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Imperfect preventive maintenance (PM) activities are very common in industrial systems. For condition-based maintenance
(CBM), it is necessary to model the failure likelihood of systems subject to imperfect PM activities. In this paper, the models
in the field of survival analysis are introduced into CBM. Namely, the generalized accelerated failure time (AFT) frailty model
is investigated to model the failure likelihood of industrial systems. Further, on the basis of the traditional maximum likelihood
(ML) estimation and expectation maximization (EM) algorithm, the hybrid ML-EM algorithm is investigated for the estimation
of parameters. The hybrid iterative estimation procedure is analyzed in detail. In the evaluation experiment, the generated data
of a typical degradation model are verified to be appropriate for the real industrial processes with imperfect PM activities. The
estimates of the model parameters are calculated using the training data. Then, the performance of the model is analyzed through
the prediction of remaining useful life (RUL) using the testing data. Finally, comparison between the results of the proposed model
and the existing model verifies the effectiveness of the generalized AFT frailty model.

1. Introduction

Condition-basedmaintenance (CBM) has continuously been
an important issue in the area of maintenance strategy. As
degradation processes before failure of many systems can
be measured, CBM is more effective as corrective main-
tenance and time-based preventive maintenance in some
aspects, such as catastrophic failure reduction and availability
maximization [1, 2]. CBM program includes three steps:
data acquisition, signal processing, andmaintenance decision
support [1]. Maintenance decision support is categorized into
diagnostics and prognostics. Prognostics are often character-
ized by estimating the remaining useful life (RUL) of systems
using available condition monitoring information. The RUL
estimation ensures enough time to perform the necessary
maintenance actions prior to failure [3, 4].

The proportional hazards model (PHM) [5, 6], which
is a popular model in survival analysis, can be applied
in reliability evaluation and maintenance optimization. It

has shown its effectiveness for RUL prediction and CBM
scheduling of industrial systems [7–9]. PHM is an effective
CBMmethod due to its strength in handling the influence of
variable operational conditions. The accelerated failure time
(AFT) model [10, 11] is an important alternative to the PHM
in survival analysis and has the advantage of being more
intuitively interpretable than the PHM. However, the AFT
method has been rarely applied in reliability-related fields.
It is shown by reviewing and comparing the major math-
ematical models of survival analysis and reliability theory
that both fields address the same mathematical problems [6].
Because of the unified mathematical models of both fields,
the methods for survival analysis might be used for reliability
analysis and related fields such as CBM. In this paper, we
introduce the AFT model in reliability fields and investigate
the AFT-based model for CBM.

Imperfect preventivemaintenance (PM) restores a system
to a better state but not “as good as new.” Imperfect PM
activities are considerably common in industrial systems and
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there are many studies on the model of imperfect PM [12–
17]. The extended PHM (EPHM) [16, 17] has been proved to
be a superiorly effective method to predict RUL of systems
subject to imperfect PM. Inspired by the EPHM, this paper
investigates a new alternative model, the generalized AFT
frailty model.

The rest of the paper is organized as follows. Section 2
introduces the generalizedAFT frailtymodel and compares it
with the existing model. Section 3 proposes the hybrid max-
imum likelihood- (ML-) expectation maximization (EM)
algorithm for the calculation of the parameters in the model.
Section 4 proves the effectiveness of the proposed model by
the simulation experiment of RUL prediction for systems
subject to imperfect PM. Finally, Section 5 concludes the
paper.

2. Generalized AFT Frailty Model

2.1. Models. First, we introduce the Cox PHM, the AFT
model, the generalized AFT model, and the PHM frailty
model in sequence. Then, we propose the generalized AFT
frailty model.

