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We propose a comprehensive delayedHBVmodel, which not only considers the immune response to both infected cells and viruses
and a time delay for the immune system to clear viruses but also incorporates an exposed state and the proliferation of hepatocytes.
We prove the positivity and boundedness of solutions and analyze the global stability of two boundary equilibria and then study
the local asymptotic stability and Hopf bifurcation of the positive (infection) equilibrium and also the stability of the bifurcating
periodic solutions.Moreover, we illustrate how the factors such as the time delay, the immune response to infected cells and viruses,
and the proliferation of hepatocytes affect the dynamics of the model by numerical simulation.

1. Introduction

Hepatitis B virus (HBV) has become one of the serious
infectious diseases threatening global human health, which
can cause chronic liver infection and further result in liver
inflammation, fibrosis, cirrhosis, or even cancer [1]. Each year
more than 1 million people die of end-stage liver diseases like
cancer due to the HBV infection [2].

Mathematical modeling and analysis of the dynamics
of such infectious viruses as HBV play important roles in
understanding the factors that govern the infectious disease
progression and offering insights into developing treatment
strategies and guiding antiviral drug therapies [3]. So far,
there have been plenty of mathematical models proposed to
describe and analyze virus infection, immune responses, and
antiretroviral treatment [4–10].

Among these works, the development of virus models
with immune responses is gaining much attention [3, 11, 12].
The immune system is essential in controlling the level of
virus reproduction in terms of the strength of the Cytotoxic
T Lymphocyte (CTL) response. A small change of the CTL
response may have a large effect on virus production and
infected cells load. As to this aspect, typical work can be
summarized as follows. Chen et al. [12] indicated that the
immunity system can not only clear free viruses but also kill

infected cells. Elaiw and AlShamrani [3] proposed a four-
dimensional model with humoral immunity response and
general function and analyzed the global asymptotic stability
of all equilibria based on the general function. However, both
models in [3, 12] do not consider time delay. In order to
characterize the time of a body’s immune response after the
virus infection of target cells, time delay has been taken into
account [13–16]. For example, Zhu et al. [16] proposed an
HIV infection model with CTL response delay and analyzed
the effect of time delay on the stability of equilibria. Besides,
a latent period would be necessary to be incorporated into
a virus model because when viruses infect a healthy organ
like liver, it will not be pathogenetic at once, as it takes about
six weeks to six months from the infection to the incidence
[17–20]. For example, Medley et al. [17] proposed an HBV
model with an exposed state, namely, infected but not yet
infectious. Moreover, it was modeled in [21, 22] that the
liver can regenerate cells and compensate the lost infected
hepatocytes by the proliferation of hepatocytes.

In this paper, we will propose a more comprehensive
model than those existing ones, which not only considers
the immune response to both infected cells and viruses and
a time delay for the immune system to clear viruses but
also incorporates an exposed state and the proliferation of
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Figure 1: The mechanism of our model.

hepatocytes. We first discuss the existence of two boundary
equilibria and one positive (infection) equilibrium. We then
analyze the global stability of the two boundary equilibria, the
local asymptotic stability and Hopf bifurcation of the positive
equilibrium and also the stability of the bifurcating periodic
solutions. Moreover, we perform numerical simulations to
illustrate some of the theoretical results we obtain and also
illustrate how the factors such as the immune response to
infected cells and viruses and the proliferation of hepatocytes
affect the dynamics of the model under time delay.

The paper is structured as follows. In Section 2, a delayed
mathematical model is proposed, and the positivity and
boundedness of solutions, existence of two boundary equi-
libria, and one positive equilibrium are discussed, followed by
the global stability analysis of these two boundary equilibria
and the local asymptotic stability and Hopf bifurcation of
the positive equilibrium in Section 3. The stability of the
bifurcating periodic solutions is studied in Section 4. In
Section 5, some numerical simulations and discussions are
given. Finally, a conclusion is given in Section 6.

