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Range-free localization algorithms have caused widespread attention due to their low cost and low power consumption. However,
such schemes heavily depend on the assumption that the hop count distance between two nodes correlates well with their Euclidean
distance, which will be satisfied only in isotropic networks. When the network is anisotropic, holes or obstacles will lead to the
estimated distance between nodes deviating from their Euclidean distance, causing a serious decline in localization accuracy.
This paper develops HCD-DV-Hop for node localization in anisotropic sensor networks. HCD-DV-Hop consists of two steps.
Firstly, an anisotropic network is decomposed into several different isotropic subnetworks, by using the proposedHopCount Based
Decomposition (HCD) scheme. Secondly, DV-Hop algorithm is carried out in each subnetwork for node localization. HCD first
uses concave/convex node recognition algorithm and cleansing criterion to obtain the optimal concave and convex nodes based
on boundary recognition, followed by segmentation of the network’s boundary. Finally, the neighboring boundary nodes of the
optimal concave nodes flood the network with decomposition messages; thus, an anisotropic network is decomposed. Extensive
simulations demonstrated that, compared with range-free DV-Hop algorithm, HCD-DV-Hop can effectively reduce localization
error in anisotropic networks without increasing the complexity of the algorithm.

1. Introduction

Node localization is one of the most fundamental technolo-
gies in wireless sensor networks (WSNs). For most applica-
tions of WSNs [1–3], only when nodes know their locations
can they tell the system “what is happening in what position.”
For instance, in a fire monitoring system, a sensor node
detects that a fire breaks out.The system is able to notify peo-
ple where the fire is only when it knows the node’s location.
This allows fireman to reach the correct location and take
effectivemeasures immediately in order to prevent the spread
of the fire. In addition, accurate localization is the foundation
of many other WSNs technologies, such as position-aware
data processing [4–6] and geographic routing [7, 8].

Among existing localization algorithms, range-free
schemes [9–12] have been widely used due to their low
cost and low power consumption. However, these schemes
assume that the hop count distance between two nodes

correlates well with their Euclidean distance, which will be
satisfied only in isotropic networks [9, 13] (the definition of
isotropic and anisotropic networks can be found in [14]). In
practical applications, such as large-scale heritage protection
[15] and military reconnaissance [16], sensor nodes are often
randomly deployed in complex environments, which makes
their network topologies highly irregular, with the possibility
of holes or obstacles. Such network is called anisotropic
network.

For example, Figure 1 shows an application of WSNs.
In this scenario, sensors are distributed in the region to
be monitored, and Figure 2 shows the corresponding node
deployment. It is obvious in Figure 2 that the hop count dis-
tances between some pairs of nodes heavily deviate from their
Euclidean distances (Take 𝐴 and 𝐵 in Figure 2, e.g., the black
solid line represents the hop count distance between𝐴 and 𝐵,
and the orange dotted line represents the Euclidean distance
between them). Using the deviated shortest path distance
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Figure 1: Application example of WSNs.
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Figure 2: Node deployment.

instead of Euclidean distance to take part in localization will
cause a serious decline in localization accuracy.

(1) Related Work. In order to improve the node localization
accuracy in anisotropic networks, scholars have put forward
many schemes in recent years, which can be divided into
three categories.

The first scheme is mainly dedicated to amending the
estimated distance between nodes. Li and Liu [17] proposed
REP (Rendered Path) for localization in anisotropic sensor
networks. REP assumes that the boundary nodes around
obstacles have been obtained by a boundary recognition
algorithm. The shortest path between nodes is divided into
many different subsections according to the location of the
obstacles. The angle between two subsections is calculated
by constructing a unit circle in the intersection point of the
shortest path and network holes; then, the Euclidean distance
can be obtained by using the cosine law. REP is able to
amend the estimated distance that is affected by obstacles.
The main drawback is that REP suffers heavy computation
and communication overhead, requiring high density and
computation power of nodes. PDM (Proximity-Distance
Map) [18] first uses a matrix to record the estimated distance
and the Euclidean distance between anchor nodes. Then,

it calculates the linear transformation matrix between the
estimated distance and the Euclidean distance using the least
square method. By using the linear transformation matrix,
the estimated distance can be transformed into an amended
distance, which is used to participate in localization. The
disadvantage is that PDM requires the uniform deployment
of anchor nodes, which is difficult in real applications.

The second solution aims at reducing the localization
error by avoiding serious bent path participating in local-
ization. Reference [19] proposed an improvement scheme
for DV-Hop. It uses the cubic polynomial interpolation to
obtain paths that are not heavily bent. By using these “good”
paths in the calculations, the performance of DV-Hop in
an anisotropic network can be improved. Reference [20]
estimates the shortest paths affected by obstacles or network
boundaries between unknown nodes and anchor nodes. By
grading the estimating result, [20] chooses the anchor nodes
corresponding to those less affected paths to participate in
calculation, thus reducing the localization error. Reference
[21] chooses some suitable anchor nodes in the networks and
calculates the locations of unknown nodes through iterative
multilateration. The localization error is controlled by avoid-
ing the use of serious bent paths. Since iterative multilatera-
tion is employed, there is cumulative effect in localization
error. Reference [22] proposed an improved multihop locali-
zation algorithm which is called i-multihop. It can automati-
cally identify and eliminate severely miscalculated distances.
In the localization process, these “bad” distances will not
be used in calculation. Thus, the localization error can be
controlled.

The third method achieves localization of unknown
nodes by means of building landmark network. Reference
[23] first locates a landmark network, which is composed of
nodes that are uniformly sampled from the original network.
The density of the landmark network is preset by the system.
Each nonlandmark node uses trilateration to calculate its
own location according to the distances to its closest three
landmarks. References [24, 25] first select some landmark
nodes using particular rules.Then, they calculate the Voronoi
diagram and its dual Delaunay diagram according to the
landmark nodes. The location of an unknown node is com-
puted in each subdiagram. Finally, the original network can
be restored through all theDelaunay diagrams.Thedifference
between [24] and [25] is the method of selecting landmarks.
Since both of the algorithms require Delaunay division for
anisotropic networks, they are much more complicated to
implement, which limits the application of the algorithms.