The Cox PHM [5] is a popular model in survival analysis,
and it is an effective method for RUL prediction and CBM
scheduling of industrial systems. Let 𝜆(𝑡 | X) be the hazard/
failure function at time 𝑡 given the covariates X; the PHM is
expressed as

𝜆 (𝑡 | X) = 𝜆0 (𝑡) exp (𝛽X) , (1)

where 𝜆
0
(𝑡) is the baseline hazard/failure function, which

considers the age of the system at the time of inspection. X
is the vector of the covariates and 𝛽 is the regression coef-
ficient vector. In a CBM program, the systems’ degradation
indicators are usually chosen to be the covariates.

The AFT model [10, 11, 18] is an important alternative to
the PHM. Suppose 𝑇

𝑖𝑗
is the failure time of system 𝑗 in cluster

(or group) 𝑖. There is a censoring random variable, which we
denote as 𝐶

𝑖𝑗
. We only observe 𝑇∗

𝑖𝑗
= min(𝑇

𝑖𝑗
, 𝐶
𝑖𝑗
) and the

linear regression (i.e., AFT) model is

log (𝑇
𝑖𝑗
) = 𝛽X

𝑖𝑗
+ 𝜁
𝑖𝑗
, (2)

whereX
𝑖𝑗
is the vector of observed covariates, 𝛽 is the regres-

sion coefficient vector, and 𝜁
𝑖𝑗
is the random error.This linear

form of the AFTmodel deals with the regression relationship
of the covariates and the failure times logarithms, which has
the similar form to the generic linear regression model. In
the PHM, the baseline failure function and the covariates in
PHM are independent, which limits the modeling of some
types of the survival data in medical research. Collett [19]
has introduced the influence of the covariates in the baseline
failure function and proposed the following generalized AFT
model:

𝜆 (𝑡 | X
𝑖𝑗
) = exp (−𝛽X

𝑖𝑗
) 𝜆
0
(𝑡 exp (−𝛽X

𝑖𝑗
)) . (3)

In this model, the whole part of the covariates exp(−𝛽X
𝑖𝑗
)

has been introduced into the baseline failure function.

The effectiveness of this model has been verified by the
modeling of the survival data in medical field [19].

PHM and AFT are suitable for the mutually independent
failure time data. In reality, correlated or clustered failure
time data are very common in the fields of survival analysis
and reliability. For example, systems operate in the same
environment with the same temperature and humidity. The
shared environment of the subjects leads to the dependence
among the observed failure time. Frailty is a good tool to
represent the random effect shared by subjects in the same
cluster (or group) and it induces dependence among the
correlated or clustered failure time data. The PHM frailty
model [20] is

𝜆 (𝑡 | X
𝑖𝑗
, 𝜔
𝑖
) = 𝜔
𝑖
𝜆
0
(𝑡) exp (𝛽X

𝑖𝑗
) , (4)

where 𝜔
𝑖
is the frailty term and models the random effect

that is shared by the systems in the 𝑖th cluster (group). Frailty
has been also introduced in the AFT model to represent the
possible correlation among failure times [12]. Considering
both the generalized AFT model (3) and the PHM frailty
model (4), the following generalized AFT frailty model [21]
is proposed:

𝜆 (𝑡 | X
𝑖𝑗
, 𝜔
𝑖
) = 𝜔
𝑖
exp (−𝛽X

𝑖𝑗
) 𝜆
0
(𝑡 exp (−𝛽X

𝑖𝑗
)) . (5)

2.2. Comparison between the Generalized AFT Frailty Model
and the Existing Model. The EPHM has been proposed
by You et al. [16, 17] to model the failure likelihood for
systems subject to imperfect PM activities. The EPHM has
the following form:

ℎ
𝑛
(𝑡
󸀠
+

𝑛

∑

𝑘=1

𝑃
𝑘
,X(𝑡󸀠 +

𝑛

∑

𝑘=1

𝑃
𝑘
))

= 𝐴
𝑛
ℎ
0
(𝑡
󸀠
+ 𝑏
𝑛
𝑦
𝑛
) exp(𝛽X(𝑡󸀠 +

𝑛

∑

𝑘=1

𝑃
𝑘
)) ,

(6)

where ℎ
𝑛
is the hazard/failure function of the system after the

𝑛th PM activity and before the (𝑛 + 1)th PM activity, 𝑃
𝑘
is the

𝑘th PM interval, and 𝑡󸀠 is the random local time between the
𝑘th and the (𝑘 + 1)th PM activity.𝐴