2. Mathematical Model

Wang et al. [23] proposed a virus infection model of
four-dimensional equations with delayed humoral immune
response, which, however, does not involve an exposed state
and consider the proliferation of hepatocytes. Although it
considers the immune response to viruses, it does not involve
the immune response to infected cells.

Based on this model, we propose a new and compre-
hensive HBV model, which not only considers the immune
response to both infected cells and viruses and a time delay
for the immune system to clear viruses but also incorporates
an exposed state and the proliferation of hepatocytes. To

better understand our model, we illustrate its mechanism in
Figure 1.

The model is then given as follows:

�̇� (𝑡) = 𝜆 + 𝑟𝑥 (𝑡) − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,
̇𝑒 (𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − 𝑎1𝑒 (𝑡) − 𝑎2𝑒 (𝑡) ,
̇𝑦 (𝑡) = 𝑎2𝑒 (𝑡) − 𝑎1𝑦 (𝑡) − 𝑘1𝑦 (𝑡) 𝑧 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝜀V (𝑡) − 𝑘2V (𝑡) 𝑧 (𝑡) ,
�̇� (𝑡) = 𝑘3V (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜏) − 𝑘4𝑧 (𝑡) ,
�̇� (𝑡) = 𝑘5 + 𝑘1𝑘6𝑦 (𝑡) 𝑧 (𝑡) − 𝑘7𝑤 (𝑡) ,

(1)

where 𝑥, 𝑒, 𝑦, V, 𝑧, and 𝑤 denote the number of uninfected
cells, exposed cells, infected cells, free viruses, CTLs, and
alanine aminotransferases (ALT), respectively.Theparameter𝜆 represents the natural production rate of uninfected cells.𝑟𝑥 is a new term which is introduced to represent the
proliferation of hepatocytes, where 𝑟 is the proliferation rate.
Parameters 𝑑, (and the following) 𝑎1, 𝜀, 𝑘4, and 𝑘7 represent
the natural death rate of uninfected cells, exposed cells,
infected cells, free viruses, CTLs, and ALT, respectively. 𝛽
represents the infection rate from uninfected cells to exposed
cells and 𝑎2 the transfer rate from exposed cells to infected
cells. The production rate of free viruses from infected
cells is denoted by 𝑘, and the production rate of CTLs
by 𝑘3. 𝑘5 represents the production rate of ALT from the
extrahepatic tissue and 𝑘1𝑘6 the production rate of ALTwhen
the infected hepatocytes are killed by CTL. The immunity-
induced clearance for infected cells is modeled by a term𝑘1𝑦𝑧, where 𝑘1 represents the clearance rate of infected cells.
Similarly, the immunity-induced clearance for free viruses is
modeled by 𝑘2V𝑧, where 𝑘2 represents the clearance rate of
free viruses. 𝜏 is time delay. All the parameters in this paper
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are positive and 𝑑 > 𝑟. For convenience, we define new
parameter 𝜌 = 𝑑 − 𝑟.
2.1. Positivity and Boundedness of Solutions. In this subsec-
tion, we prove the positivity and the boundedness of solutions
of system (1).

We denote 𝑥(0) ≥ 0, 𝑒(0) ≥ 0, 𝑦(0) ≥ 0, 𝑤(0) ≥ 0, V(𝑡) ≥0, 𝑧(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0]. From the first equation of system
(1), we have 𝑥(𝑡) = 𝑒−∫𝑡0 (𝜌+𝛽V(𝑠))𝑑𝑠𝑥(0) + 𝜆 ∫𝑡0 𝑒−∫𝑡𝑠 [𝜌+𝛽V(𝜉)]𝑑𝜉𝑑𝑠;
therefore, 𝑥(𝑡) ≥ 0 for ∀𝑡 > 0 if 𝑥(0) ≥ 0. Next, we consider
the second, third, and fourth equation in system (1) as a
nonautonomous system for 𝑒(𝑡), 𝑦(𝑡), V(𝑡):

̇𝑒 = 𝛽𝑥V − (𝑎1 + 𝑎2) 𝑒 (𝑡) ,
̇𝑦 = 𝑎2𝑒 − (𝑎1 + 𝑘1𝑧) 𝑦 (𝑡) ,
V̇ = 𝑘𝑦 − (𝜀 + 𝑘2𝑧) V (𝑡) .