As can be seen from the above analysis, the similarity
among the methods in [17–22] is that they all use various
mechanisms to avoid or amend serious bent paths, which
does not fundamentally solve the impact of anisotropic net-
works characteristics on localization. Although the schemes
in [24, 25] proposed new ideas, their implementation pro-
cesses are complex, which is not suitable for large-scale sensor
networks.

(2) The HCD-DV-Hop Scheme. In this paper, a new method
for localization is proposed based on decomposition. Our
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scheme is composed of two steps. First, it decomposes an
anisotropic network into several isotropic subnetworks by
using the proposedHopCount BasedDecomposition (HCD)
algorithm. Second, it uses the typical range-free DV-Hop
algorithm to achieve node localization in each subnetwork.
For simplicity, we call the proposed method HCD-DV-Hop
algorithm. The contributions of this paper are summarized
as follows:

(i) We analyze the reason why range-free DV-Hop algo-
rithm is suitable for localization in isotropic networks
but causes serious localization error in anisotropic
networks. Then, we give an improved solution.

(ii) We introduce a distributed localization algorithm
for anisotropic networks, which is called HCD-DV-
Hop algorithm. HCD-DV-Hop first decomposes an
anisotropic network into several different isotropic
networks, so that the influence of holes or obstacles on
the shortest communication path between far-away
nodes is avoided. Since there is no longer serious bent
path in each isotropic subnetwork, DV-Hop can be
carried out for node localization in such subnetwork.

(iii) A Hop Count Based Decomposition (HCD) algo-
rithm for anisotropic networks is proposed. HCD
includes four steps: boundary recognition, con-
cave/convex node recognition and cleansing, bound-
ary segmentation, and region decomposition. All of
these steps are distributed and only require connec-
tivity information.

(iv) Simulation results demonstrate the superior perform-
ance of HCD-DV-Hop under different ratios of
anchor node and communication radius in anisotropic
networks.

The rest of this paper is organized as follows. In Section 2,
we present the motivation of our scheme. Section 3 is
an overview of HCD-DV-Hop. Section 4 is devoted to a
description of the proposed HCD algorithm for anisotropic
networks. The performance of HCD-DV-Hop is evaluated in
Section 5. Finally, Section 6 concludes this paper.

2. Motivation

2.1. DV-Hop Algorithm. DV-Hop [9, 26] is one of the most
widely used range-free schemes and it consists of three steps.

Step 1 (obtain the minimum hop count). Each anchor node
broadcasts its location information and hop count value
with a packet (𝑥

𝑖
, 𝑦
𝑖
, ℎ
𝑖
), where (𝑥

𝑖
, 𝑦
𝑖
) is the coordinate of

anchor node 𝑖 and ℎ
𝑖
is the minimum hop count from the

anchor node 𝑖. By thismeans, all nodes (including anchor and
unknown nodes) can obtain locations of anchor nodes and
minimum hop count to each anchor.

Step 2 (calculate the estimated distance). Once an anchor
node gets distances to other anchors, it estimates an average

size for one hop, that is, 𝐶
𝑖
, which is then deployed as a

correction to the entire network:
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where (𝑥
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𝑗
, 𝑦
𝑗
) are the coordinates of anchor node

𝑖 and anchor node 𝑗 and ℎ
𝑖
is the minimum hop count

between anchor nodes 𝑖 and 𝑗. Each unknown node receives
the correction from its nearest anchor node and multiplies it
by the minimum hop count, so that the estimated distance to
each anchor node is obtained.

Step 3 (each unknown node estimates its location by using
the maximum likelihood estimation). Let the coordinate of
unknown node𝑀 be (𝑥, 𝑦), and the distance between anchor
node 𝑖 and unknown node 𝑀 is 𝑑

𝑖
. Assuming there are 𝑛

anchor nodes in the network, (2) can be obtained:
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By using the maximum likelihood estimation, we get the
location of unknown node𝑀 by

𝑋 = (𝐴
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𝐵, (3)
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(4)

2.2. The Limitation of DV-Hop in Anisotropic Networks. As
can be seen fromDV-Hop, the estimated location accuracy of
an unknown node depends on the accuracy of its estimated
distances to the anchor nodes. That is, if the estimated
distance between two nodes is closer to their Euclidean
distance, the localization result will be more accurate. If
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Figure 3: The shortest communication path between nodes in different networks.

the estimated distance heavily deviates from the Euclidean
distance, the localization accuracy will be seriously declined.

In Figure 3, we use ‖𝐴𝐺‖ and ‖𝑀𝑁‖ to, respectively,
represent the Euclidean distance between nodes𝐴 and𝐺 and
𝑀 and 𝑁 (the dotted line in Figures 3(a) and 3(b)). |𝐴𝐺|
and |𝑀𝑁| are the estimated distances between 𝐴 and 𝐺 and
𝑀 and 𝑁, respectively. In DV-Hop, the estimated distance
between nodes 𝑖 and 𝑗 is calculated by ℎ

𝑖𝑗
× 𝐻𝑆, where ℎ

𝑖𝑗

is the minimum hop count between 𝑖 and 𝑗 (the hop count
represented by the solid line in Figure 3). 𝐻𝑆 is the average
size for one hop. The estimated distance between 𝐴 and 𝐺 in
Figure 3(a) is

|𝐴𝐺| = ℎ
𝐴𝐺

× 𝐻𝑆

≈ ‖𝐴𝐵‖ + ‖𝐵𝐶‖ + ‖𝐶𝐷‖ + ‖𝐷𝐸‖ + ‖𝐸𝐹‖ + ‖𝐹𝐺‖ .