𝑛
= 𝑎
0
⋅ 𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛
, where 𝑎

𝑘

is the hazard rate increase factor (HRIF) due to the 𝑘th PM
activity, and 𝑏

𝑛
is the age reduction factor (ARF) due to the 𝑛th

PMactivity,𝑦
𝑛
= 𝑃
𝑛
+𝑏
𝑛−1
𝑃
𝑛−1
+𝑏
𝑛−1
𝑏
𝑛−2
𝑃
𝑛−2
+⋅ ⋅ ⋅+(∏

𝑛−1

𝑗=1
𝑏
𝑗
)𝑃
1
.

The HRIF modifies the increase rate of the hazard/failure
rate of the system after an imperfect PM activity, and the
ARF measures the extent to which the PM activity brings the
system to a younger age.

Comparing (5) and (6), we observe that the HRIF𝐴
𝑛
and

the frailty term 𝜔
𝑖
act multiplicatively on the hazard/failure

rate function and play the same role in the models. When
the system starts operation after imperfect PM activities, the
system has already aged somewhat. The ARF measures the
extent to which the imperfect PM affects the effective age.The
generalized AFT frailty model describes the hybrid influence
of imperfect PM on both the hazard/failure rate and the
effective age, which is shown in Figure 1.
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Figure 1: Hybrid influence of imperfect PM on both failure rate and
effective age.

To some extent, the generalized AFT frailty model is
unifiedwith the EPHM. Sowe introduce the generalizedAFT
frailty model (5) into the CBM field to model the failure
likelihood of the systems subject to imperfect PM.

3. Parameter Estimation Algorithm

After the introduction of the generalized AFT frailty model,
we investigate its parameter estimation algorithm. The EM
algorithm has been a popular method for computing ML
estimates from incomplete data. Due to the unknown frailty
terms, the EM algorithm has been used to estimate param-
eters in the PHM frailty model [22] and AFT frailty model
[12]. Vu and Kuniman [23] have proposed a hybrid ML-EM
method for the calculation of ML estimates in PHM frailty
models and have verified that the hybrid method is more
computationally efficient than the standard EM method and
faster than the standard direct ML method. In this paper, we
estimate the parameters in the generalized AFT frailty model
with a hybrid ML-EM algorithm.

If the failure time is smaller than the censoring random
variable, the indicator function has a value of one; otherwise,
it has a value of zero:

𝐼
𝑖𝑗
= {

1 if 𝑇
𝑖𝑗
≤ 𝐶
𝑖𝑗

0 otherwise

(𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛
𝑖
) .

(7)

The likelihood function of right censoring data is

𝐿 =

𝑛

∏

𝑖=1

𝑛𝑖

∏

𝑗=1

𝜆 (𝑡
𝑖𝑗
)
𝐼𝑖𝑗
𝑅 (𝑡
𝑖𝑗
) , (8)

where 𝑅 (⋅) is the survival/reliability function.
The frailty terms are random variables, andwe suppose𝜔

𝑖

obeys the distribution 𝑔(𝜔
𝑖
, 𝜃), with the parameter 𝜃, which

can be a vector. Thus there are two unknown vectors 𝜃 and 𝛽
in model (5).

