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This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete
delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By
employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval,
some improved delay-dependent stability conditions are presented in terms of linearmatrix inequalities (LMIs). Finally, a numerical
example is provided to show the merits and the effectiveness of the proposed methods.

1. Introduction

During the past decades, recurrent neural network (RNN)
has been successfully applied in many fields, such as signal
processing, pattern classification, associativememory design,
and optimization. Therefore, the study of RNN has attracted
considerable attention and various issues of neural networks
have been investigated (see, e.g., [1–4] and the references
therein). As the integration and communication delay is
unavoidably encountered in implementation of RNN and is
often the main source of instability and oscillations, much
efforts have been expended on the problem of stability of
RNNs with time delays (see, e.g., [5–14]).

RNNs can be classified as local field networks and static
neural networks based on the difference of basic variables
(local field states or neuron states) [15]. Recently, the stability
of static recurrent neural networks (SRNNs) with time-
varying delay was investigated in [16], where sufficient con-
ditions were obtained guaranteeing the global asymptotic
stability of the neural network. Nevertheless, some negative
semi-definite terms were ignored in [16], which lead to
the conservatism of the derived result. By retaining these

terms and considering the low bound of the delay, some
improved stability conditions were derived for SRNNs with
interval time-varying delay in [17]. In [18], an input-output
frameworkwas proposed to investigate the stability of SRNNs
with linear fractional uncertainties and delays. Based on the
augmented Lyapunov-Krasovskii functional approach, some
new conditions were derived to assure the stability of SRNNs
in [19–22], but the results can be further improved.

In this paper, the problemof stability of SRNNswith time-
varying delay is investigated based on the complete delay-
decomposing approach [12]. By employing a reciprocally con-
vex technique, some sufficient conditions are derived in the
forms of linear matrix inequalities (LMIs). The effectiveness
and the merit are illustrated by a numerical example.

Notations. Through this paper, 𝑁𝑇 and 𝑁
−1 stand for the

transpose and the inverse of the matrix 𝑁, respectively;
𝑃 > 0 (𝑃 ≥ 0) means that the matrix 𝑃 is symmetric
and positive definite (semipositive definite); R𝑛 denotes the
𝑛-dimensional Euclidean space; diag{⋅ ⋅ ⋅ } denotes a block-
diagonal matrix; ‖𝑧‖ is the Euclidean norm of 𝑧; the symbol ∗
within amatrix represents the symmetric terms of thematrix;
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for example, [𝑋 𝑌
∗ 𝑍

] = [
𝑋 𝑌

𝑌
𝑇
𝑍
].Matrices, if not explicitly stated,

are assumed to have compatible dimensions.

2. System Description

Consider the following delayed neural network:

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝑓 (𝑊𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐽) ,

𝑥 (𝑡) = 𝜙 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ R𝑛 and 𝐽 =

[𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛
]
𝑇
∈ R𝑛 denote the neuron state vector and the

input vector, respectively; 𝑓(⋅) = [𝑓
1
(⋅), 𝑓
2
(⋅), . . . , 𝑓

𝑛
(⋅)]
𝑇
∈

R𝑛 is the neuron activation function; 𝜙(𝑡) is the initial
condition; 𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) > 0 and 𝑊 are known

interconnection weight matrices; and 𝜏(𝑡) is the time-varying
delay and satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏, (2)

̇𝜏 (𝑡) ≤ 𝜇. (3)

Furthermore, the neuron activation functions satisfy the
following assumption.

Assumption 1. The neuron activation functions are bounded
and satisfy

0 ≤
𝑓
𝑖
(𝛼
1
) − 𝑓
𝑖
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝑙
𝑖
, ∀𝛼

1
, 𝛼
2
∈ R, (4)

where 𝑙
𝑖
≥ 0 for 𝑖 ∈ 1, 2, . . . , 𝑛. For simplicity, denote 𝐿 =

diag(𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
).