(5)

The estimated distance between 𝑀 and 𝑁 in Figure 3(b)
is

|𝑀𝑁| = ℎ
𝑀𝑁

× 𝐻𝑆

≈ ‖𝑀𝐻‖ + ‖𝐻𝐼‖ + ‖𝐼𝐽‖ + ‖𝐽𝐾‖ + ⋅ ⋅ ⋅ + ‖𝐾𝐿‖

+ ‖𝐿𝑃‖ + ‖𝑃𝑄‖ + ‖𝑄𝑁‖ ,

(6)

where ‖ ⋅ ‖ represents the Euclidean distance between two
nodes. From Figure 3(a), we have

‖𝐴𝐵‖ + ‖𝐵𝐶‖ + ‖𝐶𝐷‖ + ‖𝐷𝐸‖ + ‖𝐸𝐹‖ + ‖𝐹𝐺‖

≈ ‖𝐴𝐺‖ .

(7)

Then,

|𝐴𝐺| ≈ ‖𝐴𝐺‖ . (8)

That is to say, the estimated distance between 𝐴 and 𝐺 is
approximately equal to their Euclidean distance.Therefore, in
such isotropic networks, when the estimated distance takes

the place of the Euclidean distance in localization, it will
not cause serious error. That is why DV-Hop is suitable for
localization in isotropic networks.

However, in an anisotropic network like Figure 3(b), it is
obvious that

‖𝑀𝐻‖ + ‖𝐻𝐼‖ + ‖𝐼𝐽‖ + ‖𝐽𝐾‖ + ‖𝐾𝐿‖ + ‖𝐿𝑃‖ + ⋅ ⋅ ⋅

+ ‖𝑃𝑄‖ + ‖𝑄𝑁‖ ≫ ‖𝑀𝑁‖ .

(9)

Taking formula (6) into consideration, then we have

|𝑀𝑁| ≫ ‖𝑀𝑁‖ . (10)

Formula (10) means that the estimated distance between
𝑀 and 𝑁 is much larger than their Euclidean distance.
When we use the estimated distance to replace the Euclidean
distance to participate in localization, it will cause serious
localization error.

From the above analysis, we observe that the shortest
communication path between nodes is crucial to localization
result. Only when the shortest estimated distance between
nodes is approximately equal to their Euclidean distance can
the estimated location of node obtained by localization algo-
rithm be approximate to its real location. In an anisotropic
network, because of the barrier and irregularity of the net-
work topology, the shortest estimated distance between far-
away nodes will heavily deviate from the Euclidean distance,
which will cause serious localization error.

A straightforward way is decomposing an anisotropic
network into many different isotropic subnetworks and then
carrying out DV-Hop for node localization in each subnet-
work. Since there is no longer serious bent path between
nodes in each subnetwork, the estimated distance can be
approximately equal to the Euclidean distance. Therefore, in
theory, this scheme can reduce localization error to a certain
extent in anisotropic networks.
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Figure 4: HCD-DV-Hop overview.

3. HCD-DV-Hop Overview

In this paper, we assume that the network is fully connected.
Our proposed decomposition based localization scheme, that
is, HCD-DV-Hop, mainly consists of the following two steps,
as is shown in Figure 4.

(i) The anisotropic network is decomposed into several
different isotropic subnetworks by using the Hop
Count BasedDecomposition (HCD) algorithm.HCD
goes through four steps: boundary recognition, con-
cave/convex node recognition and cleansing, bound-
ary segmentation, and region decomposition, which
will be shown in Section 4.

(ii) For each isotropic subnetwork, the typical range-
free DV-Hop algorithm will be carried out for node
localization.

4. Hop Count Based Decomposition (HCD)
Algorithm for Anisotropic Networks

In large-scale wireless sensor networks, there may be thou-
sands of sensor nodes, which makes it almost impossible to
decompose the network by artificial means. So this paper
will design an algorithm to achieve decomposition by using
connectivity information of the network. The proposed Hop
Count Based Decomposition (HCD) algorithm consists of
four steps.

Step 1 (boundary recognition). This step aims at recognizing
the boundary nodes in the network.

A
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H

𝜙

Figure 5: Schematic diagram of the cyclotomy.

Step 2 (concave/convex node recognition and cleansing).
Based on boundary recognition, the concave/convex node
recognition algorithm and cleansing criterion is proposed to
obtain the optimal concave and convex nodes.

Step 3 (boundary segmentation). The optimal concave and
convex nodes are used to flood the boundary nodes to
segment the boundary into different branches.

Step 4 (region decomposition). The neighboring boundary
nodes of optimal concave nodes flood the network to decom-
pose an anisotropic network into different subnetworks.

4.1. Boundary Recognition. The existing boundary recogni-
tion algorithms can be divided into two categories: statistical
methods [27] and geometrical methods [28]. After years of
researches and developments, scholars have proposed many
boundary recognition algorithms with good performance,
such as [29–31]. Since this paper mainly focuses on region
decomposition and node localization, we directly use [31] in
our simulations for boundary recognition.

4.2. Concave/Convex Node Recognition and Cleansing

4.2.1. Definition of Concave/Convex Node Based on Cyclotomy.
The cyclotomy [32] refers to increasing the number of
sides of the regular polygon inside a circle to estimate the
circumference by summing them (see Figure 5), based on
which the concavity and convexity function of 𝑂 point is
given as

𝜑 =
𝜙

180
∘
≈

𝑛 × 𝑑

𝜋 × 𝑅
, (11)

where 𝑑 represents side length of the polygon, 𝑅 is the radius
of the circle, and 𝑛 is the number of sides corresponding to 𝜙.
It means in (11) that the summation of 𝑛 sides approximately
equals the arc length of 𝜙. When the vertexes of the polygon
in Figure 5 are regarded as sensor nodes in the network, 𝑑 can
be considered as the maximum communication distance and
𝑛 is the hop count between nodes.
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𝑖
(filled

with red), the nodes in 𝜕𝑁
3
(𝑃
𝑖
) are filled with green. 𝑝

𝑖1
and 𝑝

𝑖2
are

both boundary nodes and 3-hop nodes of 𝑃
𝑖
. Intuitively, 𝛿 = 16. The

minimumhop count from𝑝
𝑖1
to𝑝
𝑖2
is 𝑛 = 16−1 = 15, as is indicated

by the arrows. (b) For 𝑃
𝑗
(filled with red), the nodes in 𝜕𝑁

2
(𝑃
𝑗
) are

filled with green. 𝑝
𝑗1
and 𝑝

𝑗2
are both boundary nodes and 2-hop

nodes of 𝑃
𝑗
. The auxiliary nodes (𝑝

𝑗4
and 𝑝

𝑗5
) to make 𝜕𝑁

2
(𝑃
𝑗
) a

connected component are filled with orange, 𝜆 = 1. The minimum
hop count from 𝑝

𝑗1
to 𝑝
𝑗2
is 𝑛 = (11 − 1) − 1 = 9, as is indicated by

the arrows.

