) to a class label matrix. But the class label matrix 𝑌 in

CLSR is a strict binary label matrix which has less freedom
to fit the samples. It is expected that the original strict binary
constraints in 𝑌 can be relaxed into the soft constraint so that
it has more freedom to fit the samples and simultaneously
produce a classifier with well generalization. To this end, the
slack variable matrix 𝑌𝑛 which is different from 𝑌𝑑 in DLSR
is used to substitute for the original class label matrix 𝑌. The
four samples in Section 2.1 are also taken as an example here
and then the slack variable class label matrix 𝑌𝑛 is defined as
follows:

𝑌𝑛 =
[[[[[
[

1 𝜀12 𝜀13
1 𝜀22 𝜀23

𝜀31 𝜀32 1
𝜀41 1 𝜀43

]]]]]
]

,

s.t. 𝜀𝑖𝑗 ≥ 0.

(7)

It can be seen that 𝑌𝑛 can help to properly reduce the class
margins of CLSR to generalize well. Formally, let 𝑀 be a 𝜀
dragging matrix and defined as

𝑀 = [[[[
[

𝜀11 ⋅ ⋅ ⋅ 𝜀1𝑐
... 𝑚𝑖𝑗 ...

𝜀𝑛1 ⋅ ⋅ ⋅ 𝜀𝑛𝑐

]]]]
]
(𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑐; 𝜀𝑖𝑗 ≥ 0) .

(8)

Meanwhile, let 𝐵𝑛 be the dragging coefficient matrix and
defined as

𝐵𝑛𝑖𝑗 = {{{
0 if𝑌𝑖𝑗 = 1
1 if𝑌𝑖𝑗 = 0; (9)



4 Complexity

then 𝑌𝑛 = 𝑌 + 𝐵𝑛 ⊙ 𝑀, where ⊙ is a Hadamard product
operator of matrices. Relaxing 𝑌 into 𝑌𝑛 has an idea opposite
to that of the 𝜀 dragging technique in DLSR; therefore we call
this relaxation the negative 𝜀 dragging.

By virtue of the kernel feature space 𝑅𝑓, our method tries
to construct a bridge between Φ(𝑋) and 𝑌𝑛. In particular, our
goal is to learn a linear function 𝑊 that makes Φ(𝑋)𝑊 =𝑌𝑛 be approximately satisfied. Thus our method has the
following objective function:

(𝑊∗, 𝑀∗) = argmin
𝑊,𝑀

󵄩󵄩󵄩󵄩Φ (𝑋) 𝑊 − (𝑌 + 𝐵𝑛 ⊙ 𝑀)󵄩󵄩󵄩󵄩2𝐹
+ 𝜆 ‖𝑊‖2𝐹

s.t. 𝑀 ≥ 0,
(10)

where 𝑊 is the transform matrix and 𝜆 is a positive regular-
ization parameter.

Since 𝑌 is relaxed into 𝑌𝑛, (10) has more freedom than (1)
to fit the samples. Based on the knowledge of Linear Algebra,
we know that

󵄩󵄩󵄩󵄩Φ (𝑋) 𝑊 − 𝑌𝑛󵄩󵄩󵄩󵄩2𝐹 + 𝜆 ‖𝑊‖2𝐹
= trace ((Φ (𝑋) 𝑊 − 𝑌𝑛) (Φ (𝑋) 𝑊 − 𝑌𝑛)𝑇

+ 𝜆𝑊𝑊𝑇) .
(11)

It is easy to prove that objective function (10) is convex.
Thus it has a unique solution. An iterative updating algorithm
is devised to solve it. The first step of the algorithm is to solve𝑊 by fixing 𝑀.

Theorem 1. Given 𝑀, the optimal 𝑊 in (10) can be calculated
as

𝑊∗ = (Φ (𝑋)𝑇Φ (𝑋) + 𝜆𝐼)−1Φ (𝑋)𝑇 𝑌𝑛. (12)

Proof. According to matrix theory, the optimal 𝑊 can be
obtained by making the derivation of (10) with respect to 𝑊
and set it to zero. That is,

𝜕 (󵄩󵄩󵄩󵄩Φ (𝑋) 𝑊 − 𝑌𝑛󵄩󵄩󵄩󵄩2𝐹 + 𝜆 ‖𝑊‖2𝐹)
𝜕𝑊

= Φ (𝑋)𝑇Φ (𝑋) 𝑊 − Φ (𝑋)𝑇 𝑌𝑛 + 𝜆𝑊 = 0 󳨐⇒
𝑊∗ = (Φ (𝑋)𝑇Φ (𝑋) + 𝜆𝐼)−1Φ (𝑋)𝑇 𝑌𝑛.

(13)

The second step of our algorithm is to solve 𝑀 by fixing𝑊. Then (10) can be rewritten as argmin𝑀‖Φ(𝑋)𝑊 − (𝑌 +
𝐵𝑛 ⊙ 𝑀)‖2𝐹. 𝑀 can be obtained by solving the following opti-
mization problem:

min
𝑀

󵄩󵄩󵄩󵄩𝐺 − 𝐵𝑛 ⊙ 𝑀󵄩󵄩󵄩󵄩2𝐹
s.t. 𝑀 ≥ 0,

(14)

where

𝐺 = Φ (𝑋) 𝑊∗ − 𝑌. (15)

Considering the 𝑖th row and 𝑗th column element 𝑀𝑖𝑗 of𝑀, we have

min
𝑀𝑖𝑗

(𝐺𝑖𝑗 − 𝐵𝑛𝑖𝑗𝑀𝑖𝑗)2

s.t. 𝑀𝑖𝑗 ≥ 0.
(16)

According to [25], the formula to calculate 𝑀𝑖𝑗 is
𝑀𝑖𝑗 = max (𝐵𝑛𝑖𝑗𝐺𝑖𝑗, 0) . (17)

Therefore, the optimal solution of 𝑀 is

𝑀 = max (𝐵𝑛 ⊙ 𝐺, 0) . (18)

In a word, the first step of the algorithm is to solve 𝑊 by
fixing 𝑀, and the second step of the algorithm is to solve 𝑀
by fixing 𝑊. In other words, (12) should be calculated in the
first step, and (15) and (18) should be calculated in the second
step. These two steps should be repeatedly calculated till the
termination condition is satisfied.