Under Assumption 1, there exists an equilibrium 𝑥
∗ of

(1). Hence, by the transformation 𝑧∗ = 𝑥(⋅) − 𝑥
∗, (1) can be

transformed into

𝑧̇ (𝑡) = −𝐴𝑧 (𝑡) + 𝑔 (𝑊𝑧 (𝑡 − 𝜏 (𝑡))) ,

𝑧 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(5)

where 𝑧(𝑡) = [𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡)]
𝑇 is the state vector;

𝜓(𝑡) = 𝜙(𝑡) − 𝑥
∗ is the initial condition; and the transformed

neuron activation functions 𝑔(W𝑧(⋅)) = 𝑓(𝑊𝑧(⋅)+𝑊𝑥
∗
+𝐽)−

𝑓(𝑊𝑥
∗
+ 𝐽) satisfies

0 ≤
𝑔
𝑖 (𝛼)

𝛼
≤ 𝑙
𝑖
, ∀𝛼 ̸= 0; 𝑔

𝑖 (0) = 0, 𝑖 ∈ 1, 2, . . . , 𝑛. (6)

Notice that there exists an equilibrium point 𝑧(𝑡) ≡ 0

in neural network (5), corresponding to the initial condition
𝜓(𝑡) ≡ 0. Based on the analysis above, the problem of
analyzing the stability of system (1) at equilibrium is changed
into a problem of analyzing the zero stability of system (5).

Before presenting our main results, we first introduce
two lemmas, which are useful in the stability analysis of the
considered neural network.

Lemma 2 (see [23]). Let𝑀 = 𝑀
𝑇
> 0 be a constant real 𝑛×𝑛

matrix, and suppose 𝑥̇ : [−ℎ, 0] 󳨃→ R𝑛 with ℎ > 0 such that the
subsequent integration is well defined. Then, one has

−ℎ∫

𝑡

𝑡−ℎ

𝑥̇
𝑇
(𝑠)𝑀𝑥̇ (𝑠) 𝑑𝑠 ≤ 𝜁

𝑇
(𝑡) [

−𝑀 𝑀

∗ −𝑀
]𝜁 (𝑡) , (7)

where 𝜁(𝑡) = col {𝑥(𝑡), 𝑥(𝑡 − ℎ)}.

Lemma 3 (see [24]). Let 𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑁
: R𝑛 󳨃→ R be given

finite functions, and they have positive values for arbitrary
value of independent variable in an open subset𝑀 of R𝑛. The
reciprocally convex combination of 𝐻

𝑖
(𝑖 = 1, 2, . . . , 𝑁) in 𝑀

satisfies

min
𝑁

∑

𝑖=1

1

𝜆
𝑖

𝐻
𝑖 (𝑡) =

𝑁

∑

𝑖=1

𝐻
𝑖 (𝑡) +max

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑖,𝑗 (𝑡) (8)

subject to

{𝜆
𝑖
> 0,

𝑁

∑

𝑖=1

𝜆
𝑖
= 1, 𝐺

𝑖,𝑗 (𝑡) : R
𝑛
󳨃→ R,

𝐺
𝑗,𝑖 (𝑡) = 𝐺

𝑖,𝑗 (𝑡) , [
𝐻
𝑖 (𝑡) 𝐺

𝑖,𝑗 (𝑡)

𝐺
𝑖,𝑗 (𝑡) 𝐻

𝑗 (𝑡)
] ≥ 0} .

(9)

3. Main Results

In the sequel, following the method proposed in [13], we
decompose the delay interval [0, 𝜏] into𝑚 equidistant subin-
tervals, where 𝑚 is a given integer; that is, [0, 𝜏] = ⋃

𝑚

𝑗=1
[(𝑗 −

1)𝛿, 𝑗𝛿] with 𝛿 = 𝜏/𝑚. Thus, for any 𝑡 ≥ 0, there should
exist an integer 𝑘 ∈ {1, 2, . . . , 𝑚}, such that 𝜏(𝑡) ∈ [(𝑘 −

1)𝛿, 𝑘𝛿]. Then the Lyapunov-Krasovskii functional candidate
is chosen as

𝑉(𝑧
𝑡
)
󵄨󵄨󵄨󵄨𝑘
:= 𝑉(𝑧

𝑡
)
󵄨󵄨󵄨󵄨𝜏(𝑡)∈[(𝑘−1)𝛿,𝑘𝛿]

,

𝑉(𝑧
𝑡
)
󵄨󵄨󵄨󵄨𝑘
= 𝑉
1
(𝑧
𝑡
) + 𝑉
2
(𝑧
𝑡
) + 𝑉
3
(𝑧
𝑡
) + 𝑉
4
(𝑧
𝑡
) + 𝑉
5
(𝑧
𝑡
)