In practical application, since the sensor network is
discrete, theremay be deviations in the calculation results due
to the boundary noise. Considering this factor, the definitions
of the concave nodes and the convex nodes based on the
boundaries of 𝜙 = 157.5

∘ and 𝜙 = 202.5
∘ are given by

0 < 𝜑 ≤
7

8
, 𝑂 is a convex node,

7

8
< 𝜑 <

9

8
, 𝑂 is a nonconcave/convex node,

9

8
≤ 𝜑 < 2, 𝑂 is a concave node.

(12)

Therefore, the concavity/convexity of point 𝑂 can be
determined by calculating the value of 𝜑.

4.2.2. Concave/Convex Node Recognition Algorithm Based on
Minimum Hop Count. Given an anisotropic network (see C-
shape network in Figure 6 for an example), the boundary
nodes can be recognized through [31]. Define 𝜔 as the
set of boundary nodes (the black nodes in Figure 6). For
an arbitrary node 𝑃

𝑖
∈ 𝜔, we define 𝜕𝑁

𝑘
(𝑃
𝑖
) as 𝑘-hop

neighborhood of 𝑃
𝑖
, which means the set of nodes exactly 𝑘

hops away from 𝑃
𝑖
. Intuitively, 𝜕𝑁

𝑘
(𝑃
𝑖
) can be considered as

a (or a part of) circle centered at 𝑃
𝑖
(see 𝑃

𝑖
in Figure 6). Given

two nodes 𝑝
𝑖1
, 𝑝
𝑖2
∈ 𝜕𝑁
𝑘
(𝑃
𝑖
), define 𝛿 as the set of nodes that

are on the shortest path from 𝑝
𝑖1
to 𝑝
𝑖2
(including 𝑝

𝑖1
and 𝑝

𝑖2
)

through the nodes in 𝜕𝑁
𝑘
(𝑃
𝑖
). Then, we define the minimum

hop count between 𝑝
𝑖1
and 𝑝

𝑖2
, denoted by 𝑛, as 𝛿minus one.

For each boundary node 𝑃
𝑖
, as shown in Figure 6, it

first floods the network for 𝑘 hops to obtain its 𝑘-hop

neighborhood 𝜕𝑁
𝑘
(𝑃
𝑖
). Two nodes 𝑝

𝑖1
and 𝑝

𝑖2
belonging to

both 𝜕𝑁
𝑘
(𝑃
𝑖
) and boundary nodes identify themselves. Note

that 𝑝
𝑖1
and 𝑝

𝑖2
are on different sides of 𝑃

𝑖
. It is possible that

there may be several boundary nodes belonging to 𝜕𝑁
𝑘
(𝑃
𝑖
)

at each side of 𝑃
𝑖
, and these boundary nodes naturally form

a connected component. For this case, we randomly choose
one boundary node at each side of 𝑃

𝑖
. 𝑝
𝑖1
and 𝑝

𝑖2
then flood

𝜕𝑁
𝑘
(𝑃
𝑖
) to obtain the minimum hop count between them.

Because of the discreteness of the network, 𝜕𝑁
𝑘
(𝑃
𝑗
)might

be disconnected, as 𝑃
𝑗
in Figure 6 for an example. For this

case, we use the following method to solve the problem.
𝑝
𝑗1
, 𝑝
𝑗2
, 𝑝
𝑗3
, 𝑝
𝑗6
, and the nodes filled with green belong to

𝜕𝑁
2
(𝑃
𝑗
), and 𝑝

𝑗4
and 𝑝

𝑗5
belong to 𝜕𝑁

1
(𝑃
𝑗
). Since node 𝑝

𝑗3

cannot send themessage received from 𝑝
𝑗1
to 𝑝
𝑗6
directly, 𝑝

𝑗3

then sends this message to its neighbor 𝑝
𝑗4
, called auxiliary

node, which is 𝑘 − 1 hops from 𝑃
𝑗
. As 𝑝

𝑗4
has no neighbor

belonging to 𝜕𝑁
2
(𝑃
𝑗
), it sends the message to 𝑝

𝑗5
. 𝑝
𝑗5

then
sends the message to 𝑝

𝑗6
, which belongs to 𝜕𝑁

2
(𝑃
𝑗
). With

the help of auxiliary nodes, 𝜕𝑁
2
(𝑃
𝑗
) is considered connected.

Thus, the minimum hop count from 𝑝
𝑗1

to 𝑝
𝑗2

is obtained.
Obviously, the message from 𝑝

𝑗2
to 𝑝
𝑗1
can travel in the same

way. The minimum hop count is estimated by (𝑛 − 𝜆), where
𝜆 is the difference between 𝑘 and the hop count (𝑘 − 1 in
Figure 6) of the closest auxiliary node to the boundary node
𝑃
𝑗
. Another case that needs to be considered is when 𝑘−1 hop

auxiliary nodes cannot make 𝜕𝑁
𝑘
(𝑃
𝑗
) connected, it will turn

to 𝑘+1 hop auxiliary nodes for help.Theprocess is the same as
the case of 𝑘−1.Theworst case, which is almost impossible as
the network is fully connected, is that neither 𝑘−1 hop nor 𝑘+
1 hop auxiliary nodes can make 𝜕𝑁

𝑘
(𝑃
𝑗
) connected. For this

case, we discard the concavity/convexity recognition of 𝑃
𝑗
.