3.2. Integrating the Kernel Trick into the Optimization Model.
As mentioned above, we should repeatedly calculate (12) and
(18). However, for (12) and (18), Φ(𝑋) exists in kernel feature
space 𝑅𝑓. Fortunately, we do not need to know what Φ(𝑋)
is and just adopt the kernel function (3). How to use the
kernel function to eliminate denotation Φ(𝑋) is presented as
follows.

Let

𝑃 = (Φ (𝑋)𝑇Φ (𝑋) + 𝜆𝐼)−1Φ (𝑋)𝑇 . (19)

By using the following formula [42] on matrix manipula-
tions:

(𝐴−1 + 𝐵𝑇𝑅−1𝐵)−1 𝐵𝑇𝑅−1 = 𝐴𝐵𝑇 (𝐵𝐴𝐵𝑇 + 𝑅)−1 , (20)

we use 𝜆𝐼, Φ(𝑋), and 𝐼 instead of 𝐴−1, 𝐵, and 𝑅, respectively,
having

(𝜆𝐼 + Φ (𝑋)𝑇Φ (𝑋))−1Φ (𝑋)𝑇

= Φ (𝑋)𝑇 (Φ (𝑋) Φ (𝑋)𝑇 + 𝜆𝐼)−1 .
(21)

Then, we substitute it into (12); therefore

𝑊∗ = Φ (𝑋)𝑇 (Φ (𝑋) Φ (𝑋)𝑇 + 𝜆𝐼)−1 𝑌𝑛 󳨐⇒ (22)

𝑊∗ = Φ (𝑋)𝑇 (𝐾 + 𝜆𝐼)−1 𝑌𝑛 = 𝑃𝑌𝑛, (23)

where 𝐾𝑖,𝑗 = Φ(𝑥𝑖)𝑇Φ(𝑥𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗), (𝑖, 𝑗 = 1, 2, . . . , 𝑛).
Actually, Φ(𝑋)𝑇(𝐾 + 𝜆𝐼)−1 in (23) is changeless because

it only depends on 𝑋 and the utilized kernel function, while𝑌𝑛 is changeable during the iteration; hence, for avoiding
to directly calculate Φ(𝑋), in the first step we only need to
calculate

𝑌𝑛 = 𝑌 + 𝐵𝑛 ⊙ 𝑀. (24)



Complexity 5

Input: Training samples matrix 𝑋; Label matrix 𝑌; dragging coefficient matrix 𝐵𝑛; test
sample 𝑡; parameter 𝜆;
Output: the slack variable class label matrix 𝑌𝑛; predicted class 𝑘 for test sample 𝑡;
Initialization: 𝑀 = 0𝑛×𝑐;
Calculate 𝐻 = 𝐾(𝐾 + 𝜆𝐼)−1;
Set threshold ℎ; Set 𝑖𝑡𝑟 = 1.
Repeat

(1) Given 𝑀, calculate 𝑌𝑛 = 𝑌 + 𝐵𝑛 ⊙ 𝑀.
(2) Utilize 𝐺 = 𝐻𝑌𝑛 − 𝑌, then calculate 𝑀 = max(𝐵 ⊙ 𝐺, 0).

Until the absolute value of the difference between objective functions of two consecutive
loops is smaller than threshold ℎ.
(3) For test sample 𝑡, calculate 𝑡𝑦 = 𝑡𝑇𝑊∗.
(4) If 𝑘 = arg𝑗max 𝑡𝑗𝑦, then 𝑡 is classified into the 𝑘th class. 𝑡𝑗𝑦 is the 𝑗th entry of 𝑡𝑦.
Output: the transformation matrix 𝑊∗, 𝑘.

Algorithm 1

The second step of algorithm is to solve 𝑀 by calculating
(15) and (18). By substituting (23) into (15), we have

𝐺 = 𝐾 (𝐾 + 𝜆𝐼)−1 𝑌𝑛 − 𝑌. (25)

Hence, in the second step we need to calculate (25) and
(18).

Then the predicted label for a test sample 𝑥 is

𝑌 (𝑥) = Φ (𝑥)𝑇𝑊. (26)

Intuitively,𝑊 should be calculated by iteration and then it
is utilized to calculate the predicted label 𝑌(𝑥) for test sample𝑥. However, by substituting (23) into (26), we have

𝑌 (𝑥) = Φ (𝑥)𝑇Φ (𝑋)𝑇 (𝐾 + 𝜆𝐼)−1 𝑌𝑛
= 𝜅 (𝑥) (𝐾 + 𝜆𝐼)−1 𝑌𝑛,

(27)

where 𝜅(𝑥) = [𝑘(𝑥, 𝑥1), 𝑘(𝑥, 𝑥2), . . . , 𝑘(𝑥, 𝑥𝑛)].
Because Φ(𝑋)𝑇(𝐾 + 𝜆𝐼)−1 depends on 𝑋 and the utilized

kernel function, we only need to calculate 𝑌𝑛 out by the
iteration, and after the iteration is performed, the predicted
label for a test sample 𝑥 can be obtained by (27). As presented
above, directly calculating Φ(𝑋) can be avoided by utilizing
the kernel function.