(10)

with

𝑉
1
(𝑧
𝑡
) = 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 2

𝑛

∑

𝑖=1

𝑑
𝑖
∫

𝑊𝑖𝑧(𝑡)

0

𝑔
𝑖 (𝛼) 𝑑𝛼,

𝑉
2
(𝑧
𝑡
) = ∫

𝑡

𝑡−𝛿

𝜁
𝑇

1
(𝑠) 𝑅𝑎𝜁1 (𝑠) 𝑑𝑠,

𝑉
3
(𝑧
𝑡
) =

𝑚

∑

𝑗=1

𝛿∫

−(𝑗−1)𝛿

−𝑗𝛿

∫

𝑡

𝑡+𝜃

𝑧̇
𝑇
(𝑠) 𝑍𝑗𝑧̇ (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑧
𝑡
) =

𝑘−1

∑

𝑗=1

∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

𝜁
𝑇

2
(𝑠)Q𝑗𝜁2 (𝑠) 𝑑𝑠

+ ∫

𝑡−(𝑘−1)𝛿

𝑡−𝜏(𝑡)

𝜁
𝑇

2
(𝑠)Q𝑘𝜁2 (𝑠) 𝑑𝑠,

𝑉
5
(𝑧
𝑡
) =

𝑚

∑

𝑗=1

∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

𝑔
𝑇
(𝑊𝑧 (𝑠))𝑀𝑗𝑔 (𝑊𝑧 (𝑠)) 𝑑𝑠,

(11)
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where

𝑃 > 0, 𝐷 = diag {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} ≥ 0,

𝑅
𝑎
=

[
[
[
[

[

𝑅
11

𝑅
12

⋅ ⋅ ⋅ 𝑅
1𝑚

∗ 𝑅
22

⋅ ⋅ ⋅ 𝑅
2𝑚

∗ ∗ d
...

∗ ∗ ∗ 𝑅
𝑚𝑚

]
]
]
]

]

> 0, Q
𝑗
= [

𝑄
𝑗
𝑋
𝑗

∗ 𝑌
𝑗

] ≥ 0,

𝑍
𝑗
> 0, 𝑀

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

(12)

are to be determined, 𝜁
1
(𝑠) =

[𝑧
𝑇
(𝑠) 𝑧
𝑇
(𝑠 − 𝛿) ⋅ ⋅ ⋅ 𝑧

𝑇
(𝑠 − (𝑚 − 1)𝛿)]

𝑇

, 𝜁
2
(𝑠) =

[𝑧
𝑇
(𝑠) 𝑔
𝑇
(𝑊𝑧(𝑠))]

𝑇

, and 𝑊
𝑖
denotes the 𝑖th row of matrix

𝑊.

Remark 4. Notice that a novel term 𝑉
4
(𝑥
𝑡
) being continuous

at 𝜏(𝑡) = 𝜏
𝑘
is included in the Lyapunov-Krasovskii functional

(10), which plays an important role in reducing conservative-
ness of the derived result.

Next, we develop some new delay-dependent stability
criteria for the delayed neural networks described by (5)
and (6) with 𝜏(𝑡) satisfying (2) and (3). By employing the
Lyapunov-Krasovskii functional (10), the following theorem
is obtained.

Theorem5. For a given positive integer𝑚, scalars 𝜏 > 0 and 𝜇,
the origin of system (5) with the activation function satisfying
(6) and a time-varying delay satisfying conditions (3) is globally
asymptotically stable if there exist

𝑃 > 0, 𝑅
𝑎
=

[
[
[
[

[

𝑅
11

𝑅
12

⋅ ⋅ ⋅ 𝑅
1𝑚

∗ 𝑅
22

⋅ ⋅ ⋅ 𝑅
2𝑚

∗ ∗ d
...