Next, we give the detail derivation process of concave/
convex node recognition criterion. Take 𝑘 = 2 for example.
For an arbitrary boundary node𝑃

𝑖
, with the above definitions

of 𝜕𝑁
𝑘
(𝑃
𝑖
), 𝑘-hopneighboring boundary nodes𝑝

𝑖1
and𝑝
𝑖2
for

𝑃
𝑖
(i.e., 𝑝

𝑖1
, 𝑝
𝑖2
∈ 𝜔 and 𝑝

𝑖1
, 𝑝
𝑖2
∈ 𝜕𝑁
2
(𝑃
𝑖
)), and the minimum

hop count (denoted by 𝑛) from 𝑝
𝑖1
to 𝑝
𝑖2
, we assume each

hop count distance is 𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. According to (11), the

concavity and convexity function of 𝑃
𝑖
can be described by

𝜑 =
𝑆
1
+ 𝑆
2
+ ⋅ ⋅ ⋅ + 𝑆

𝑛

𝜋 × 𝑅
. (13)

Taking account of the deployment efficiency of sensor
nodes, it is reasonable to assume that 𝑆

𝑖
is uniformly dis-

tributed in [𝑅/2, 𝑅], where 𝑅 is the maximum communica-
tion distance. Let 𝑆

𝑖
= 𝑆


𝑖
⋅ 𝑅; then, 𝑆

𝑖
is uniformly distributed

in [1/2, 1]. As shown in Figure 6, it can be seen that 𝑅 < 𝑅

≤

2𝑅. Because of the randomness distribution of the nodes, we
take 𝑅


= 1.5𝑅. Similarly, we take 𝑅


= 2.5𝑅 when 𝑘 = 3,

𝑅

= 3.5𝑅 when 𝑘 = 4, and 𝑅


= 4.5𝑅 when 𝑘 = 5. Then, (13)

can be rewritten as

𝜑 =
𝑆


1
𝑅 + 𝑆


2
𝑅 + ⋅ ⋅ ⋅ + 𝑆



𝑛
𝑅

𝜋 × 1.5𝑅
=

𝑛

∑

𝑖=1

𝑆


𝑖

1.5𝜋
. (14)
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Table 1: Initial concave/convex node recognition criterion in differ-
ent values of 𝑘.

𝑘 Convex node Nonconcave/
convex node Concave node

2 𝑛 ≤ 5 6 ≤ 𝑛 ≤ 7 𝑛 ≥ 8

3 𝑛 ≤ 9 10 ≤ 𝑛 ≤ 11 𝑛 ≥ 12

4 𝑛 ≤ 12 13 ≤ 𝑛 ≤ 16 𝑛 ≥ 17

5 𝑛 ≤ 16 17 ≤ 𝑛 ≤ 21 𝑛 ≥ 22

Note that each 𝑆


𝑖
/1.5𝜋 is a small random variable which

is uniformly distributed in [1/3𝜋, 1/1.5𝜋]. According to the
central limit theorem, when 𝑛 is large enough, the distribu-
tion of 𝜑 is close to normal distribution. As 𝐸[𝑆



𝑖
/1.5𝜋] =

1/2𝜋 and 𝐷[𝑆


𝑖
/1.5𝜋] = 1/108𝜋

2, we have 𝜇 = 𝐸[𝜑] = 𝑛/2𝜋

and 𝜎
2
= 𝐷[𝜑] = 𝑛/108𝜋

2. Then,

𝜑 =

𝑛

∑

𝑖=1

𝑆


𝑖

1.5𝜋
≈

1

2𝜋
× 𝑛 =

𝑛

2𝜋
. (15)

Let 𝑛
1
, 𝑛
2
, and 𝑛

3
be the minimum hop count between 𝑝

𝑖1

and𝑝
𝑖2
when𝑃

𝑖
, respectively, is a convex node, a nonconcave/

convex node, and a concave node. Then, 𝜑
1
= 𝑛
1
/2𝜋, 𝜑

2
=

𝑛
2
/2𝜋, and 𝜑

3
= 𝑛
3
/2𝜋. According to (12),

0 <
𝑛
1

2𝜋
≤

7

8
,

7

8
<

𝑛
2

2𝜋
<

9

8
,

9

8
≤

𝑛
3

2𝜋
< 2.

(16)

Thus, 𝑛
1
≤ 5.5, 5.5 < 𝑛

2
< 7.1, and 7.1 ≤ 𝑛

3
< 12.6. Since

𝑛 is a positive integer, we have 1 ≤ 𝑛
1
≤ 5, 𝑛

2
= 6, 7, and

8 ≤ 𝑛
3
≤ 12. Calculating the different values of 𝑛 through

the above processes, we can get the initial concave/convex
node recognition criterion in different values of 𝑘 based on
the minimum hop count, as is shown in Table 1.

In order to make the results more accurate, the values of
𝑛
1
, 𝑛
2
, and 𝑛

3
will be corrected using the following method.

We also take 𝑘 = 2, for example, and choose 𝑛
1
= 3, 𝑛

2
= 7,

and 𝑛
3
= 10 during the calculation.

As shown in Figure 7, 𝛼 and 𝛽, respectively, are the
intersection points of𝜑

1
and𝜑
2
and𝜑
2
and𝜑
3
.Theprobability

theory shows that when 𝛼 and 𝛽 are taken as optimal
threshold, themisclassification probability can beminimized.

The normal probability density function is

𝑓 (𝑥) =
1

√2𝜋𝜎
exp(−

(𝑥 − 𝜇)
2

2𝜎2
) , (17)

Table 2: Final concave/convex node recognition criterion in differ-
ent values of 𝑘.

𝑘 Convex node Nonconcave/
convex node Concave node

2 𝑛 ≤ 4 5 ≤ 𝑛 ≤ 8 𝑛 ≥ 9

3 𝑛 ≤ 7 8 ≤ 𝑛 ≤ 13 𝑛 ≥ 14

4 𝑛 ≤ 9 10 ≤ 𝑛 ≤ 18 𝑛 ≥ 19

5 𝑛 ≤ 12 13 ≤ 𝑛 ≤ 23 𝑛 ≥ 24

Convex node
Nonconcave/convex node

Concave node

𝜑1

𝜑2

𝜑3

𝛼 𝛽n1/2𝜋 n2/2𝜋 n3/2𝜋

Figure 7: Distribution curve when 𝑘 is 2.

where 𝜇
1
= 𝑛
1
/2𝜋, 𝜎2

1
= 𝑛
1
/108𝜋

2, 𝜇
2
= 𝑛
2
/2𝜋, and 𝜎

2

2
=

𝑛
2
/108𝜋

2. Then,

1

√2𝜋𝜎
1

exp(−
(𝛼 − 𝜇

1
)
2

2𝜎
2

1

)

=
1

√2𝜋𝜎
2

exp(−
(𝛼 − 𝜇

2
)
2

2𝜎
2

2

) .