In summary, we do not need to know what Φ is and just
adopt the kernel function during the iteration. The complete
algorithm is summarized in Algorithm 1.

4. Analysis of Our Method

In our method, the negative 𝜀 dragging technique and
kernel trick are simultaneously integrated into the LR model
to obtain more robust classification result for noised and
deformable data. We analyze our method from two aspects.

Firstly, we present the classmargins of ourmethod,DLSR,
and CLSR for classification. For simplicity of description, the

four samples in Section 2.1 are also taken as an example here.
For our method, it is clear that

𝑌𝑛 =
[[[[[
[

1 𝜀12 𝜀13
1 𝜀22 𝜀23

𝜀31 𝜀32 1
𝜀41 1 𝜀43

]]]]]
]

. (28)

For DLSR,

𝑌𝑑 =
[[[[[
[

1 + 𝜀11 −𝜀12 −𝜀13
1 + 𝜀21 −𝜀22 −𝜀23

−𝜀31 −𝜀32 1 + 𝜀33
−𝜀41 1 + 𝜀42 −𝜀43

]]]]]
]

. (29)

Suppose that 𝑌𝑛 and 𝑌𝑑 have the same 𝜀 components. For the
first and third samples (they, respectively, belong to the first
and third classes), the distance between their class labels can
be denoted by

𝑑𝑛 = √(1 − 𝜀31)2 + (𝜀12 − 𝜀32)2 + (𝜀13 − 1)2. (30)

For DLSR, the distance between the class labels of the first
and third samples can be denoted by

𝑑𝑑
= √(1 + 𝜀11 + 𝜀31)2 + (𝜀12 − 𝜀32)2 + (𝜀13 + 𝜀33 + 1)2.

(31)

For CLSR, the distance between their class labels can be
denoted by 𝑑 = √2.

We see that if 𝑌𝑛 and 𝑌𝑑 have same 𝜀 components, DLSR
has the largest class margin whereas our method usually has
the smallest class margin. In other words, we usually have𝑑𝑑 ≥ 𝑑 ≥ 𝑑𝑛. Actually, because 𝜀𝑖𝑗 ≥ 0, it is absolutely certain



6 Complexity

that𝑑𝑑 ≥ 𝑑. As for𝑑 ≥ 𝑑𝑛, it can be demonstrated below. First,
𝑑𝑛 = √1 − 2𝜀31 + 𝜀231 + 𝜀212 − 2𝜀12𝜀32 + 𝜀232 + 1 − 2𝜀13 + 𝜀213.
Because 𝜀𝑖𝑗 ≪ 1 is usually satisfied, we can ignore the second-
order terms and have 𝑑𝑛 ≈ √1 − 2𝜀31 + 1 − 2𝜀13 ≤ √2.
As a result, in the scenario of noised and deformable data,
our method can effectively decrease the probability that
the classifier learned from training samples too fits training
samples and cannot be well applicable for test samples. In
other words, our method can make the obtained classifier
generalize well and is very suitable for the classification of
noised and deformable data.

Secondly, we present effects of the kernel trick integrated
into our method. In some real-world applications, samples
from different classes are mixed up and are not linearly
separable, because the difference between training samples
from the same class may be much more than the difference
between training samples from different classes. For instance,
in the face recognition problem, the face images from the
same personmay bemore different than the face images from
distinct persons owing to variable expressions, poses, and
illuminations.This is known as the problem of uncertain data
[42, 43]. Under this situation, bothCLSR andDLSR could not
attain a good classification performance.The kernel approach
can change the distribution of samples by the nonlinear map-
ping. If an appropriate kernel function is utilized, the kernel
approach can make linearly nonseparable samples become
linearly separable. The term linearly separable means that
samples of different classes have good separability. Exactly, it
is referred to as a linear boundary such as a line or plane that
can separate samples from different classes without errors.

Here, kernel mapping is integrated into our approach so
that, in the high dimensional kernel feature space, it is easy
to learn a mapping that can well convert training samples
into their class labels. Namely, the linear transformation
matrix obtained in the high dimensional feature space can
more appropriately map training samples into their class
labels. Therefore, our kernel based approach can perform
classification well.

If the two class samples are not linearly separable, CLSR
andDLSR could not attain a good classification performance.
KNDLR firstly makes a nonlinear mapping of the data to
enhance the linear separability of samples; hence KNDLR
is able to obtain higher classification accuracy than CLSR
and DLSR. Moreover, our KNDLR just utilizes the kernel
function to calculate transform matrix 𝑊 and class label for
test samples instead of directly calculating Φ(𝑋).

In addition, the overall complexity of KNDLR is low,
although it is solved iteratively. In each iteration, the main
computation cost is in (25), where we need to calculate
the matrix inverse (𝐾 + 𝜆𝐼)−1. Since 𝐾(𝐾 + 𝜆𝐼)−1 is only
dependent on 𝑋 and the utilized kernel function, it can
be precalculated before the loop is carried out. Thus the
speed of calculating 𝐺 in (25) is very fast. Moreover, it is
obvious that 𝐾 is an 𝑛 × 𝑛 matrix (𝑛 is the number of
training samples), while (𝑋𝑇𝑋 + 𝜆𝐼)−1 calculated in CLSR
or DLSR is an 𝑚 × 𝑚 matrix (𝑚 is the number of features).
Thus, when the number of samples is much less than the
dimension of features, the size of 𝐾 is small. Hence it is easy

to calculate the matrix inverse (𝐾 + 𝜆𝐼)−1. If the features
are very high dimensional, calculation of the matrix inverse
(𝑋𝑇𝑋 + 𝜆𝐼)−1 will be quite time-consuming and memory-
consuming. In particular, although our KNDLR approach is
similar to CLSR and DLSR in some aspects, it is much more
efficient than them when classifying high dimensional data.
However, when the number of samples is not much smaller
than that of features and dimension of features is high, size of
𝐾 is large. Hence calculating the matrix inverse (𝐾 + 𝜆𝐼)−1 is
complex as solving the inverse matrix (𝑋𝑇𝑋 + 𝜆𝐼)−1 and the
efficient of our KNDLR is almost the same as that of CLSR
and DLSR.