∗ ∗ ∗ 𝑅
𝑚𝑚

]
]
]
]

]

> 0,

Q
𝑗
= [

𝑄
𝑗
𝑋
𝑗

∗ 𝑌
𝑗

] ≥ 0, 𝑍
𝑗
> 0, 𝑀

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

(13)

and 𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} ≥ 0, 𝑇

1
=

diag{𝑡
11
, 𝑡
12
, . . . , 𝑡

1𝑛
} ≥ 0, 𝑇

2
= diag{𝑡

21
, 𝑡
22
, . . . , 𝑡

2𝑛
} ≥ 0, and

𝐺
𝑗
, 𝑗 = 1, 2, . . . , 𝑚, with appropriate dimensions, such that,

for 𝑘 = 1, 2, . . . , 𝑚,

[
[
[
[

[

Ω
(𝑘)

11
Ω
(𝑘)

12
𝛿
1
Γ
𝑇

1
𝑍

∗ Ω
(𝑘)

22
𝛿
1
Γ
𝑇

2
𝑍

∗ ∗ −𝑍

]
]
]
]

]

< 0, (14)

[
𝑍
𝑘
𝐺
𝑘

∗ 𝑍
𝑘

] > 0, (15)

where

Ω
(𝑘)

11
= Φ
11
+ Φ
(𝑘)

11
+ Λ
(𝑘)

1
,

Ω
(𝑘)

12
= Φ
12
+ Λ
(𝑘)

2
,

Ω
(𝑘)

22
= Φ
22
+ Λ
(𝑘)

3
,

Φ
11

=

[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 ⋅ ⋅ ⋅ 0 0

∗ 𝜑
11

𝜑
12

𝜑
13

⋅ ⋅ ⋅ 𝜑
1𝑚

0

∗ ∗ 𝜑
22

𝜑
23

⋅ ⋅ ⋅ 𝜑
2𝑚

−𝑅
1𝑚

∗ ∗ ∗ 𝜑
33

⋅ ⋅ ⋅
...

...
∗ ∗ ∗ ∗ d 𝜑

(𝑚−1)𝑚
−𝑅
(𝑚−2)𝑚

∗ ∗ ∗ ∗ ⋅ ⋅ ⋅ 𝜑
𝑚𝑚

𝑍
𝑚
− 𝑅
(𝑚−1)𝑚

∗ ∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ −𝑍
𝑚
− 𝑅
𝑚𝑚

]
]
]
]
]
]
]
]
]
]

]

,

Φ
12
=

[
[
[
[
[
[

[

𝑊
𝑇
𝐿𝑇
2
0 0 ⋅ ⋅ ⋅ 0

𝑃𝑊 0 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

,

Φ
22
=

[
[
[
[
[
[

[

𝛽
1
𝑊
𝑇
𝐷 ⋅ ⋅ ⋅ 0 0

∗ 𝛽
2

⋅ ⋅ ⋅ 0 0

...
... d

...
...

∗ ∗ ⋅ ⋅ ⋅ 𝛽
𝑚+1

0

∗ ∗ ⋅ ⋅ ⋅ ∗ 𝛽
𝑚+2

]
]
]
]
]
]

]

,

Φ
(𝑘)

11
= (𝜓
(𝑘)

𝑖𝑗
)
(𝑚+2)×(𝑚+2)

+ (𝜓
(𝑘)

𝑖𝑗
)
𝑇

(𝑚+2)×(𝑚+2)
,

Λ
(𝑘)

1
= diag {Λ(𝑘)

11
, Λ
(𝑘)

22
, . . . , Λ

(𝑘)

2(𝑚+2)
} ,

Λ
(𝑘)

2
= diag {Λ(𝑘)

21
, Λ
(𝑘)

12
, . . . , Λ

(𝑘)

1(𝑚+2)
} ,

Λ
(𝑘)

3
= diag {Λ(𝑘)

31
, Λ
(𝑘)

32
, . . . , Λ

(𝑘)

3(𝑚+2)
} ,

Γ
1
= [0 −𝐴 0 ⋅ ⋅ ⋅ 0] ,

Γ
2
= [𝐼 0 ⋅ ⋅ ⋅ 0] ,

𝑍 =

𝑚

∑

𝑗=1

𝑍
𝑗

(16)
with
𝜑
𝑖𝑗

=

{{{{{{{{{

{{{{{{{{{

{

𝑃𝐴 + 𝐴
𝑇
𝑃 + 𝑅

11
− 𝑍
1
, 𝑖 = 𝑗 = 1,

𝑅
12
+ 𝑍
1
, 𝑖 = 1, 𝑗 = 2,

𝑅
𝑖𝑗
, 𝑖 = 1, 3 ≤ 𝑗 ≤ 𝑚,

𝑅
𝑖𝑗
− 𝑅
(𝑖−1)(𝑗−1)