(18)

Thus,

𝛼 ≈ 0.729. (19)

The corresponding minimum hop count of 𝛼 is 𝑛∗
1
= 𝛼 ⋅

2𝜋 ≈ 4.6. The value of 𝛽 can be calculated in the same way.
Thus, 𝛽 ≈ 1.332, and its corresponding minimum hop count
is 𝑛∗
2
= 𝛽 ⋅ 2𝜋 ≈ 8.4. Since the hop count value is a positive

integer, it is easy to know that, in the case of 𝑘 = 2, when the
minimum hop count 𝑛 ≤ 4, 𝑃

𝑖
is identified as a convex node,

when 5 ≤ 𝑛 ≤ 8, 𝑃
𝑖
is a nonconcave/convex node, and when

𝑛 ≥ 9, 𝑃
𝑖
is a concave node.

Let 𝑘, respectively, be 3, 4, and 5, and calculate the
corresponding values of 𝛼 and 𝛽.Then, the corrected value of
the minimum hop count 𝑛 is determined and the concavity
or convexity of 𝑃

𝑖
can be identified, as is shown in Table 2.

Assume that there are𝑀 boundary nodes in the network,
represented by 𝑃

𝑖
, 𝑖 = 1, 2, . . . ,𝑀. For an arbitrary node 𝑃

𝑖
∈

𝜔, it can use its 𝑘-hop neighboring boundary nodes 𝑝
𝑖1
and

𝑝
𝑖2
to identify the concavity or convexity of itself, where 𝑘 ∈
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(a) (b) (c)

(d) (e) (f)

Figure 8: Region decomposition of L-shape network. 763 nodes are uniformly distributed, and average degree of the network is 9.13. (a)
Original map. (b) Boundary recognition result. The red nodes are boundary nodes. (c) Concave/convex node recognition result, 𝑘 = 3. The
nodes with peach circles are concave nodes, and nodes with cyan circles are convex nodes. (d) Optimal concave/convex nodes. Optimal
concave nodes are marked with peach, and optimal convex nodes are marked with cyan. (e) Boundary segmentation result. Different color
and markers represent different boundary branches. (f) Region decomposition result. The same color nodes belong to one subregion.

{2, 3, 4, 5}. According to the above-mentioned mathematical
analysis and criterion, we give the concave/convex node
recognition algorithm based on the minimum hop count as
follows, which includes four steps.

Step 1. For each boundary node 𝑃
𝑖
, 𝑃
𝑖
obtains its 𝑘-hop

neighboring boundary nodes 𝑝
𝑖1
and 𝑝

𝑖2
; that is, 𝑝

𝑖1
, 𝑝
𝑖2
∈ 𝜔

and 𝑝
𝑖1
, 𝑝
𝑖2

∈ 𝜕𝑁
2
(𝑃
𝑖
), where 𝑘 ∈ {2, 3, 4, 5}, and its value is

preset by the system.

Step 2. If there are 𝑝
𝑖1

and 𝑝
𝑖2

that meet the condition
in Step 1, then turn to Step 3. Otherwise, 𝑃

𝑖
gives up the

concavity/convexity identification of itself.

Step 3. 𝑃
𝑖
derives the minimum hop count 𝑛 between 𝑝

𝑖1
and

𝑝
𝑖2
.

Step 4. 𝑃
𝑖
identifies its concavity or convexity by using the

criterion in Table 2.

4.2.3. Concave/Convex Node Cleansing. After concave/con-
vex node recognition algorithm, the concavity or convexity
of each boundary node has been identified. Since the sensor
network is discrete, it is possible that a nonconcave node
which is in the nonconcave region is identified as a concave
node bymistake.These mistaken concave nodes often appear
in an isolate way. In contrast, there always are several concave
nodes in a concave area; that is, real concave nodes always
gather together (seen in Figures 8(c), 9(c), and 10(c), e.g.;
the black nodes are ordinary nodes, and the red nodes are
boundary nodes. The nodes with peach circles are concave
nodes, and those with cyan circles are convex nodes. Other
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Region decomposition of C-shape network. 1295 nodes are uniformly distributed, and average degree of the network is 9.04. (a)
Original map. (b) Boundary recognition result. The red nodes are boundary nodes. (c) Concave/convex node recognition result, 𝑘 = 3. The
nodes with peach circles are concave nodes, and the nodes with cyan circles are convex nodes. (d) Optimal concave/convex nodes. Optimal
concave nodes are marked with peach, and optimal convex nodes are marked with cyan. (e) Boundary segmentation result. Different color
and markers represent different boundary branches. (f) Region decomposition result. The same color nodes belong to one subregion.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Region decomposition of single-window-shape network. 1505 nodes are uniformly distributed, and average degree of the network
is 9.01. (a) Original map. (b) Boundary recognition result. The red nodes are boundary nodes. (c) Concave/convex node recognition result,
𝑘 = 3. The nodes with peach circles are concave nodes, and the nodes with cyan circles are convex nodes. (d) Optimal concave/convex nodes.
Optimal concave nodes aremarked with peach, and optimal convex nodes aremarked with cyan. (e) Boundary segmentation result. Different
color and markers represent different boundary branches. (f) Region decomposition result. The same color nodes belong to one subregion.
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red nodes without any circles are nonconcave/convex nodes).
Therefore, the isolate concave node can be directly eliminated
from the recognition result (to simplify our algorithm, we
define isolate concave node as the concave node which has
no concave node within its two hops; similarly, isolate convex
node is the convex node which has no convex node within its
two hops), as well as the isolate convex node.

