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Summary

From laboratory populations (wild/se ; wild/sf ; wild/cd and wild/multichromosomal) originated
from strains coming from a cellar and using two culture media, one standard and the other

supplemented with 10 p. 100 ethanol, strong heterosis was observed. It has been confirmed that
this heterosis cannot be explained by the maintenance of inversions in heterozygosis and that there
is a fixation of the F allele in all the populations supplemented with ethanol while all the populations
maintained in the standard culture medium remain polymorphic.
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Résumé

Polymorphismes des inversions et du locus Adh dans des populations expérimentales
de Drosophila melanogaster mutantes pour la couleur des yeux

A partir de populations de laboratoire (sauvage/se ; sauvagelsf ; sauvagelcà ; et sauvage/multi-
chromosomique) provenant de souches capturées dans une cave à vin et entretenues sur deux
milieux différents, l’un standard et l’autre avec éthanol à 10 p. 100, on a détecté une hétérosis.
On a confirmé que cette hétérosis ne pouvait pas être expliquée par le maintien des inversions en
hétérozygotie et qu’il y avait une fixation de l’allèle F dans toutes les populations élevées sur le
milieu avec éthanol alors que toutes les populations élevées sur le milieu standard restaient polyinor-
phiques.

Mots clés : D. melanogaster, inversion, Adh, mutant de couleur des yeux, éthanol.

I. Introduction

The problem of genetic variability and its maintenance in natural populations has
been studied for chromosomal and enzymatic polymorphism and, most recently, in

respect to DNA sequences in Drosophila.

At the chromosomal level, the classic works of DOBZHANSKY’S group (1951) about
the adaptive value of inversions have given numerous proofs in favour of adaptive
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variability. The environmental conditions which determine differences in the distribution
of species could also determine changes in the frequency of inversions. For example,
studies of the distribution of the ecological niches of D. melanogaster and D. simulans
show that the former, more tolerant to ethanol, is distributed both inside and outside
cellars (MCKENZIE & PARSONS, 1972-1974) ; in the same way D. melanogaster is polymor-
phic for chromosome arrangements and D. simulans is monomorphic.

Nevertheless, at enzymatic level, evidence which proves directly that polymorphisms
are subject to selection is rare, with some exceptions like the Adh polymorphism in
Drosophila (GIBSON, 1970 ; CAVENER & CLEGG, 1978, 1981 ; VAN HERREWEGE &
DAVID, 1984).
NAJERA (1985), studying the changes in gene frequency of 4 eye colour mutants

or D. melanogaster from a cellar, in competition with their wild allele from the same
habitat, observed that the 4 mutants reached different gene frequencies at equilibrium
and that the frequency of heterozygotes for each mutant was significantly higher than
expected. NAJERA & MENSUA (1985), studying viability of the same five strains at

different ethanol concentrations (between 0 and 20 p. 100) and at 2 levels of competition,
observed that in all the experimental conditions tested the mean viability of heterozygotes
(+/m) was higher than that of both homozygotes (+/+; m/m).

A study of the frequency of inversions in these populations was proposed to check
whether they could explain the heterozygote advantage found in all populations, together
with a study of the frequency of Adh alleles, due to their relation to the alcohol
metabolic pathway, to discover whether the gene frequency of the mutant in the

populations supplemented with ethanol was due to this locus.

II. Material and methods

From wild females of D. melanogaster captured in a cellar in Requena (Valencia,
Spain), 5 isofemale strains were established, 4 of them were eye colour mutants : se,
sf, cd and multichromosomal (cd, cn,?) and the other (wild strain) did not segregate
any mutant. The 5 strains were used to establish laboratory populations by crossing
50 wild individuals with 50 of each one of the mutants using 2 nutritive media : one
standard and the other supplemented with 10 p.100 ethanol. In both media the evolution
of the gene frequency of the mutants was followed during 42 generations and an
equilibrium frequency of 0.32 (se), 0.28-0.22 (sf), 0.19 (cd) and 0.09 (multichromosomal)
was reached with differences between the 2 media only in the sf mutant, which had a
higher frequency in the ethanol medium (NAJERA, 1985).