5. Experiments

In our experiments, KNDLR was compared with CLSR,
DLSR, NDLR (the KNDLR without kernel trick), kernel sup-
port vector machine (𝐾-SVM) in [31], 𝑘 nearest neigh-
bor method (KNN), the nonnegative least squares method
(NNLS) proposed in [3], sparse representation based classifi-
cation (SRC (l1 ls)), and linear regression based classifica-
tion (LRC).We use five face image databases and a handwrit-
ing digit dataset, namely, Georgia Tech (GT), FERET, LFW,
AR, YaleB, and MNIST dataset. The subsets of the last two
datasets, which are available at “http://www.cad.zju.edu.cn/
home/dengcai/Data/data.html,” were used to perform our
experiments. All methods were directly performed on image,
with no extracting feature from image in advance. Our
method, CLSR, DLSR, and NDLR all have a parameter 𝜆.
The parameter was set to 0.0001, 0.0005, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. The best accuracy of each method is given for
comparison. Threshold ℎ is set to 0.0001. For KNDLR, we
used polynomial kernel 𝑘(𝑥, 𝑥󸀠) = (𝑥𝑇𝑥󸀠 + 𝑐)𝑑 on LFW,
AR, YaleB, and MNIST and Gaussian radial basis function
(RBF) kernel 𝑘(𝑥, 𝑥󸀠) = exp(−𝛾‖𝑥 − 𝑥󸀠‖22) on GT and FERET,
respectively. The parameters of polynomial kernels 𝑐 and 𝑑
were set to 1 and 2, respectively. The parameter of RBF kernel
𝛾 was set to the median value of 1/(‖𝑥𝑖 − 𝑥‖2), 𝑖 = 1, . . . , 𝑛,
where 𝑥 is the mean of all training samples. For 𝐾-SVM,
package libsvm-mat-3.0-1 is used. The libsvm options of the
function “svmtrain” were set to [“−𝑠 0 −𝑡 2 −𝑔 1.0𝑒 − 1”],
where “−𝑡 2” indicates Gaussian radial basis function (RBF)
kernel. The value of hyperparameter 𝐶 was selected from
the candidate set {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0} by cross-
validation approach. For KNN, 𝑘 was set to 1, and Euclidean
distance metric was used to find the nearest neighbor.

5.1. Experiment on the GT Database. The Georgia Tech (GT)
face database contains 750 images from 50 subjects. For each
subject 15 face images are available.The pictures show frontal
and/or tilted faces with different facial expressions, lighting
conditions, and scales. Figure 1 presents some face images
from the GT face database. In our experiments, all images in
the database were manually cropped and resized to 30 × 40.
After the image cropping, most of the complex background
has been excluded. They are further converted to gray level
images for both training and testing purposes.

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html


Complexity 7

Figure 1: Some face images from the GT face database.

Table 1: Accuracies (%) of different methods on the GT database.

Number of training
samples per class 5 6 7 8 9 10

Our method 70.80 73.53 76.05 80.26 81.33 82.36
DLSR 50.48 50.93 52.80 53.77 53.77 54.56
CLSR 63.58 65.33 67.30 70.57 71.00 71.40
NNLS 68.90 71.02 73.88 76.83 78.27 79.68
𝐾-SVM 70.42 72.20 74.93 79.46 80.17 81.92
KNN 59.30 61.76 63.85 67.49 69.23 69.40
SRC 56.18 58.44 60.13 63.09 63.57 64.36
LRC 68.90 71.22 73.78 77.71 79.20 80.68
NDLR 65.66 66.76 69.38 73.60 73.57 74.56

In our experiments, we randomly took 𝑛 (= 5, 6, 7, 8,9, 10) face images of each subject as original training samples,
respectively, and treated the remaining face images as testing
samples. For each given 𝑛, we take the average value of
classification rates calculated from 10 random splits as final
classification rate. The experimental results are presented in
Table 1. From this table, we can conclude that the proposed
method obtains the best classification accuracy.

5.2. Experiment on the FERET Face Dataset. A subset of the
FERET face dataset was used in the experiment. This subset
includes 1442 face images from 206 subjects and each subject
has seven different face images. This subset was composed of
the images in the original FERET face dataset whose names
are marked with two-character strings: “ba,” “bj,” “bk,” “be,”
“bf,” “bd,” and “bg”. Figure 2 shows some image examples.
We resized all face images to 40 by 40 matrices.

In our experiments, 𝑛 (= 1, 2, 3, 4, 5) samples of each
subject were randomly taken as training samples and the
remaining samples were treated as test samples. For each
given 𝑛, we take the average value of classification rates
calculated from 10 random splits as final classification rate.
Experimental results of classification accuracies are shown
in Table 2. Table 2 demonstrates that our method performs
better than the other methods.

Table 2: Accuracies (%) of different methods on the FERET
database.