The parameter 𝜃 is computed with the ML estimation
method. The ML estimation is based on the marginal like-
lihood function, which is written as

𝐿marginal =
𝑛

∏

𝑖=1

∫

∞

0

𝑛𝑖

∏

𝑗=1

𝜆
𝑖𝑗
(𝑡
𝑖𝑗
)
𝐼𝑖𝑗
𝑅
𝑖𝑗
(𝑡
𝑖𝑗
) 𝑔 (𝜔

𝑖
, 𝜃) 𝑑𝜔

𝑖

=

𝑛

∏

𝑖=1

∫

∞

0

𝑛𝑖

∏

𝑗=1

𝜔
𝑖

𝐼𝑖𝑗 exp (−𝛽𝐼
𝑖𝑗
X
𝑖𝑗
) 𝜆
𝐼𝑖𝑗

0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗)

× exp (−𝜔
𝑖
Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗))

× 𝑔 (𝜔
𝑖
, 𝜃) 𝑑𝜔

𝑖
,

(9)

where Λ
0
is the cumulative failure function. For the sake of

convenient calculation, we take the logarithm of the above
equation so that the multiplications can be converted into
additions. The logarithmic form is

𝐿
𝑀
=

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[ − 𝛽𝐼
𝑖𝑗
X
𝑖𝑗
+ 𝐼
𝑖𝑗
log (𝜆

0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗))

+ log(∫
∞

0

𝜔
𝐷𝑖

𝑖
exp (−𝜔

𝑖
Λ
𝑖
) 𝑔 (𝜔

𝑖
, 𝜃) 𝑑𝜔

𝑖
)] ,

(10)

where𝐷
𝑖
= ∑
𝑛𝑖

𝑗=1
𝐼
𝑖𝑗
, Λ
𝑖
= ∑
𝑛𝑖

𝑗=1
Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗).

Given the initial values of 𝛽 and Λ
0
, we can calculate the

ML estimate of 𝜃. Given the estimate of 𝜃, we can estimate
𝛽 by an EM algorithm. Namely, the estimations of 𝜃 and 𝛽
interact with each other as both preconditions and results. So
weupdate both parameterswith an iterative process until they
converge.

The parameter 𝛽 is estimated with the EM algorithm.
We start the EM algorithm with the full likelihood function,
which is written as

𝐿 full (𝜃,𝛽, 𝜆0,𝜔) =
𝑛

∏

𝑖=1

𝑛𝑖

∏

𝑗=1

𝜆
𝑖𝑗
(𝑡
𝑖𝑗
)
𝐼𝑖𝑗
𝑅
𝑖𝑗
(𝑡
𝑖𝑗
) 𝑔 (𝜔

𝑖
, 𝜃)

=

𝑛

∏

𝑖=1

𝑛𝑖

∏

𝑗=1

𝜔
𝐼𝑖𝑗

𝑖
exp (−𝛽𝐼

𝑖𝑗
X
𝑖𝑗
) 𝜆
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗)
𝐼𝑖𝑗

× exp (−𝜔
𝑖
Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗))

× 𝑔 (𝜔
𝑖
, 𝜃) .

(11)

The logarithmic form of 𝐿 full is denoted as 𝐿
𝐹
and the

corresponding full log-likelihood is

𝐿
𝐹
(𝜃,𝛽, 𝜆

0
,𝜔) = 𝐿

1
(𝜃,𝜔) + 𝐿

2
(𝛽, 𝜆
0
,𝜔) , (12)
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where

𝐿
1
(𝜃,𝜔) =

𝑛

∑

𝑖=1

[

[

log (𝑔 (𝜔
𝑖
, 𝜃)) +

𝑛𝑖

∑

𝑗=1

𝐼
𝑖𝑗
log𝜔
𝑖
]

]

, (13)

𝐿
2
(𝛽, 𝜆
0
,𝜔) =

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[−𝛽𝐼
𝑖𝑗
X
𝑖𝑗
+ 𝐼
𝑖𝑗
log (𝜆

0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗))

− 𝜔
𝑖
Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗) ] .

(14)

The𝐸-step calculates the expectation of the full likelihood
function with respect to 𝜔, in order to eliminate its effect on
the likelihood function.The corresponding equations for the
expectation calculation are

𝐸 (𝐿
1
) =

𝑛

∑

𝑖=1

[

[

𝐸 (log (𝑔 (𝜔
𝑖
, 𝜃))) +

𝑛𝑖

∑

𝑗=1

𝐼
𝑖𝑗
𝐸 (log𝜔

𝑖
)]

]

, (15)

𝐸 (𝐿
2
) =

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[−𝛽𝐼
𝑖𝑗
X
𝑖𝑗
+ 𝐼
𝑖𝑗
log (𝜆

0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗))

−𝐸 (𝜔
𝑖
) Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗) ] .

(16)

From (15) and (16), we observe that the calculation of 𝐸(𝐿
1
)

depends only on the parameter 𝜃 and is independent of 𝛽.
The calculation of 𝐸(𝐿

2
) contains 𝛽. So we estimate 𝛽 only by

analyzing (16).
The 𝑀-step maximizes 𝐸(𝐿

2
) and calculates the ML

estimate of 𝛽. Due to both the unknown parts 𝜆
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗)

and Λ
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗) in 𝐸(𝐿

2
), we cannot handle 𝐸(𝐿

2
) directly.

With kernel smoothing processes [24], we convert the
semiparametric form of (16) into the parametric form. The
likelihood function is written as

𝐸 (𝐿
𝑠

2
(𝛽))

=

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[𝐼
𝑖𝑗
log( 1

𝑛𝑛
𝑖
𝑎
𝑛

𝑛

∑

𝑘=1

𝑛𝑖

∑

𝑙=1

𝐼
𝑘𝑙
𝐾(

𝑟
𝑘𝑙
− 𝑟
𝑖𝑗

𝑎
𝑛

))

− 𝐼
𝑖𝑗
log( 1

𝑛𝑛
𝑖

𝑛

∑

𝑘=1

𝑛𝑖

∑

𝑙=1

∫

(𝑟𝑘𝑙−𝑟𝑖𝑗)/𝑎𝑛

−∞

𝐸 (𝜔
𝑖
)𝐾 (𝑠) 𝑑𝑠)] ,

(17)

where 𝑟
𝑖𝑗
= log 𝑡

𝑖𝑗
−𝛽X
𝑖𝑗
,𝐾(𝑠) is the kernel function, and 𝑎

𝑛
is

the window width of the kernel function. By maximizing the
likelihood function 𝐸(𝐿𝑠

2
(𝛽)), we obtain the ML estimate of

𝛽.

Based on the estimate 𝛽̂, we can calculate the failure den-
sity function, the reliability function, and the corresponding
cumulative failure function:

𝑓 (𝑡) = (𝑛𝑎
𝑛
𝑡)
−1

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝐼
𝑖𝑗
𝐾(

𝑟
𝑖𝑗
(𝛽̂) − log 𝑡
𝑎
𝑛

) , (18)

𝑅̂ (𝑡) = 1 − ∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥, (19)

Λ̂
0 (𝑡)

= − log 𝑅̂ (𝑡)

= ∫

log 𝑡

−∞

[
[

[

(𝑛𝑎
𝑛
)
−1
∑
𝑛

𝑖=1
∑
𝑛𝑖

𝑗=1
𝐼
𝑖𝑗
𝐾((𝑟
𝑖𝑗
(𝛽̂) − 𝑠) /𝑎

𝑛
)

𝑛−1∑
𝑛

𝑖=1
∑
𝑛𝑖

𝑗=1
∫
(𝑟𝑖𝑗(𝛽̂)−𝑠)/𝑎𝑛

−∞
𝐾 (𝑢) 𝑑𝑢

]
]

]

𝑑𝑠.