An analysis of inversions in the 8 populations described as well as in the 5 strains
(wild and four mutants) which gave rise to these populations was made.

In the same way a study was made of the frequency of the F (fast) and S (slow)
Adh alleles in the same strains and populations.

The inversions were analyzed through crosses with the « rucuca » strain (LINDSLEY
& GRELL, 1972), homozygous for standard-sequence chromosomes. Ten crosses per
population and per strain were made, analyzing seven third instar larvae from the

offspring ; thus, the probability of observing the 2 male chromosomes was 0.99. The
method used was the conventional one for the extraction of the giant salivary glands :



stain (acetic-orcein-80 p. 100, lactic acid-20 p. 100) and posterior squash. The cytological
nomenclature followed that of LINDSLEY & GRELL (1972) and the break points of the
inversions were identified by reference to the standard map of BRIDGES (1935).

Frequency of Adh alleles was determined by starch gel electrophoresis in 10 p. 100
Tris-CIH 0.05 M pH 8.6 making slots in the gel where papers impregnated with
homogenized flies were deposited. The electrophoresis was left running during 5 hours,
marking the front with bromophenol blue, and was then incubated for 3 hours at 37 °C
with a reactive mixture made by combining a) 45 ml Tris-CIH 0.05 M and 0.36 g
agar-agar and b) 0.04 g NAD+, 0.02 g MTT, 0.18 g EDTA, 4 mg PMS and 2 ml
isopropanol. After this time the reading was made. Stock references with known Adh
phenotypes were used as standards.

III. Results and discussion

The inversions found, and their frequency, are shown in table 1, following the
classification of METTLER et al. (1977). Three of the inversions found belong to the
common cosmopolitan category. The In(3R)87C-93D has not been described previously.



The break-points are located in the regions 87C and 93D (fig. 1). The double appearance
of this inversion (in a strain and in a population coming from 2 other strains) in
individuals from the same cellar, makes it very difficult to explain its appearance by
hybrid dysgenesis. In this same cellar population, GoNZALEZ (1985) found another
inversion not previously described. Other data (PREVOS-n, personal communication)
indicate a certain number of endemic inversions in cellar populations.

No mutations are included inside the inversions. Only cd is located near one
break-point of the In(3R)P but the frequency of this inversion is very low in both
media (5 p. 1()0). In the multichromosomal strain, the In(2L)t was found in the ten
individuals analyzed, which could explain a certain degree of association between the
mutations included in the strain and the inversion. Nevertheless, of the 2 mutations
which the strain has with certainty, cd is located in chromosome 3 and cn is in the
2R arm, so the only possibility would be that the other mutation which it is supposed
that this strain has, is included in the inversion. In the wild/multichromosomal population
which originated from this strain the inversion was not detected, but due to the low
frequency of mutants at the time of analysis this association cannot be discarded.

The frequency of inversions found in the heterozygous state in these populations
is very low in all cases (between 0 and 15 p. 100) so it is difficult to believe that this
could explain the heterozygote advantage found in the populations and their higher
viability.



However, we cannot reject the possibility that other unrecognizable factors can
cause the changes in visible frequencies in these laboratory populations. It is possible
that the experimental techniques could produce linkage disequilibrium between the eye
colour locus and other loci which are themselves likely subjected to selection. For

example, JONES & YAMAZAKI (1974) proved that the changes in allozyme frequency in
laboratory populations founded with a relatively small sample of a natural population
or subjected to many generations of inbreeding are not necessarily due to the action
of selection at the single locus under consideration.

The results of the population analysis regarding Adh polymorphism are shown in
table 2. All the populations maintained in the standard culture medium showed polymor-
phism while the populations maintained in 10 p. 100 ethanol all appeared homozygous
for the F allele. As regards the strains, the wild strain and three of the four mutants
(se, sf, cd) are homozygous for the F allele and the multichromosomal are homozygous
for the S. Thus, contrasting with the stable polymorphism which exists in both media
for the eye colour loci, the Adh locus is only polymorphic in normal medium, while
in alcohol medium there is always monomorphism for the F allele.