Number of training
samples per class 1 2 3 4 5

Our method 35.52 55.84 66.29 79.03 78.18
DLSR 19.45 31.18 36.99 45.95 44.15
CLSR 28.03 46.38 55.18 65.03 65.07
NNLS 34.26 53.48 64.38 75.84 76.33
𝐾-SVM 32.01 54.73 64.43 75.89 73.96
KNN 32.01 44.87 54.44 68.14 65.70
SRC 23.54 41.48 53.12 68.51 70.46
LRC 32.01 55.34 65.89 77.12 74.76
NDLR 33.77 54.28 63.50 72.64 72.60

5.3. Experiment on the LFW Face Dataset. The LFW dataset
is a face image dataset for unconstrained face recognition.
Images in this dataset vary much in clothing, pose, and
backgroundmore than the other face datasets.There aremore
than 13000 faces images collected from the web. Every face
image is manually labeled. We use only a subset composed
of 1251 images from 86 subjects to conduct experiments.
Figure 3 shows some example face images. Each image is
cropped and resized to 32 × 32 image.

A random subset with 𝑛 (= 6, 7, 8, 9, 10) images per
individual was taken with labels to form the training set, and
the rest of the database was considered to be the testing set.
For each given 𝑛, there are 10 random splits.The average value
of classification rates calculated from 10 random splits was
taken as final classification rate. The classification accuracies
were shown in Table 3. It is clear that our method performs
better than the rest of methods.

5.4. Experiment on the AR Face Dataset. The AR dataset
contains over 4000 face images of 126 subjects, including
frontal views of faceswith different facial expressions, lighting
conditions, and occlusion. We use only a subset composed
of 3120 images from 120 subjects and each subject has 26
different face images. Figure 4 shows some example face
images. Each image is cropped and resized to 40 × 50 image.



8 Complexity

Figure 2: Some face images from the FERET face database.

Figure 3: Some face images from the LFW face database.

A random subset with 𝑛 (= 1, 2, 3, 4, 5) images per
individual was taken with labels to form the training set, and
the rest of the database was considered to be the testing set.
For each given 𝑛, there are 10 random splits. The average
classification rate calculated from 10 random splits was taken
as final classification rate. The classification accuracies were
shown in Table 4. It is clear that our method performs better
than the rest of methods.

5.5. Experiment on the YaleB Face Dataset. For this database,
we simply use the cropped images and resize them to 32 × 32
pixels to conduct experiments. Figure 5 shows some example
face images.

A random subset with 𝑛 (= 5, 6, 7, 8) images per indi-
vidual was taken with labels to form the training set, and
the rest of the database was considered to be the testing set.
For each given 𝑛, there are 10 random splits. The average



Complexity 9

Figure 4: Some face images from the AR face database.

Figure 5: Some face images from the YaleB face database.

Table 3: Accuracies (%) of different methods on the LFW database.

Number of training
samples per class 6 7 8 9 10

Our method 35.95 38.00 39.13 40.27 41.10
DLSR 14.46 14.92 14.58 15.43 14.68
CLSR 34.45 35.93 35.15 36.65 35.27
NNLS 33.86 36.58 36.04 36.69 37.31
𝐾-SVM 32.88 34.76 35.70 36.52 38.59
KNN 20.34 21.28 21.12 21.26 21.53
SRC 34.15 36.70 38.06 39.31 39.00
LRC 32.12 35.16 34.78 36.50 40.05
NDLR 35.22 37.49 38.40 39.29 40.69

classification rate calculated from 10 random splits was taken
as final classification rate. The classification accuracies were
shown in Table 5. It is clear that our method performs better
than the rest of methods, except for SRC. However, SRC is
time-consuming, which is shown in Section 5.7.

5.6. Experiment on theMNISTDataset. TheMNISTdatabase
of handwritten digits from Yann LeCun’s page has a training
set of 60,000 examples and a test set of 10,000 examples. We
use only a subset composed of the first 2k training images
and first 2k test images to conduct experiments. The size of
each image is 28 × 28 pixels, with 256 gray levels per pixel.

Table 4: Accuracies (%) of different methods on the AR database.

Number of training
samples per class 1 2 3 4 5

Our method 64.69 75.87 83.74 90.46 95.12
DLSR 56.83 70.01 78.34 85.89 91.37
CLSR 59.73 74.00 82.55 89.05 93.89
NNLS 59.93 67.08 78.03 85.09 92.90
𝐾-SVM 58.95 66.39 74.56 83.64 91.69
KNN 58.95 61.45 68.88 75.37 84.03
SRC 61.81 74.36 82.72 89.95 94.35
LRC 58.95 65.42 73.94 82.06 91.15
NDLR 64.00 74.87 83.38 90.02 94.63

Thus, each image is represented by a 784-dimensional vector.
Figure 6 shows some example images. Experimental results of
classification accuracies are shown in Table 6. From this table,
we can conclude that the proposed method obtains the best
classification accuracy.

5.7. Computing Time. Aforementioned experiments were
performed on an Intel machine (Core (TM) i5-6600CPU,
3.30GHz, 8GB RAM, with 64-bit Win 10 Chinese operating
system). All methods, except for the SVM methods, were
implemented by software MATLAB 2010a. The libSVM3.0
toolbox in the language C was utilized for performing SVM.



10 Complexity

Figure 6: Some images from the MNIST database.

Table 5: Accuracies (%) of different methods on the YaleB database.