(20)

With the calculated estimates 𝛽̂ and Λ̂
0
, we calculate the

ML estimate 𝜃 by maximizing 𝐿
𝑀

in (10). Then, with the
estimated value 𝜃̂, we follow the EM process to calculate 𝛽̂
and Λ̂

0
again. Thus, we repeat this iterative process until the

parameters convergence.
We summarize the above-analyzed process as the follow-

ing estimation procedure:

Step 1: obtain initial estimate 𝛽̂ from the independent AFT
model and estimate the cumulative failure function
Λ̂
0
(𝑡
𝑖𝑗
𝑒
−𝛽X𝑖𝑗);

Step 2 (ML estimation): given the current estimates 𝛽̂ and
Λ̂
0
, update the estimate 𝜃̂ bymaximizing themarginal

log-likelihood 𝐿
𝑀
in (10);

Step 3: prepare the full log-likelihood function for the EM
algorithm;

Step 4 (𝐸-step): calculate the expectation of the full log-
likelihood function with respect to 𝜔 in order to
eliminate its effect on the likelihood function;

Step 5 (𝑀-step): given the current estimate 𝜃̂ (from Step 2),
update the estimate 𝛽̂ by maximizing the partial log-
likelihood function 𝐸(𝐿𝑠

2
(𝛽)) in (17) and calculate the

corresponding cumulative failure function Λ̂
0
with

(20);
Step 6: repeat Steps 2, 3, and 4 until both parameters 𝛽̂ and 𝜃̂

converge.

This iterative ML-EM procedure is illustrated in Figure 2.

4. Evaluation Experiment

We generated the data on the basis of a typical degradation
model to simulate the industrial processes of the systems
subject to imperfect PM activities. With the simulated data
for training, we calculated the parameter estimates of the gen-
eralizedAFT frailtymodel. In order to test the effectiveness of
the model, we calculated the RUL prediction with the testing
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Figure 2: Parameters estimation procedure.

data and compare the results with those of the EPHM. By the
comparison, it was proved that the generalized AFT frailty
model is effective for the systems subject to imperfect PM
activities.

4.1. Process-Data Generation. The functional form of the
typical degradation process is as follows:

𝑀(𝑡) = 𝛿 + 𝜂𝑡 + 𝜀 (𝑡) , (21)

where 𝑀(𝑡) denotes the degradation indicator, and the
stochastic parameters are assumed to follow the normal
distribution; namely, 𝛿 ∼ 𝑁(𝜇

0
, 𝜎
2

0
) and 𝜂 ∼ 𝑁(𝜇

1
, 𝜎
2

1
). The

error term 𝜀(𝑡) is included in themodel to capture system and
environmental noise, signal transients, measurement errors,
and variations due to monitoring system. 𝜀(𝑡) is assumed to
follow a Brownian motion process 𝜀(𝑡) ∼ 𝑁(0, 𝜎2𝑡). Equation
(21) is used to generate the degradation indicator over time,
and a highermagnitude of degradation indicator corresponds
to a worse system state.

On the basis of (21), the degradation process with imper-
fect PM activities was simulated. The simulation mechanism
and experiment design are introduced by You andMeng [17].
It was demonstrated that the simulated degradation processes

were close to real data in practice. In our simulation exper-
iment, we also considered the single degradation indicator
𝑀(𝑡) as a covariate for consistency with the simulation work
of You and Meng [17]. It was assumed that the PM duration
was ignored as zero, and the 𝑘th PM activities occur at time
𝑇
𝑘
. After PM, the degradation process was simulated as a new

process plus a residual degradation due to the PM activity
with a random imperfect effect. For example, after the first
PM, sample 𝑗 has the following degradation process:

𝑀
𝑗 (𝑡) = 𝜌𝑗1𝑀𝑗 (𝑇1) + (𝜃𝑗1 + 𝜂𝑗1 (𝑡 − 𝑇1) + 𝜀𝑗1 (𝑡 − 𝑇1)) .

(22)

After the 𝑘th PM the corresponding degradation signal is

𝑀
𝑗 (𝑡) = 𝜌𝑗𝑘𝑀𝑗 (𝑇1 + ⋅ ⋅ ⋅ + 𝑇𝑘) + 𝑀𝑗 (𝑡 − 𝑇1 − ⋅ ⋅ ⋅ − 𝑇𝑘)

= 𝜌
𝑗𝑘
𝑀
𝑗
(𝑇
1
+ ⋅ ⋅ ⋅ + 𝑇

𝑘
)

+ (𝜃
𝑗𝑘
+ 𝜂
𝑗𝑘
(𝑡 − 𝑇

1
− ⋅ ⋅ ⋅ − 𝑇

𝑘
)

+ 𝜀
𝑗𝑘
(𝑡 − 𝑇

1
− ⋅ ⋅ ⋅ − 𝑇

𝑘
)) ,

(23)
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Table 1: Updated degradation model parameters.