(2)

Based on Theorem 2.1 in [24], we have 𝑒(𝑡) ≥ 0, 𝑦(𝑡) ≥0, V(𝑡) ≥ 0 if 𝑒(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0.𝑧(𝑡) = 𝑒−𝑘4𝑡𝑦(0) + ∫𝑡0 𝑘3V(𝑡 − 𝛾)𝑧(𝑡 − 𝛾)𝑒−𝑘4(𝑡−𝛾)𝑑𝛾, we have𝑧(𝑡) ≥ 0, ∀𝑡 > 0 if 𝑧(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0].𝑤(𝑡) = 𝑒−𝑘7𝑡𝑤(0) + 𝑒−𝑘7𝑡 ∫𝑡0 [(𝑘5 + 𝑘1𝑘6𝑦(𝑠)𝑧(𝑠)]𝑒−𝑘7𝑡𝑑𝑠,
because 𝑦(𝑡), 𝑧(𝑡) ≥ 0, so we have 𝑤(𝑡) ≥ 0, ∀𝑡 > 0 if𝑤(0) ≥ 0.

Hence, the nonnegative is proved. In what follows, wewill
study the boundedness of solutions.We define𝐺(𝑡) as a linear
combination of 𝑥, 𝑒, 𝑦, V, 𝑧:

𝐺 (𝑡) = 𝑥 (𝑡) + 𝑒 (𝑡) + 𝑦 (𝑡) + 𝑎12𝑘V (𝑡)
+ 𝑎1𝑘22𝑘𝑘3 𝑧 (𝑡 + 𝜏) ,

𝛿 = min {𝑑 − 𝑟, 𝑎12 , 𝑎1, 𝜀, 𝑘4} ,
𝑑𝐺 (𝑡)𝑑𝑡 = (𝜆 − 𝜌𝑥 − 𝛽𝑥V) + (𝛽𝑥V − 𝑎1𝑒 − 𝑎2𝑒)

+ (𝑎2𝑒 − 𝑎1𝑦 − 𝑘1𝑦𝑧) + 𝑎12𝑘 (𝑘𝑦 − 𝜀V − 𝑘2V𝑧)
+ 𝑎1𝑘22𝑘𝑘3 (𝑘3V (𝑡) 𝑧 (𝑡) − 𝑘4𝑧 (𝑡 + 𝜏))

= 𝜆 − (𝑑 − 𝑟) 𝑥 − 𝑎12 𝑒 − 𝑎1𝑦 − 𝑎1𝜀2𝑘 V

− 𝑎1𝑘2𝑘42𝑘𝑘3 𝑧 (𝑡 + 𝜏) − 𝑘1𝑦𝑧 ≤ 𝜆 − 𝛿𝐺 (𝑡) .

(3)

Therefore, we obtain lim𝑡→∞𝐺(𝑡) ≤ 𝜆/𝛿, namely, 𝑥(𝑡) +𝑒(𝑡)+𝑦(𝑡)+(𝑎1/2𝑘)V(𝑡)+(𝑎1𝑘2/2𝑘𝑘3)𝑧(𝑡+𝜏) ≤ 𝜆/𝛿. Sowe have

0 ≤ 𝑥(𝑡), 𝑒(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡) ≤ 𝜆/𝛿 Because the boundedness
of𝑥(𝑡), 𝑒(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡), lim𝑡→∞𝑤(𝑡) ≤ (𝑘5+𝑘1𝑘6)𝜆2/𝑘7𝛿2.