Number of training
samples per class 5 6 7 8

Our method 80.48 81.67 82.28 84.55
DLSR 76.05 78.48 79.33 77.54
CLSR 76.83 78.87 80.11 77.85
NNLS 68.98 73.39 73.38 75.14
𝐾-SVM 74.45 76.53 75.58 76.93
KNN 57.56 60.42 60.14 60.92
SRC 82.53 84.54 85.22 85.29
LRC 79.14 81.01 80.87 84.36
NDLR 77.02 79.40 80.25 78.73

Besides classification accuracies, because the computing time
is significantly different for each method, we select the
experiment on GT and AR to show the computing time of
each method.The GT database only contains a small number
of samples, while the AR database contains a relatively large
number of samples, which represent two different cases.Here,
the computing time of each method is the sum of time spent
on learning from samples and time spent on classification of
new samples when training samples and test samples have
been given. We use MATLAB instruction tic and toc to get
the time. Table 7 shows the computing time of the methods
on GT and Table 8 shows that on AR.

First, it can be clearly seen that our KNDLR approaches
are very fast as DLSR, CLSR, NDLR, SVM, and KNN on GT
having a small number of samples and AR having relatively
large number of samples. Second, KNDLR is much faster
than NNLS and SRC, especially on AR. Third, it is shown
that the computing time of KNDLR on AR is only a little
longer than that on GT, while the computing time of some
methods on AR, such as NNLS and SRC, is far longer than
that on GT. In particular, SRC becomes very time-consuming
when the number of samples is large. One of the reasons
for the efficiency of our methods is that, in our approach,
the procedure of learning is executed only once, then the
results are saved for classifying all new samples. SRC needs

to learn a linear combination of all training samples for every
new sample; thus when the number of samples is large, SRC
becomes extremely time-consuming. This demonstrates that
our KNDLR is efficient.

5.8. Parameter 𝜆 and Convergence. In order to further illus-
trate the properties of KNDLR, the classification accuracies
corresponding to different values of 𝜆 and convergence are
shown in Figures 7 and 8, respectively, where (#𝑛) represents
that the first 𝑛 samples were utilized for training and the
remaining for testing. KNDLR, DLSR, and CLSR are similar
to each other to some degree. All of them apply the least
squares regression and have a regularization parameter 𝜆.
In Figure 7, it is shown that KNDLR is relatively more
robust to 𝜆 than DLSR and CLSR. Especially, for GT, FERET,
AR, and MNIST, the classification accuracies obtained by
utilizing KNDLR vary in a small range. It is also observed
that a relative large value of 𝜆 cannot bring more preferable
classification accuracy and 𝜆 could be limited to [10−4, 0.5].
In real application, the cross-validation method is utilized
to determine the optimal value of 𝜆 from this range. More
importantly, in Figure 8, it is shown that KNDLR converges
very fast on six datasets, especially on FERET database.

6. Conclusions

This paper proposed a kernel negative 𝜀 dragging linear
regression method for pattern classification, which simulta-
neously integrated the negative 𝜀 dragging technique and the
kernel method into linear regression for robust pattern classi-
fication under the condition that the consistency and compat-
ibility between the test samples and training samples are poor.
The negative 𝜀 dragging technique learns a classifier with a
propermargin from noised and deformable data.Meanwhile,
the kernel approach can make linearly nonseparable samples
become linearly separable. Based on effect of the negative𝜀 dragging technique and kernel collaboration, our method
can better perform classification for noised and deformable
data. Comprehensive experiments on six different datasets
demonstrate that proposed KNDLR outperforms existing LR
method for classification and some other commonly used
methods such as SVM, NNLS, SRC, and LRC, and our
KNDLR is efficient.



Complexity 11

KNDLR
DLSR
CLSR

30

40

50

60

70

80

Cl
as

si�
ca

tio
n 

ac
cu

ra
y 

(%
)

10
0

10
−2

10
−1

10
−3

10
−4



(a) GT (#8)

20

40

60

80

Cl
as

si�
ca

tio
n 

ac
cu

ra
y 

(%
)

KNDLR
DLSR
CLSR

10
0

10
−2

10
−1

10
−3

10
−4



(b) FERET (#5)

0

10

20

30

40

50

Cl
as

si�
ca

tio
n 

ac
cu

ra
y 

(%
)

KNDLR
DLSR
CLSR

10
0

10
−2

10
−1

10
−3

10
−4



(c) LFW (#8)

40

50

60

70
Cl

as
si�

ca
tio

n 
ac

cu
ra

y 
(%

)

KNDLR
DLSR
CLSR

10
0

10
−2

10
−1

10
−3

10
−4



(d) AR (#3)

30

35

40

45

50

55

60

Cl
as

si�
ca

tio
n 

ac
cu

ra
y 

(%
)

KNDLR
DLSR
CLSR

10
0

10
−2

10
−1

10
−3

10
−4



(e) YaleB (#7)

30

40

50

60

70

80

90

Cl
as

si�
ca

tio
n 

ac
cu

ra
y 

(%
)

KNDLR
DLSR
CLSR

10
0

10
−2

10
−1

10
−3

10
−4



(f) MNIST

Figure 7: The classification accuracies (%) versus value 𝜆 on the six datasets.



12 Complexity

Table 6: Accuracies (%) of different methods on the MNIST database.

Alg. Our method DLSR CLSR NNLS 𝐾-SVM KNN SRC LRC NDLR
Accur. 91.5 58.60 77.70 90.25 86.25 88.90 84.50 82.70 79.00

KNDLR

4

6

8

10

12

14

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

50 100 150 200 250 3000
Number of iterations

(a) GT (#8)
KNDLR

0

5

10

15

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

2 4 6 8 10 120
Number of iterations

(b) FERET (#5)

KNDLR

0

100

200

300

400

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

50 100 150 200 250 3000
Number of iterations

(c) LFW (#8)
KNDLR

10

20

30

40

50

60

70

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

50 100 150 200 250 3000
Number of iterations

(d) AR (#3)

KNDLR

2

4

6

8

10

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

50 100 150 200 250 3000
Number of iterations

(e) YaleB (#7)
KNDLR

5

10

15

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

50 100 150 200 250 3000
Number of iterations

(f) MNIST

Figure 8: Convergence curves of KNDLR on the six datasets.