Number of
PM activities 𝜇

0𝑘
𝜇
1𝑘

𝜎
0𝑘

𝜎
1𝑘

𝜎
𝑘

𝑘 = 0 1.00 4.00 1.00 1.00 0.15
𝑘 = 1 1.53 4.77 0.99 0.98 0.15
𝑘 = 2 1.99 5.48 1.04 1.02 0.16
𝑘 = 3 2.45 5.89 1.56 1.54 0.16
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Figure 3: Degradation processes with a maximum of three imper-
fect PM activities.

where 𝜌 is the coefficient quantifying the amount of residual
degradation, which is defined as

𝜌
𝑗𝑘
∼ 𝑁 (1 − exp (−0.5𝑘) , 0.005) ; (24)

𝛿
𝑗𝑘
, 𝜂
𝑗𝑘
, and 𝜀

𝑗𝑘
are the model parameters of sample 𝑗 after

it receives its 𝑘th PM activity. The typical method for the
estimate of the degradation model parameters after each
PM performs a Bayesian update, which combines the prior
distribution parameters and the real-time information to
obtain the posterior distribution parameters [25].

We simulate the degradation processes of 400 systems,
which are subject to a maximum of three imperfect PM
activities. Some systems fail before they receive any PM. Some
systems fail after the first PM, second PM, or third PM.
Some systems operate in a normal state up to the end of the
simulation time.The updated degradation model parameters
of one sample are shown in Table 1.

Twenty degradation processes are illustrated in Figure 3.
The horizontal axis represents time. The vertical axis repre-
sents the magnitude of the degradation indicator.

The three moments of PM activities are 𝑇
1
= 100, 𝑇

2
=

190, and 𝑇
3
= 270, respectively. Each section represents

the degradation process before the corresponding PM.When
the degradation indicator exceeds the threshold (defined as
𝐷 = 500), the process is considered to have failed. Among
the twenty illustrated degradation processes, four processes
fail before receiving any PM activity, three processes fail after
receiving the first PM activity, and eleven processes fail after
receiving the second PM activity.

Next, we demonstrate the effectiveness of the simulated
data for imperfect PM. We take the local lifetime as the time
interval between the PM moment and the time of failure in
each section. In Figure 4, 𝑡

0
, 𝑡
1
, and 𝑡

2
are the times of failure

in the three sections, respectively.
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Figure 4: Schematic drawing of local lifetimes.

Table 2: Average local lifetime in each section.

Section Number of
failed signals

Average
local lifetime

Before 1st PM 33 96.5
Between 1st and 2nd PM 49 85.3
Between 2nd and 3rd PM 80 72.9

The corresponding local lifetimes are 𝑡
0𝐸
= 𝑡
0
− 0, 𝑡
1𝐸
=

𝑡
1
−𝑇
1
, and 𝑡

2𝐸
= 𝑡
2
−𝑇
2
. Concerning all of the 400 simulated

processes, the number of failed processes and the average
local lifetime in each section are shown in Table 2.

From Table 2, we observe that the average local lifetime
decreases with the increases in the times of imperfect PM
activities. These simulated data are appropriate for processes
with imperfect PM activities, which restore the system to
better but not “as good as new” states.