The boundedness is proved.

2.2. Equilibrium. In this subsection, we study the equilibria
of system (1). The method to obtain equilibria is setting �̇� =̇𝑒 = ̇𝑦 = V̇ = �̇� = �̇� = 0 and computes the following:

𝜆 − 𝜌𝑥 − 𝛽𝑥V = 0,
𝛽𝑥V − 𝑎1𝑒 − 𝑎2𝑒 = 0,

𝑎2𝑒 − 𝑎1𝑦 − 𝑘1𝑦𝑧 = 0,
𝑘𝑦 − 𝜀V − 𝑘2V𝑧 = 0,

𝑘3V (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜏) − 𝑘4𝑧 = 0,
𝑘5 + 𝑘1𝑘6𝑦𝑧 − 𝑘7𝑤 = 0.

(4)

The system (1) has two boundary equilibria (an infection-
free equilibrium 𝐸00 in which 𝑥 ̸= 0, 𝑤 ̸= 0, 𝑒 = 𝑦 = V = 𝑧 =0 and an equilibrium without immune response 𝐸11 in which𝑥 ̸= 0, 𝑒 ̸= 0, 𝑦 ̸= 0, V ̸= 0, 𝑤 ̸= 0, 𝑧 = 0) and a positive
(infection) equilibrium𝐸22 in which 𝑥 ̸= 0, 𝐸 ̸= 0, 𝑦 ̸= 0, V ̸=0, 𝑧 ̸= 0, 𝑤 ̸= 0.

The infection-free equilibrium is 𝐸00 = (𝑥0, 0, 0, 0, 0, 𝑤0),
where 𝑥0 = 𝜆/𝜌, and 𝑤0 = 𝑘5/𝑘7, and the basic reproductive
number is obtained by the following method.

Based on integral operator spectral radius, the basic
reproductive number is 𝑅0 = 𝜌(𝐹𝑉−1), where

𝐹 = [[
[
0 0 𝛽𝑥0𝑎2 0 00 𝑘 0

]]
]
,

𝑉 = [[
[
𝑎1 + 𝑎2 0 00 𝑎1 + 𝑘1𝑧0 00 0 𝜀

]]
]
.

(5)

Hence, we have the basic reproductive number being 𝑅0 =𝑎2𝑘𝑥0𝛽/𝑎1𝜀(𝑎1 + 𝑎2).
The equilibrium without immune response is 𝐸11 = (𝑥1,𝑒1, 𝑦1, V1, 0, 𝑤1), where 𝑥1 = 𝑎1𝜀(𝑎1 + 𝑎2)/𝑎2𝑘𝛽, 𝑒1 = (𝑎1𝜀/𝑎2𝑘)V1, 𝑦1 = (𝜀/𝑘)V1, V1 = 𝑎2𝑘𝜆/𝑎1𝜀(𝑎1 + 𝑎2) − 𝜌/𝛽, and𝑤1 =𝑘5/𝑘7. Similarly, we have the basic reproductive number is𝑅1 = 𝑘3V1/𝑘4 + 𝑘𝑘3𝑦1𝑘1/𝑎1𝑘2𝑘4 at 𝐸11 = (𝑥1, 𝑒1, 𝑦1, V1, 0, 𝑤1).
The infected positive equilibrium is 𝐸22 = (𝑥2, 𝑒2, 𝑦2, V2,𝑧2, 𝑤2), where

V2 = 𝑘4𝑘3 ,
𝑥2 = 𝜆𝜌 + 𝛽V2 ,
𝑒2 = 𝛽𝑥2V2𝑎1 + 𝑎2 ,
𝑦2 = 𝐴 + √𝐴2 + 4𝐵2 ,
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𝐴 = 𝑎1𝑘2𝑘4 − 𝑘1𝑘3𝜀V2𝑘𝑘1𝑘3 ,
𝐵 = 𝑎2𝑘2𝑘4𝑘𝑘1𝑘3 > 0,
𝑧2 = 𝑘3 (𝑘𝑦2 − 𝜀V2)𝑘2𝑘4 ,
𝑤2 = 𝑘5 + 𝑘1𝑘6𝑦2𝑧2𝑘7 .