Complexity 13

Table 7: Computing time (s) of different methods on the GT
database.

Number of training
samples per class 5 6 7 8 9 10

Our method 1.94 2.41 2.72 3.24 3.69 4.21
DLSR 3.67 4.01 4.06 4.24 4.46 4.65
CLSR 1.80 2.01 1.80 1.85 1.84 1.88
NNLS 7.56 10.71 13.54 16.46 18.99 22.08
SVM 0.41 0.50 0.60 0.70 0.80 0.90
KNN 0.75 0.80 0.85 0.85 0.88 0.80
SRC 63.94 77.34 94.32 103.43 115.84 124.28
LRC 3.63 3.44 3.58 3.44 3.52 3.35
NDLR 3.72 3.90 4.06 4.25 4.39 4.60

Table 8: Computing time (s) of different methods on the AR
database.

Number of training
samples per class 1 2 3 4 5

Our method 2.88 5.76 8.62 12.10 14.74
DLSR 18.28 19.69 21.17 22.76 24.20
CLSR 10.30 10.46 10.62 10.73 10.84
NNLS 14.70 50.14 120.81 251.74 447.02
SVM 1.41 2.55 3.67 4.88 6.04
KNN 3.16 6.24 10.18 23.05 23.99
SRC 231.48 803.65 1564.73 2375.6 3616.28
LRC 21.83 32.54 41.38 48.06 62.64
NDLR 18.25 19.81 21.16 22.73 24.19

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (nos. 61672333, 61402274, and 41471280),
the Program of Key Science and Technology Innovation
Team in Shaanxi Province (no. 2014KTC-18), the Key Science
and Technology Program of Shaanxi Province, China (no.
2016GY-081), the Fundamental Research Funds for the Cen-
tral Universities (no. 2017CSY024), the Industry University
Cooperative Education Project of Higher Education Depart-
ment of the Ministry of Education (no. 201701023062), and
the Interdisciplinary Incubation Project of Learning Science
of Shaanxi Normal University.

References

[1] T. Strutz, Data fitting and uncertainty: a practical introduction
to weighted least squares and beyond, Vieweg, Wiesbaden,
Germany, 2010.

[2] S.Wold, A. Ruhe, H.Wold, andW. J. Dunn III, “The collinearity
problem in linear regression. The Partial Least Squares (PLS)
approach to generalized inverses,” SIAM Journal on Scientific
and Statistical Computing, vol. 5, no. 3, pp. 735–743, 1984.

[3] Y. Li and A. Ngom, “Nonnegative least-squares methods for
the classification of high-dimensional biological data,” IEEE
Transactions on Computational Biology and Bioinformatics, vol.
10, no. 2, pp. 447–456, 2013.

[4] Y. Xu, X. Fang, Q. Zhu, Y. Chen, J. You, and H. Liu, “Modified
minimum squared error algorithm for robust classification and
face recognition experiments,” Neurocomputing, vol. 135, pp.
253–261, 2014.

[5] C. Zhou, W. Lu, P. Zhang, J. Wu, Y. Hu, and L. Guo, “On
the minimum differentially resolving set problem for diffusion
source inference in networks,” in Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pp. 79–85, 2016.

[6] C. Xu, D. Tao, Y. Li, and C. Xu, “Large-margin multi-view
Gaussian process,” Multimedia Systems, vol. 21, no. 2, pp. 147–
157, 2014.

[7] U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel, “Efficient
co-regularised least squares regression,” in Proceedings of the
Twenty-Third International Conference (ICML 2006), pp. 137–
144, Carnegie Mellon University, Pittsburgh, USA, June 2006.

[8] B. Du, M. Zhang, L. Zhang, R. Hu, and D. Tao, “PLTD: Patch-
Based Low-Rank Tensor Decomposition for Hyperspectral
Images,” IEEE Transactions onMultimedia, vol. 19, no. 1, pp. 67–
79, 2017.

[9] T. Liu, M. Gong, and D. Tao, “Large-Cone Nonnegative Matrix
Factorization,” IEEE Transactions on Neural Networks and
Learning Systems, 2016.

[10] C. Liu, C. Zhou, J. Wu, H. Xie, Y. Hu, and L. Guo, “CPMF:
A collective pairwise matrix factorization model for upcoming
event recommendation,” in Proceedings of the 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 1532–1539,
Anchorage, AK, USA, May 2017.

[11] S. M. Xiang, F. P. Nie, and C. S. Zhang, “Regression reformu-
lations of LLE and LTSA with locally linear transformation,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 41, no. 5, pp. 1250–1262, 2011.

[12] F. P. Nie, H. Wang, H. Huang, and C. Ding, “Adaptive loss
minimization for semi-supervised elastic embedding,” in Pro-
ceedings of the in proceedings of the twenty-third international
joint conference on artificial intelligence, 2013.

[13] X. Z. Fang, Y.Xu,X. Li, Z. Lai, andW.K.Wong, “Learning a non-
negative sparse graph for linear regression,” IEEE Transactions
on Image Processing, vol. 24, no. 9, pp. 2760–2771, 2015.

[14] S. Liu, L. Li, Y. Peng, G. Qiu, and T. Lei, “Improved sparse
representation method for image classification,” IET Computer
Vision, vol. 11, no. 4, pp. 319–330, 2017.