Different authors (MORGAN, 1975 ; VAN DELDEN et al., 197H ; BIJLSMA-MEELES,
1979), in experiments to study competition between larvae in food supplemented with
different alcohols, found an advantage in the viability of the FF genotype over the SS.
The multichromosomal strain, the only one with an SS genotype in the present work,



has a lower viability compared with the other mutant strains with an FF genotype, and
this difference in viability increases with the increase in alcohol concentration (NAJERA
& MTNSUA, 1985).

Although the initial genetic constitution of the strains is not known, it seems

possible that at least the wild strain, which is the origin of all the populations, was
initially polymorphic, and that in the laboratory, it changed to monomorphic through
the loss of the S allele.

Only in the wild/sf populations is there a significant difference between the gene
frequency reached by the mutant in a standard medium (0.217 in one replicate and
0.220 in the other) and in an alcohol medium (0.283 in one replicate and 0.278 in the
other). This difference could be explained by a linkage disequilibrium between sf (2-71.5)
and the F allele (2-50.1), due to the F allele fixation in the alcohol medium.

Studying the evolution of the gene frequency for the Adh locus in food supplemented
with ethanol, many authors (GIBSON, 1970 ; BL1LSMA-MEELES & VAN DELDEN, 1974 ;
MORGAN, 1975 ; OAKESHOTT, 1976 ; BARNES & BIRLEY, 1978 ; CAVENER & CLEGG, 1978,
1981 ; VAN HERREWEGE & DAVID, 1984) have found a rapid increase of the F allele
and even its fixation in most cases. Nevertheless, other studies (OAICESIIOTT, 1979 ;
OAKESIIOTT & GIBSON, 1981) have obtained different results. In the populations supple-
mented with alcohol of the present work, there is a clear directional change due to
selection, comparable to the previous works cited. This fact leads to the fixation of the
F allele and loss of the S even in the population coming from a strain (multichromosomal)
which has evolved towards a homozygous state for S allele. It seems clear then that
in these populations ethanol is a strong selective factor in favour of the F allele. This
contrasts drastically with the polymorphism existing in the populations maintained in
the standard culture medium, which are in equilibrium and without an excess of either
homozygotes or heterozygotes in any of them.

In relation with the Adh locus a linkage disequilibrium between the In(2L)t and
the S allele has been found (MuKAI et al. , 1971 ; VOELKER et al. , 1978 ; AGUADE &

SERRA, 1980 ; INOUE et al. , 1984). The majority of these authors consider that this

linkage is due to the founder effect and it is not a proof that appreciable selection
pressure is exerted on individual isozyme loci.

In the multichromosomal strain the In(2L)t and the S allele of the Adh are both
fixed, possibly due to a founder effect, although it is possible that the mentioned
constitutions were fixed in the strain by genetic drift. Alternatively, the homozygous
state for the In(2L)t could explain the fixation of the S allele, since it is the only strain
in which this occurs, or, on the contrary, the fixation in the laboratory of the S allele
could have carried with it the fixation of the inversion.

Some authors (INOUE, 1979 ; INOUE et al. , 1984) find that when natural populations
are transferred to laboratory cages and maintained for a long time, they lose the
chromosomal polymorphism but retain stable enzyme polymorphism. In the wild/multi-
chromosomal population in a normal medium, the presence of the In(2L)t was not
detected. However, this does not signify the loss of linkage disequilibrium since the
genotype of the 10 males analyzed for inversions, in respect of the Adh locus, was
not known.

It can be concluded that the frequency of inversions in the heterozygous state is
low in these populations, and that there is a fixation of the F allele in all the populations
supplemented with ethanol while all the populations maintained in a standard culture



medium remain polymorphic. This fixation of the F allele could explain the higher
equilibrium frequency of the sf mutant in the alcohol population.

The appearance of an inversion not previously described, in 2 strains from the

same cellar, indicates a possible endemism in this habitat.
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