(6)

3. Analysis

3.1. Global Stability Analysis of the Two Boundary Equilibria.
In this section, we will employ the direct Lyapunov method

and LaSalle’s invariance principle to establish the global
asymptotic stability of the two boundary equilibria.

Theorem 1. The infection-free equilibrium 𝐸00 is globally
asymptotically stable if and only if 𝑅0 < 1.

See Appendix A for proof.

Theorem 2. The equilibrium without immune response 𝐸11 is
globally asymptotically stable if and only if 𝑅1 < 1.

See Appendix B for proof.

3.2. Local Asymptotic Stability and Hopf Bifurcation of the
Positive Equilibrium. In this section, we will discuss the local
asymptotic stability and Hopf bifurcation of the positive
equilibrium 𝐸22.

The characteristic equation of system (1) at 𝐸22 is as
follows:

𝐻(𝜆; 𝜏) =



𝜆 + 𝜌 + 𝛽V2 0 0 𝛽𝑥2 0 0
−𝛽V2 𝜆 + 𝑎1 + 𝑎2 0 −𝛽𝑥2 0 0
0 −𝑎2 𝜆 + 𝑎1 + 𝑘1𝑧2 0 𝑘1𝑦2 0
0 0 −𝑘 𝜆 + 𝜀 + 𝑘2𝑧2 𝑘2V2 0
0 0 0 −𝑘3𝑧2𝑒−𝜆𝜏 𝜆 − 𝑘3V2𝑒−𝜆𝜏 + 𝑘4 0
0 0 −𝑘1𝑘6𝑧2 0 −𝑘1𝑘6𝑦2 𝜆 + 𝑘7



= 0. (7)

Define

𝐴1 = 2𝑎1 + 𝑎2 + 𝑘𝑧2,
𝐴2 = (𝑎1 + 𝑎2) (𝑎1 + 𝑘𝑧2) ,
𝐴3 = 𝜀 + 𝑘4 − 𝑘2𝑧2,
𝐴4 = 𝑘4 (𝜀 − 𝑘2𝑧2) ,
𝐴5 = 𝑎2𝑘𝛽𝑥2,
𝐴6 = 𝑎2𝑘𝑘4𝛽𝑥2,
𝑀1 = −𝑘3V2,
𝑀2 = (2𝑘2𝑧2 − 𝜀) 𝑘3V2,
𝑀3 = 𝑘𝑘1𝑘3𝑦2𝑧2,
𝑀4 = −𝑎2𝑘𝑘3𝛽𝑥2V2 + 𝑘𝑘1𝑘3𝑦2𝑧2 (𝑎1 + 𝑎2) ,
𝑠1 = 𝐴1 + 𝐴3,
𝑠2 = 𝐴2 + 𝐴4 + 𝐴1𝐴3,
𝑠3 = 𝐴5 + 𝐴1𝐴4 + 𝐴2𝐴3,
𝑠4 = 𝐴6 + 𝐴2𝐴4,
𝑠5 = 𝑀1,