− 𝑍
𝑖
− 𝑍
𝑖−1
, 𝑖 = 𝑗 = 2, 3, . . . , 𝑚,

𝑅
𝑖𝑗
− 𝑅
(𝑖−1)(𝑗−1)

+ 𝑍
𝑖
, 2 ≤ 𝑖 ≤ 𝑚 − 1, 𝑗 = 𝑖 + 1,

𝑅
𝑖𝑗
− 𝑅
(𝑖−1)(𝑗−1)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
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𝛽
𝑗
=

{{{{

{{{{

{

−2𝑇
2
, 𝑗 = 1,

−2𝑇
1
+𝑀
1
, 𝑗 = 2,

𝑀
𝑗−1

−𝑀
𝑗−2
, 3 ≤ 𝑗 ≤ 𝑚 + 1,

−𝑀
𝑚
, 𝑗 = 𝑚 + 2,

𝜓
(𝑘)

𝑖𝑗
=

{{{{{{{

{{{{{{{

{

−𝑍
𝑘
+ 𝐺
𝑘
, 𝑖 = 𝑗 = 1,

𝑍
𝑘
− 𝐺
𝑇

𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 1,

𝑍
𝑘
− 𝐺
𝑘
, 𝑖 = 1, 𝑗 = 𝑘 + 2,

−𝑍
𝑘
+ 𝐺
𝑘
, 𝑖 = 𝑘 + 1, 𝑗 = 𝑘 + 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Λ
(𝑘)

1𝑗
=

{{{{

{{{{

{

− (1 − 𝜇)𝑄
𝑘
, 𝑗 = 1,

𝑄
1
, 𝑗 = 2,

𝑄
𝑗−1

− 𝑄
𝑗−2
, 3 ≤ 𝑗 ≤ 𝑘 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Λ
(𝑘)

2𝑗
=

{{{{

{{{{

{

− (1 − 𝜇)𝑋
𝑘
, 𝑗 = 1,

𝑋
1
+𝑊
𝑇
𝐿𝑇
1
− 𝐴
𝑇
𝑊
𝑇
𝐷, 𝑗 = 2,

𝑋
𝑗−1

− 𝑋
𝑗−2
, 3 ≤ 𝑗 ≤ 𝑘 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Λ
(𝑘)

3𝑗
=

{{{{

{{{{

{

− (1 − 𝜇)𝑌
𝑘
, 𝑗 = 1,

𝑌
1
, 𝑗 = 2,

𝑌
𝑗−1

− 𝑌
𝑗−2
, 3 ≤ 𝑗 ≤ 𝑘 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(17)

Proof. From Assumption 1, it can be deduced that, for any
diagonal matrices 𝑇

𝑖
≥ 0, 𝑖 = 1, 2,

0 ≤ 2𝑔
𝑇
(𝑊𝑧 (𝑡)) 𝑇1 [𝐿𝑊𝑧 (𝑡) − 𝑔 (𝑊𝑧 (𝑡))] ,

0 ≤ 2𝑔
𝑇
(𝑊𝑧 (𝑡 − 𝜏 (𝑡)))

× 𝑇
2
[𝐿𝑊𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑔 (𝑊𝑧 (𝑡 − 𝜏 (𝑡)))] .

(18)

Now, calculating the derivative of 𝑉(𝑧
𝑡
)|
𝑘
along the

solutions of neural network (5) yields

𝑉̇(𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨𝑘
= 𝑉̇
1
(𝑧
𝑡
) + 𝑉̇
2
(𝑧
𝑡
) + 𝑉̇
3
(𝑧
𝑡
) + 𝑉̇
4
(𝑧
𝑡
) , (19)