[15] T. Strutz, Data Fitting and Uncertainty, Vieweg, Wiesbaden,
Germany, 2010.

[16] B. Du and L. Zhang, “A discriminative metric learning based
anomaly detection method,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 52, no. 11, pp. 6844–6857, 2014.

[17] T. Liu and D. Tao, “On the performance of Manhattan nonneg-
ative matrix factorization,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 27, no. 9, pp. 1851–1863, 2016.

[18] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao,
“Stacked Convolutional Denoising Auto-Encoders for Feature
Representation,” IEEE Transactions on Cybernetics, vol. 47, no.
4, pp. 1017–1027, 2017.

[19] J.Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y.Ma, “Robust
face recognition via sparse representation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp.
210–227, 2009.



14 Complexity

[20] Y. Xu,D. Zhang, J. Yang, and J. Y. Yang, “A two-phase test sample
sparse representation method for use with face recognition,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 21, no. 9, pp. 1255–1262, 2011.

[21] Y. Xu, Q. Zhu, Z. Fan, D. Zhang, J. Mi, and Z. Lai, “Using the
idea of the sparse representation to perform coarse-to-fine face
recognition,” Information Sciences, vol. 238, pp. 138–148, 2013.

[22] S. Liu, Y. Peng, X. Ben, W. Yang, and G. Qiu, “A novel label
learning algorithm for face recognition,” Signal Processing, vol.
124, pp. 141–146, 2016.

[23] I. Naseem, R. Togneri, and M. Bennamoun, “Linear regression
for face recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 11, pp. 2106–2112, 2010.

[24] Z. Zhang, Y. Xu, J. Yang, X. Li, andD. Zhang, “A survey of sparse
representation: algorithms and applications,” IEEEAccess, vol. 3,
pp. 490–530, 2015.

[25] S. Xiang, F.Nie,G.Meng,C. Pan, andC. Zhang, “Discriminative
least squares regression for multiclass classification and feature
selection,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 11, pp. 1738–1754, 2012.

[26] Q. Li, B. Xie, J. You, W. Bian, and D. Tao, “Correlated logistic
model with elastic net regularized for multilabel image classi-
fication,” IEEE Transactions on Image Processing, vol. 25, no. 8,
pp. 3801–3813, 2016.

[27] C. Gong, D. Tao, W. Liu, L. Liu, and J. Yang, “Label propagation
via teaching-to-learn and learning-to-teach,” IEEE Transactions
on Neural Networks Learning Systems, vol. 28, no. 6, pp. 1452–
1465, 2017.

[28] C. Gong, T. Liu, D. Tao, K. Fu, E. Tu, and J. Yang, “Deformed
Graph Laplacian for Semisupervised Learning,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 10,
pp. 2261–2274, 2015.

[29] C. Xu, D. Tao, and C. Xu, “Large-Margin Multi-Label Causal
Feature Learning,” in Proceedings of the 29th Conference on
Artificial Intelligence (AAAI ’15), pp. 1924–1930, 2015.

[30] T. Liu, D. Tao, M. Song, and S. J. Maybank, “Algorithm-depend-
ent generalization bounds for multi-task learning,” IEEE Trans-
actions on Pattern Analysis andMachine Intelligence, vol. 39, no.
2, article A4, pp. 227–241, 2017.

[31] C. J. C. Burges, “A tutorial on support vector machines for pat-
tern recognition,”DataMining and Knowledge Discovery, vol. 2,
no. 2, pp. 121–167, 1998.

[32] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222,
2004.

[33] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear compo-
nent analysis as a kernel eigenvalue problem,”Neural Computa-
tion, vol. 10, no. 5, pp. 1299–1319, 1998.

[34] Y. Xu, D. Zhang, F. Song, J.-Y. Yang, Z. Jing, and M. Li, “A
method for speeding up feature extraction based on KPCA,”
Neurocomputing, vol. 70, no. 4–6, pp. 1056–1061, 2007.

[35] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Muller,
“Fisher discriminant analysis with kernels,” in Proceedings of the
9th IEEE Signal Processing SocietyWorkshop onNeural Networks
for Signal Processing (NNSP ’99), pp. 41–48,Madison,Wis, USA,
August 1999.

[36] K. Yu, L. Ji, and X. Zhang, “Kernel nearest-neighbor algorithm,”
Neural Processing Letters, vol. 15, no. 2, pp. 147–156, 2002.

[37] L. Zhang, W.-D. Zhou, P.-C. Chang et al., “Kernel sparse repre-
sentation-based classifier,” IEEE Transactions on Signal Process-
ing, vol. 60, no. 4, pp. 1684–1695, 2012.

[38] Y. Xu, Z. Fan, and Q. Zhu, “Feature space-based human face
image representation and recognition,”Optical Engineering, vol.
51, no. 1, Article ID 017205, 2012.

[39] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf,
“An introduction to kernel-based learning algorithms,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 12,
no. 2, pp. 181–201, 2001.

[40] M. Kim, “Accelerated max-margin multiple kernel learning,”
Applied Intelligence, vol. 38, no. 1, pp. 45–57, 2013.

[41] C. Xu, T. Liu, D. Tao, and C. Xu, “Local Rademacher complexity
for multi-label learning,” IEEE Transactions on Image Process-
ing, vol. 25, no. 3, pp. 1495–1507, 2016.

[42] K. Petersen and M. Pedersen, The Matrix Cookbook, 2006,
http://matrixcookbook.com/.

[43] Y. Xu, X. Z. Fang, X. L. Li, J. Yang, J. You, and H. Liu, “Data
uncertainty in face recognition,” IEEE Transactions on Cyber-
netics, 2014.

http://matrixcookbook.com/


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