𝑠6 = 𝑀2 + 𝐴1𝑀1,
𝑠7 = 𝐴1𝑀2 + 𝐴2𝑀1 +𝑀3,
𝑠8 = 𝐴2𝑀2 +𝑀4,
𝑠9 = 𝜌 + 𝛽V2,
𝑠10 = 𝛽2𝑥2V2𝑎2𝑘,
𝑠11 = 𝛽2𝑥2V2𝑎2𝑘𝑘4,
𝑠12 = −𝛽2𝑥2V22𝑎2𝑘𝑘3,
𝐵1 = 𝑠1 + 𝑠9,
𝐵2 = 𝑠2 + 𝑠1𝑠9,
𝐵3 = 𝑠3 + 𝑠2𝑠9,
𝐵4 = 𝑠4 + 𝑠3𝑠9 + 𝑠10,
𝐵5 = 𝑠11 + 𝑠4𝑠9,
𝐵6 = 𝑠5,
𝐵7 = 𝑠6 + 𝑠5𝑠9,
𝐵8 = 𝑠7 + 𝑠6𝑠9,
𝐵9 = 𝑠8 + 𝑠7𝑠9,
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𝐵10 = 𝑠12 + 𝑠8𝑠9,
𝐷1 = 𝐵1 + 𝑘7,
𝐷2 = 𝐵2 + 𝐵1𝑘7,
𝐷3 = 𝐵3 + 𝐵2𝑘7,
𝐷4 = 𝐵4 + 𝐵3𝑘7,
𝐷5 = 𝐵5 + 𝐵4𝑘7,
𝐷6 = 𝐵6 + 𝐵5𝑘7,
𝑆1 = 𝐵6,
𝑆2 = 𝐵7 + 𝐵6𝑘7,
𝑆3 = 𝐵8 + 𝐵7𝑘7,
𝑆4 = 𝐵9 + 𝐵8𝑘7,
𝑆5 = 𝐵10 + 𝐵9𝑘7,
𝑆6 = 𝐵10𝑘7.

(8)

Then the characteristic equation𝐻(𝜆; 𝜏) above becomes

𝐻(𝜆; 𝜏) = 𝜆6 + 𝐷1𝜆5 + 𝐷2𝜆4 + 𝐷3𝜆3 + 𝐷4𝜆2 + 𝐷5𝜆
+ 𝐷6 + 𝑆1𝜆5𝑒−𝜆𝜏 + 𝑆2𝜆4𝑒−𝜆𝜏 + 𝑆3𝜆3𝑒−𝜆𝜏
+ 𝑆4𝜆2𝑒−𝜆𝜏 + 𝑆5𝜆𝑒−𝜆𝜏 + 𝑆6𝑒−𝜆𝜏 = 0.

(9)

When 𝜏 = 0, (9) further becomes

𝐻(𝜆; 𝜏) = 𝜆6 + 𝑛1𝜆5 + 𝑛2𝜆4 + 𝑛3𝜆3 + 𝑛4𝜆2 + 𝑛5𝜆 + 𝑛6
= 0, (10)

where

𝑛1 = 𝐷1 + 𝑆1,
𝑛2 = 𝐷2 + 𝑆2,
𝑛3 = 𝐷3 + 𝑆3,
𝑛4 = 𝐷4 + 𝑆4,
𝑛5 = 𝐷5 + 𝑆5,
𝑛6 = 𝐷6 + 𝑆6.

(11)

Using theRouth-Hurwitz criterion [23], we obtain the follow-
ing lemma.

Lemma 3. If (10) satisfies Δ 1 ≡ 𝑛1 > 0, Δ 2 ≡  𝑛1 1𝑛3 𝑛2  >
0, Δ 3 ≡ 

𝑛1 1 0
𝑛3 𝑛2 𝑛1
𝑛5 𝑛4 𝑛3

 > 0 and Δ 4 =

𝑛1 1 0 0
𝑛3 𝑛2 𝑛1 1
𝑛5 𝑛4 𝑛3 𝑛2
0 𝑛6 𝑛5 𝑛4

 > 0, then the

positive equilibrium 𝐸22 is locally asymptotically stable when𝜏 = 0.
Proof. By the Routh-Hurwitz criterion, if the four conditions
are satisfied, then all roots of (10) have negative real parts.

Therefore, the positive equilibrium 𝐸22 is locally asymptoti-
cally stable when 𝜏 = 0. For more details, we refer the readers
to [25, 26].