where

𝑉̇
1
(𝑧
𝑡
) = 2𝑧

𝑇
(𝑡) 𝑃𝑧̇ (𝑡) + 2𝑔

𝑇
(𝑊𝑧 (𝑡))𝐷𝑊𝑧̇ (𝑡) ,

𝑉̇
2
(𝑧
𝑡
) = 𝜁
𝑇

1
(𝑡) 𝑅𝑎𝜁1 (𝑡) − 𝜁

𝑇

1
(𝑡 − 𝛿) 𝑅𝑎𝜁1 (𝑡 − 𝛿) ,

𝑉̇
3
(𝑧
𝑡
) =

𝑚

∑

𝑗=1

{𝛿
2
𝑧̇
𝑇
(𝑡) 𝑍𝑗𝑧̇ (𝑡) − 𝛿∫

𝑡−(𝑗−1)𝛿

𝑡−𝑗𝛿

𝑧̇
𝑇
(𝑠) 𝑍𝑗𝑧̇ (𝑠) 𝑑𝑠} ,

𝑉̇
4
(𝑧
𝑡
) =

𝑘−1

∑

𝑗=1

𝜉
𝑇
(𝑡 − 𝑗𝛿) (Q

𝑗+1
− Q
𝑗
) 𝜉 (𝑡 − 𝑗𝛿) + 𝜉

𝑇
(𝑡)Q1𝜉 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝜉
𝑇
(𝑡 − 𝜏 (𝑡))Q𝑘𝜉 (𝑡 − 𝜏 (𝑡))

≤

𝑘−1

∑

𝑗=1

𝜉
𝑇
(𝑡 − 𝑗𝛿) (Q

𝑗+1
− Q
𝑗
) 𝜉 (𝑡 − 𝑗𝛿) 𝜉

𝑇
(𝑡)Q1𝜉 (𝑡)

− (1 − 𝜇) 𝜉
𝑇
(𝑡 − 𝜏 (𝑡))Q𝑘𝜉 (𝑡 − 𝜏 (𝑡)) ,

𝑉̇
5
(𝑧
𝑡
) =

𝑚−1

∑

𝑗=1

𝑔
𝑇
(𝑊𝑧 (𝑡 − 𝑗𝛿)) (𝑀

𝑗+1
−𝑀
𝑗
) 𝑔 (𝑊𝑧 (𝑡 − 𝑗𝛿))

+ 𝑔
𝑇
(𝑊𝑧 (𝑡))𝑀1𝑔 (𝑊𝑧 (𝑡))

− 𝑔
𝑇
(𝑊𝑧 (𝑡 − 𝜏))𝑀𝑚𝑔 (𝑊𝑧 (𝑡 − 𝜏)) .

(20)

By Lemmas 2 and 3, it can be deduced that

− 𝛿∫

𝑡−(𝑘−1)𝛿

𝑡−𝑘𝛿

𝑥̇
𝑇
(𝑠) 𝑍𝑘𝑥̇ (𝑠) 𝑑𝑠

= −𝛿∫

𝑡−(𝑘−1)𝛿

𝑡−𝜏(𝑡)

𝑥̇
𝑇
(𝑠) 𝑍𝑘𝑥̇ (𝑠) 𝑑𝑠

− 𝛿∫

𝑡−𝜏(𝑡)

𝑡−𝑘𝛿

𝑥̇
𝑇
(𝑠) 𝑍𝑘𝑥̇ (𝑠) 𝑑𝑠

≤ −
𝛿

𝜏 (𝑡) − (𝑘 − 1) 𝛿
[
𝑥 (𝑡 − (𝑘 − 1) 𝛿)

𝑥 (𝑡 − 𝜏 (𝑡))
]

𝑇

[
𝑍
𝑘
−𝑍
𝑘

∗ 𝑍
𝑘

]

× [
𝑥 (𝑡 − (𝑘 − 1) 𝛿)

𝑥 (𝑡 − 𝜏 (𝑡))
]

−
𝛿

𝑘𝛿 − 𝜏 (𝑡)
[
𝑥(𝑡 − 𝜏(𝑡))

𝑥(𝑡 − 𝑘𝛿)
]

𝑇

[
𝑍
𝑘
−𝑍
𝑘

∗ 𝑍
𝑘

] [
𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − 𝑘𝛿)
]

≤ −[
𝑥(𝑡 − (𝑘 − 1)𝛿) − 𝑥(𝑡 − 𝜏(𝑡))

𝑥(𝑡 − 𝜏(𝑡)) − 𝑥(𝑡 − 𝑘𝛿)
]

𝑇

[
𝑍
𝑘
𝐺
𝑘

∗ 𝑍
𝑘

]

× [
𝑥 (𝑡 − (𝑘 − 1) 𝛿) − 𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝑘𝛿)
]