4.2. RUL Prediction and Results Comparison. We used the
RUL prediction, an example to test the effectiveness of the
generalized AFT frailty model. Among the 400 simulated
degradation processes, we used 300 samples for training
and 100 samples for testing. Parameters of the model were
estimated with training samples, and RUL predictions were
calculated with testing samples. During the parameters esti-
mation procedure, we used the typicalWeibull distribution as
the baseline failure function. We chose the gamma distribu-
tion with mean 1 and variance 𝜃 as the frailty distribution for
the following two reasons. Firstly, the gamma distribution is
themost popular choice for the frailty distribution [12, 18, 23].
The posterior distribution of the gamma frailty is still the
gamma distribution. Secondly, the gamma distribution with
mean 1 and variance 𝜃 is appropriate for the characterization
of the frailty terms in our model. Frailty acts multiplicatively
on the failure rate function and represents the change in
the failure rate after PM relative to that before PM. This
multiplication factor is theoretically greater than or equal to
1 but sometimes smaller than 1 in reality [17].
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Table 3: Statistical analysis of the predicted RUL using G-AFT-F and EPHM for the testing samples that fail before receiving any PM activity.

Actual RUL 10 9 8 7 6 5 4 3 2 1
G-AFT-F

Mean 9.93 8.96 7.90 7.06 6.05 4.86 3.80 3.07 2.09 1.24
SD 0.65 0.76 0.43 0.86 0.75 0.75 0.86 0.43 0.35 0.27

EPHM
Mean 9.91 9.03 7.95 7.04 6.01 5.03 3.98 3.06 2.12 1.32
SD 0.57 0.69 0.97 0.48 0.59 0.76 0.57 0.58 0.63 0.59

∗SD = standard deviation.
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Figure 5: Statistical analysis of the predicted RUL using G-AFT-F and EPHM for the testing samples that fail after the first and second PM.

With the estimated parameters 𝜃̂ and 𝛽̂, we calculated
the RUL prediction of the 100 testing samples following
the typical procedure [17]. The minimum of the actual
local lifetimes in three sections were 43.5, 39.6, and 37.3,
respectively. Theoretically, all the samples whose RUL is less
than the minimum of the actual local lifetime could be used
for further analysis. However, because the prediction of being
close to failure is the most essential information in a CBM
program,we only collect the samples whose actual RUL is less
than 10. One part of the statistical analysis of the predicted
RUL based on the generalized AFT frailty model (G-AFT-F
for short) and the EPHM with respect to the actual RUL are
summarized in Table 3.

The statistical analysis for the samples that fail after
receiving the first PM activity and the second PM activity
is shown in Figure 5. Mean values of the statistical analysis
results are regarded as predicted RUL values, so only mean
values are illustrated.Thehorizontal axis represents the actual

RUL, and the vertical axis represents the mean values of the
predicted RUL.

From Table 3 and Figure 5 we can see that there is no
obvious performance difference between the results using
both models. The superior performance of the EPHM over
other classical models has been proved [17]. Similar to
the EPHM, the generalized AFT frailty model can achieve
reasonably accurate and reliable RUL prediction. Thus, it
is demonstrated that the generalized AFT frailty model is
appropriate to model the failure likelihood of the systems
subject to imperfect PM activities.

5. Conclusions and Future Work

Imperfect PM activities are considerably common in indus-
trial systems. This paper has introduced the methods of
survival analysis into the CBM field and used the statistical
tools to solve practical industrial problems. The generalized
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AFT frailty model has been investigated to model the failure
likelihood of systems subject to imperfect PM activities.
On the basis of the ML estimation and the EM method,
the hybrid ML-EM algorithm for parameter estimation has
been analyzed. In the evaluation experiment, the data of
the typical degradation model has been generated. The RUL
prediction has been taken as a calculation case and the
results of the proposed model have been compared with
those of the existing model. The comparison demonstrates
the effectiveness of the generalized AFT frailty model.

The data in the experiment are generated from the
typical degradation processes and are consistent to practical
industrial cases. That is why we performed the evaluation
only with simulation data. However, in future research, it will
be necessary to evaluate the performance of the proposed
model using real data. In addition, it would be interesting to
introduce more methods of survival analysis into reliability-
related fields and investigate their applicability.
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