From Lemma 3, we know that all roots of 𝐻(𝜆; 𝜏) lie
to the left of the imaginary axis when 𝜏 = 0. However,
with 𝜏 increasing from zero, some of its roots may cross the
imaginary axis to the right. In this case, there are some roots
having positive real parts, and therefore the equilibrium 𝐸22
becomes unstable. Next, wewill discuss the stability of system
(1) at 𝐸22 when 𝜏 > 0.

We first divide (9) into two parts and obtain

𝜆6 + 𝐷1𝜆5 + 𝐷2𝜆4 + 𝐷3𝜆3 + 𝐷4𝜆2 + 𝐷5𝜆 + 𝐷62
= 𝑆1𝜆5 + 𝑆2𝜆4 + 𝑆3𝜆3 + 𝑆4𝜆2 + 𝑆5𝜆 + 𝑆62 𝑒−𝜆𝜏2 .

(12)

Suppose (9) has a purely imaginary root 𝜆 = 𝑖𝜔 (𝜔 > 0).
Substituting 𝜆 = 𝑖𝜔 into (12) yields

−𝜔6 + 𝐷1𝜔5𝑖 + 𝐷2𝜔4 − 𝐷3𝜔3𝑖 − 𝐷4𝜔2 + 𝐷5𝜔𝑖
+ 𝐷62 = 𝑆1𝜔5𝑖 + 𝑆2𝜔4 − 𝑆3𝜔3𝑖 − 𝑆4𝜔2 + 𝑆5𝜔𝑖
+ 𝑆62 .

(13)

By separating the real part and imaginary part, the following
real part is obtained:

𝜔12 + 𝐶1𝜔10 + 𝐶2𝜔8 + 𝐶3𝜔6 + 𝐶4𝜔4 + 𝐶5𝜔2 + 𝐶6
= 0, (14)

where

𝐶1 = −𝐷21 − 2𝐷2 + 𝑆21,
𝐶2 = 𝐷22 + 2𝐷4 + 2𝐷1𝐷3 − 𝑆22 − 2𝑆1𝑆3,
𝐶3 = −𝐷23 − 2𝐷6 − 2𝐷1𝐷5 − 2𝐷2𝐷4 + 𝑆23 + 2𝑆1𝑆5

+ 2𝑆2𝑆4,
𝐶4 = 𝐷24 + 2𝐷2𝐷6 + 2𝐷3𝐷5 − 𝑆24 − 2𝑆2𝑆6 − 2𝑆3𝑆5,
𝐶5 = −𝐷25 − 2𝐷4𝐷6 + 𝑆25 + 2𝑆4𝑆6,
𝐶6 = 𝐷26 − 𝑆26.

(15)

Let

𝐺 (𝑥) = 𝑥6 + 𝐶1𝑥5 + 𝐶2𝑥4 + 𝐶3𝑥3 + 𝐶4𝑥2 + 𝐶5𝑥
+ 𝐶6. (16)

Therefore, if (9) has a purely imaginary root 𝑖𝜔, it is equivalent
to the fact that 𝐺(𝑥) = 0 has a positive real root 𝜔2.
Theorem 4. If 𝐺(𝑥) = 0 has no positive real roots, then the
positive equilibrium 𝐸22 is locally asymptotically stable for any𝜏 > 0.
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Proof. If 𝐺(𝑥) = 0 has no positive real roots, then obviously
(9) has no positive real roots. Therefore, the positive equilib-
rium 𝐸22 is locally asymptotically stable for any 𝜏 > 0.