For the concave nodes that gather together in one concave
area, since larger concavity of the concave node will lead
to larger deviation between hop count distance and the
Euclidean distance, we choose the concave node with the
maximum concavity as the optimal concave node in this area.
In our algorithm, the node with maximum concavity corre-
sponds to the node which is with the biggest minimum hop
count between its two 𝑘-hop neighboring boundary nodes. It
is possible that in some concave area there may be more than
one concave nodewith the same biggestminimumhop count.
For this case, we randomly choose one of them as the optimal
concave node. The above process is called cleansing process.

Similarly, we use the cleansing criterion to cleanse the
convex node in the network.The difference is that the convex
node with the smallest minimum hop count should be taken
as the optimal convex node. If there is more than one convex
nodes with the same smallest minimum hop count in a
convex area, we randomly choose one of them as the optimal
convex node.

Through the cleansing criterion, the optimal concave/
convex node is obtained. For example, the cleansing results
of Figures 8(c), 9(c), and 10(c), respectively, are Figures 8(d),
9(d), and 10(d), where the optimal concave nodes are marked
with peach and the optimal convex nodes are marked with
cyan.

4.3. Boundary Segmentation. Assume that the boundary of
the network is fully connected. For simplicity, the optimal
concave and convex nodes are called the optimal nodes in this
section. In order to segment the boundary, we use the optimal
nodes to flood Boundary Segmentation PacKeT (BS-PKT)
among the boundary nodes. Each BS-PKT concludes the ID
number of the node which generates the BS-PKT. When a
boundary node 𝐴 receives a BS-PKT, 𝐴 deals the current BS-
PKT with the following ways:

(1) If 𝐴 is not a boundary node, 𝐴 discards BS-PKT.
(2) If 𝐴 is a boundary node but not an optimal node, 𝐴

records the IDnumber in BS-PKT and sends BD-PKT
to its neighbor nodes.

(3) If𝐴 is both a boundary node and an optimal node, but
𝐴 has not recorded any ID number of other optimal
nodes, then 𝐴 records the ID number in BS-PKT and
does not send BS-PKT anymore.

(4) If 𝐴 is both a boundary node and an optimal node,
and𝐴 has recorded an ID number of another optimal
node, 𝐴 discards the BS-PKT.

After flooding, each boundary node will record two
different ID numbers of the optimal nodes. Assume the ID

numbers, respectively, are 𝐼 and 𝐽. Let BoundID = [𝐼, 𝐽].
Only when two boundary nodes have the same 𝐼 and 𝐽 is
their BoundID defined to be equal. In such situation, the
boundary nodes which have the same BoundID belong to
the same boundary branch, and BoundID is the boundary
number of this branch. Thus, the boundary of the network is
segmented (e.g., Figures 8(e), 9(e), and 10(e) are the boundary
segmentation results of the networks, where different color
and markers represent different boundary branches).

4.4. Region Decomposition. For a fully connected anisotropic
network, define 𝑈 as the set of the optimal concave nodes.
For an arbitrary optimal concave node 𝑞

𝑖
∈ 𝑈, its two 𝑘-hop

neighboring boundary nodes have been obtained in the con-
cave/convex node recognition process. For simplicity, the 𝑘-
hop neighboring boundary nodes are also called neighboring
boundary nodes.

To decompose the network, all neighboring boundary
nodes of the optimal concave nodes flood Region Decom-
position PacKeT (RD-PKT) in the network. Each RD-PKT
concludes the ID number of the node which generates this
RD-PKT and the boundary number BoundID recorded by
the node. The format of RD-PKT is (ID, BoundID). When
an arbitrary node 𝐵 receives a RD-PKT for the first time, 𝐵
records (ID, BoundID) in RD-PKT and sends RD-PKT to its
neighbor nodes; if 𝐵 receives a RD-PKT not for the first time,
𝐵 discards it directly. This policy ensures that most nodes
will receive only one RD-PKT from the closest neighboring
boundary node.

By this means, each node in the network will record
only one RD-PKT, in which the ID and BoundID number of
the corresponding neighboring boundary node are included.
The nodes which have the same ID number belong to one
subregion; then, the original region decomposition result
is obtained. To avoid the network from decomposing to
too many subregions, the nodes with the same BoundID
can be merged to one subregion. Finally, an anisotropic
network is decomposed into many different subnetworks.
See Figures 8(f), 9(f), and 10(f), for example; different colors
represent different subnetworks. It is obvious that there is
no longer serious bent path between far-away nodes in each
subnetwork. Thus, each subnetwork can be considered as an
isotropic network.

In summary, after boundary recognition, concave/convex
node recognition and cleansing, boundary segmentation,
and region decomposition, an anisotropic network finally
is decomposed into several different isotropic subnetworks.
During the process of HCD, we only need to use the con-
nectivity information of the network, without any additional
hardware on sensor nodes. As a range-free localization
algorithm, the complexity of communication cost of DV-
Hop is 𝑂(𝑁 ⋅ 𝑚). Here, 𝑁 and 𝑚 are the numbers of
sensor nodes and anchor nodes, respectively. For HCD
(Hop Count Based Decomposition) scheme, the complex-
ity of communication cost is 𝑂(𝑁). Since our proposed
HCD-DV-Hop scheme is composed of HCD and DV-Hop,
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the complexity of communication cost of HCD-DV-Hop is
the same as DV-Hop.

5. Performance Evaluation

To evaluate the proposed algorithm, we simulate on three
typical anisotropic network topologies: L-shape, C-shape,
and single-window-shape network topologies. In simula-
tions, nodes are uniformly distributed. All nodes have the
same communication range. Two nodes are connected if and
only if the Euclidean distance between them is smaller than a
given communication radius 𝑅.