= 𝜉
𝑇
(𝑡) [

[

−2𝑍
𝑘
+ 𝐺
𝑘
+ 𝐺
𝑇

𝑘
𝑍
𝑘
− 𝐺
𝑇

𝑘
𝑍
𝑘
− 𝐺
𝑘

∗ −𝑍
𝑘

𝐺
𝑘

∗ ∗ −𝑍
𝑘

]

]

𝜉 (𝑡) ,

(21)

where 𝜉𝑇 = [𝑥(𝑡 − 𝜏(𝑡))
𝑇
𝑥(𝑡 − (𝑘 − 1)𝛿)

𝑇
𝑥(𝑡 − 𝑘𝛿)

𝑇
].

Next, we introduce a new vector as

𝜁 (𝑡) = [𝜁
𝑇

1
(𝑡) 𝜁
𝑇

2
(𝑡)]
𝑇

, (22)
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where

𝜁
1 (𝑡) =

[
[
[
[
[
[
[
[

[

𝑧 (𝑡 − 𝜏 (𝑡))

𝑧 (𝑡)

𝑧 (𝑡 − 𝛿)

𝑧 (𝑡 − 2𝛿)

...
𝑧 (𝑡 − 𝑚𝛿)

]
]
]
]
]
]
]
]

]

, 𝜁
2 (𝑡) =

[
[
[
[
[
[
[
[

[

𝑔 (𝑊𝑧 (𝑡 − 𝜏 (𝑡)))

𝑔 (𝑊𝑧 (𝑡))

𝑔 (𝑊𝑧 (𝑡 − 𝛿))

𝑔 (𝑊𝑧 (𝑡 − 2𝛿))

...
𝑔 (𝑊𝑧 (𝑡 − 𝑚𝛿))

]
]
]
]
]
]
]
]

]

.

(23)

Then, rewrite system (5) as

𝑧̇ (𝑡) = [Γ1 Γ2] 𝜁 (𝑡) . (24)

Adding the right sides of (18) to (19) and applying (21)
yield

𝑉̇(𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨𝑘
= 𝜁(𝑡)

𝑇
(𝑡) [

[

Ω
(𝑘)
+ 𝛿
2
Γ
𝑇

𝑚

∑

𝑗=1

𝑍
𝑗
Γ]

]

𝜁 (𝑡) , (25)

where

Ω
(𝑘)

= [

[

Ω
(𝑘)

11
Ω
(𝑘)

12

∗ Ω
(𝑘)

22

]

]

,

Γ = [Γ1 Γ2] .

(26)

For all 𝑘 = 1, . . . , 𝑚, if Ω(𝑘) + 𝛿
2
Γ
𝑇
∑
𝑚

𝑗=1
𝑍
𝑗
Γ < 0, which is

equivalent to LMIs (14) in the sense of Schur complement
[25], then 𝑉̇(𝑧

𝑡
)|
𝑘

< 0 for any 𝜁(𝑡) ̸= 0. Note that 𝑉(𝑧
𝑡
)

is continuous at 𝜏(𝑡) = 𝜏
𝑘
, so the system (5) is globally

asymptotically stable. This completes the proof.

Remark 6. In the proof ofTheorem 5, 𝜏(𝑡)− (𝑘−1)𝛿 and 𝑘𝛿−
𝜏(𝑡) are not simply enlarged to 𝛿 as [16] does. By employing
reciprocally convex approach to consider this information,
Theorem 5 may be less conservative, which will be verified
by the simulation results in the next section.

Remark 7. In previous works such as [16, 19], considerable
attention has been paid to the case that the derivative of the
time-varying delay ̇𝜏(𝑡) satisfies (3). However, in the case of
̇𝜏(𝑡) satifying

̇𝜏 (𝑡) ≤ 𝜇
𝑘
, 𝜏 (𝑡) ∈ [𝜏𝑘−1, 𝜏𝑘] , 𝑘 = 1, 2, . . . , 𝑚, (27)

the treatment in [16, 19] means that ̇𝜏(𝑡) in (27) is enlarged
to ̇𝜏(𝑡) ≤ 𝜇 = max{𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑚
}, which may lead to

conservativeness inevitably. By contrast, the case above can be
taken fully into account by replacing 𝜇 with 𝜇

𝑘
inTheorem 5.

For the case that the time-varying delay 𝜏(𝑡) is nondiffer-
entiable or ̇𝜏(𝑡) is unknown, setting Q

𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑚,

in Theorem 5, a delay-dependent and rate-independent
criterion is easily derived as follows.

Corollary 8. For a given positive integer 𝑚, scalars 𝜏 > 0,
the origin of system (5) with the activation function satisfying

(6) and a time-varying delay satisfying condition (2) is globally
asymptotically stable if there exist

𝑃 > 0, 𝑅
𝑎
=

[
[
[
[

[

𝑅
11

𝑅
12

⋅ ⋅ ⋅ 𝑅
1𝑚

∗ 𝑅
22

⋅ ⋅ ⋅ 𝑅
2𝑚

∗ ∗ d
...

∗ ∗ ∗ 𝑅
𝑚𝑚

]
]
]
]

]

> 0,

𝑍
𝑗
> 0, 𝑀

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

𝐷 = diag {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} ≥ 0,

𝑇
1
= diag {𝑡

11
, 𝑡
12
, . . . , 𝑡

1𝑛
} ≥ 0,

𝑇
2
= diag {𝑡

21
, 𝑡
22
, . . . , 𝑡

2𝑛
} ≥ 0,

𝐺
𝑗
, 𝑗 = 1, 2, . . . , 𝑚,

(28)

with appropriate dimensions, such that, for 𝑘 = 1, 2, . . . , 𝑚,
LMIs in (15) and (29) hold

[
[
[
[

[

Φ
11
+ Φ
(𝑘)

11
Φ
21

𝛿
1
Γ
𝑇

1
𝑍

∗ Φ
22

𝛿
1
Γ
𝑇

2
𝑍

∗ ∗ −𝑍

]
]
]
]

]

< 0, (29)

where Φ
11
, Φ
12
, Φ
22
, Φ
(𝑘)

11
, Γ
1
, and Γ

2
are defined in Theo-

rem 5.

4. Numerical Examples

In this section, we will provide a numerical example to show
the effectiveness of the presented criteria.

Example 1. Consider neural network (1) with the following
parameters:

𝐴 = [

[

7.3458 0 0

0 6.9987 0

0 0 5.5949

]

]

,

𝑊 = [

[

13.6014 −2.9616 −0.6936

7.4736 21.6810 3.2100

0.7920 −2.6334 −20.1300

]

]

.

(30)

The activation functions satisfy (6) with

𝐿 = diag (0.3680, 0.1795, 0.2876) . (31)

This example has been discussed in [16–22]. By using
Theorem 5 and Corollary 8 with 𝑚 = 2, for various 𝜇, the
upper bounds 𝜏 that guarantee the global asymptotic stability
of neural network (1) are computed and listed in Table 1. It
can be concluded that the upper bounds obtained by our
method aremuch better than those in [16–22]. Obviously, the
conditions proposed in this paper are an improvement over
the existing ones.
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Table 1: Allowable upper bounds of ̄𝜏 for different 𝜇.

𝜇 0 0.1 0.5 0.9 Any 𝜇
[16] 1.3323 0.8245 0.3733 0.2343 0.2313
[19] 1.3325 0.8404 0.4265 0.3217 0.3211
[20] 1.3324 0.8402 0.4266 0.3225 0.3218
[17] 1.3323 0.8402 0.4264 0.3214 0.3209
[18] (𝑁 = 1) 1.5157 0.9279 0.4267 — 0.3212
[18] (𝑁 = 2) 1.5330 0.9331 0.4268 — 0.3215
[21] — 0.8411 0.4267 0.3227 0.3215
[22] 1.5575 0.9430 0.4417 0.3632 0.3632
The proposed (𝑚 = 2) 1.7685 1.0431 0.4382 0.3668 0.3644

5. Conclusions

This paper has studied the stability of SRNNs by constructing
a complete delay-decomposing Lyapunov-Krasovskii func-
tional. Some improved delay-dependent stability conditions
have been derived by utilizing a reciprocally convex tech-
nique to consider the relationship between the time-varying
delay and its varying interval, which are formulated in linear
matrix inequalities (LMIs). Finally, a numerical example has
been provided to show the effectiveness of the proposed
methods.
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