We compare our algorithm with DV-Hop. For compar-
ison, two metrics are used in this section: LE (localization
error) and ALE (average localization error). The LE of an
unknown node 𝑖 is calculated by

LE
𝑖
=

√(𝑥
𝑖
− 𝑥


𝑖
)
2
+ (𝑦
𝑖
− 𝑦


𝑖
)
2

𝑅
× 100%,

(20)

where (𝑥
𝑖
, 𝑦
𝑖
) is the real location of node 𝑖 and (𝑥



𝑖
, 𝑦


𝑖
) is the

estimated location which is obtained by the localization algo-
rithm. ALE is the average localization error of all unknown
nodes in the network, it can be computed by

ALE =
1

𝑁

𝑁

∑

𝑖=1

LE
𝑖
, (21)

where 𝑁 is the number of unknown nodes. It is obvious
that the smaller the LE and ALE, the better the localization
algorithm.

5.1. Region Decomposition. Given three typical anisotropic
networks, L-shape network, C-shape network, and single-
window-shape network, as shown in Figures 8(a), 9(a),
and 10(a), respectively, nodes are uniformly distributed in
each network. The communication radius is 40m. First we
use HCD (Hop Count Based Decomposition algorithm) to
decompose the networks. Simulation results are shown in
Figures 8–10.

5.2. Performance Evaluation of Algorithms under Certain
Communication Radius and Ratio of Anchor Node. Here the
communication radius is 40m and the ratio of anchor node
is 10%. Anchors are randomly distributed in the networks.

For each anisotropic network, after decomposing, DV-
Hop is carried out in each subnetwork.Thus, the LE (localiza-
tion error) of each unknown node is obtained throughHCD-
DV-Hop algorithm, as shown in Figures 11(a), 11(c), and 11(e).
The LE obtained by DV-Hop is shown in Figures 11(b), 11(d),
and 11(f), respectively. Table 3 gives the corresponding ALE
(average localization error) of each network by HCD-DV-
Hop and DV-Hop.

As shown in Figure 11 and Table 3, we found that what-
ever the network topology is, HCD-DV-Hop can effectively
reduce the LE of most unknown nodes compared with DV-
Hop, and the ALE obtained by HCD-DV-Hop is much

Table 3: ALE of each network by HCD-DV-Hop and DV-Hop
algorithm.

Network topology HCD-DV-Hop DV-Hop
L-shape 57.8% 172.4%
C-shape 65.8% 595.3%
Single-window-shape 65.7% 161.3%

smaller than that by DV-Hop. Obviously, the reason is
that HCD-DV-Hop uses decomposition scheme to avoid
serious bent path between far-away nodes participating in
localization.

5.3. Performance Evaluation of Algorithms under Different
Ratios of Anchor Node. Given a certain communication
radius (take 40m as the communication radius in the simula-
tions), we examine the performance of HCD-DV-Hop and
DV-Hop under different ratios of anchor node. In simula-
tions, we randomly generated 200 networks and computed
the ALE of each network. Finally, we take the average value of
the 200 ALE as the average error under each ratio of anchor
node. Simulation results of L-shape, C-shape, and single-
window-shape network are shown in Figures 12(a), 12(b),
and 12(c), respectively.

Figure 12 shows that, for different communication radius
in Lshape, C-shape, and Single-window-shape networks,
compared with DV-Hop, the average error of HCD-DV-Hop
is significantly decreased. That is, HCD-DV-Hop performs
much better in localization than DV-Hop.

5.4. Performance Evaluation of Algorithms under Different
Communication Radius. Given a certain ratio of anchor node
(take 10% as the ratio of anchor node in the simulations),
we examine the performance of HCD-DV-Hop and DV-Hop
under different communication radius. In simulations, we
randomly generated 200 networks and computed the ALE of
each network. Finally, we take the average value of the 200
ALE as the average error under each communication radius.
Simulation results of L-shape, C-shape, and single-window-
shape network are shown in Figures 13(a), 13(b), and 13(c),
respectively.

From Figure 13, we observe that the average error of our
proposed HCD-DV-Hop is much smaller than that of DV-
Hop, which obviously proves the localization advantage of
HCD-DV-Hop in anisotropic networks.

6. Conclusion and Future Work

In this paper, we have proposed a novel decomposition
based localization (HCD-DV-Hop) scheme for anisotropic
sensor networks. The main idea of HCD-DV-Hop is first
decomposing an anisotropic network into several different
isotropic subnetworks in order to avoid the influence of holes
or obstacles on the shortest communication path between far-
away nodes; then, the typical range-free DV-Hop algorithm



International Journal of Distributed Sensor Networks 13

0 100 200 300 400 500 600 700

0
200

400
600

800
1000

0

200

400

600

800

Lo
ca

liz
at

io
n 

er
ro

r (
%

)

y-axis (m) x-axis (m)

(a) HCD-DV-Hop
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(b) DV-Hop
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Figure 11: LE (localization error) of each network by different algorithms. (a) LE of L-shape network by HCD-DV-Hop. (b) LE of L-shape
network by DV-Hop. (c) LE of C-shape network by HCD-DV-Hop. (d) LE of C-shape network by DV-Hop. (e) LE of single-window-shape
network by HCD-DV-Hop. (f) LE of single-window-shape network by DV-Hop.

is used for node localization in each subnetwork. The HCD
algorithm is the core of HCD-DV-Hop. It includes boundary
recognition, concave/convex node recognition and cleans-
ing, boundary segmentation, and region decomposition. All
of these steps are distributed and only require network
connectivity information. Simulation results show that no
matter how node communication radius or the ratio of

anchor node changes, compared with DV-Hop algorithm,
the proposed HCD-DV-Hop scheme can effectively reduce
localization error in anisotropic networks without increasing
the complexity of the algorithm.

In HCD-DV-Hop, we use the typical range-free DV-
Hop algorithm to achieve node localization in each
isotropic subnetwork. As HCD scheme is able to decompose
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Figure 12: Average error under different ratios of anchor node.

an anisotropic network into different isotropic subnetworks,
it can be used to investigate the localization performance on
the combination of HCD with other range-free algorithms.
Additionally, the proposed HCD-DV-Hop scheme is
designed for 2D networks. In our future research, we will
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Figure 13: Average error under different communication radius.

explore the possible improvements on HCD-DV-Hop in
order to adapt to 3D networks.
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