Substituting 𝜆 = 𝑖𝜔 into (22), we obtain the real part,

− 𝜔6 + 𝐷2𝜔4 − 𝐷4𝜔2 + 𝐷6
+ (𝑆1𝜔5 − 𝑆3𝜔3 + 𝑆5𝜔) sin𝜔𝜏
+ (𝑆2𝜔4 − 𝑆4𝜔2 + 𝑆6) cos𝜔𝜏 = 0,

(17)

and imaginary part,

𝐷1𝜔5 − 𝐷3𝜔3 + 𝐷5𝜔 + (−𝑆2𝜔4 + 𝑆4𝜔2 − 𝑆6) sin𝜔𝜏
+ (𝑆1𝜔5 − 𝑆3𝜔3 + 𝑆5𝜔) cos𝜔𝜏 = 0. (18)

Assuming that 𝐺(𝑥) = 0 has 𝑛(1 ≤ 𝑛 ≤ 6) positive real roots,
denoted by 𝑥𝑛 (1 ≤ 𝑛 ≤ 𝑛). As√𝑥𝑛 = 𝜔, we then have

cos (√𝑥𝑛𝜏) = 𝑄𝑛
= (−𝑆2𝑥2𝑛 + 𝑆4𝑥𝑛 − 𝑆6) (−𝑥3𝑛 + 𝐷2𝑥2𝑛 − 𝐷4𝑥𝑛 + 𝐷6)
(𝑆2𝑥2𝑛 − 𝑆4𝑥𝑛 + 𝑆6)2 + (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛)2

− (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛) (𝐷1𝑥2𝑛√𝑥𝑛 − 𝐷3𝑥𝑛√𝑥𝑛 + 𝐷5√𝑥𝑛)
(𝑆2𝑥2𝑛 − 𝑆4𝑥𝑛 + 𝑆6)2 + (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛)2 ,

sin (√𝑥𝑛𝜏) = 𝑃𝑛
= (𝑆2𝑥2𝑛 − 𝑆4𝑥𝑛 + 𝑆6) (𝐷1𝑥2𝑛√𝑥𝑛 − 𝐷3𝑥𝑛√𝑥𝑛 + 𝐷5√𝑥𝑛)
(𝑆2𝑥2𝑛 − 𝑆4𝑥𝑛 + 𝑆6)2 + (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛)2

− (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛) (−𝑥3𝑛 + 𝐷2𝑥2𝑛 − 𝐷4𝑥𝑛 + 𝐷6)
(𝑆2𝑥2𝑛 − 𝑆4𝑥𝑛 + 𝑆6)2 + (𝑆1𝑥2𝑛√𝑥𝑛 − 𝑆3𝑥𝑛√𝑥𝑛 + 𝑆5√𝑥𝑛)2 .

(19)

Let

𝜏(𝑗)𝑛 = {{{{{{{

1
√𝑥𝑛 [arccos (𝑄𝑛) + 2𝑗𝜋] , if 𝑃𝑛 ≥ 0,
1

√𝑥𝑛 [2𝜋 − arccos (𝑄𝑛) + 2𝑗𝜋] , if 𝑃𝑛 < 0, (20)

where 1 ≤ 𝑛 ≤ 𝑛 and 𝑗 = 0, 1, 2, . . ..
Therefore, the characteristic equation𝐻(𝜆; 𝜏(𝑗)𝑛 ) = 0 has a

pair of purely imaginary roots ±𝑖√𝑥𝑛. For every integer 𝑗 and1 ≤ 𝑛 ≤ 𝑛, define 𝜆(𝑗)𝑛 (𝜏) = 𝛼(𝑗)𝑛 (𝜏) + 𝑖𝜔(𝑗)𝑛 (𝜏) as the root of (9)
near 𝜏(𝑗)𝑛 , satisfying 𝛼(𝑗)𝑛 (𝜏(𝑗)𝑛 ) = 0 and 𝜔(𝑗)𝑛 (𝜏(𝑗)𝑛 ) = √𝑥𝑛. Then
the following theorem is obtained.

Theorem 5. If 𝐺(𝑥) = 0 has some positive real roots, then 𝐸22
is locally asymptotically stable for 𝜏 ∈ [0, 𝜏(0)𝑛0 ), where

𝜏(0)𝑛0 = min {𝜏(𝑗)𝑛 | 1 ≤ 𝑛 ≤ 𝑛, 𝑗 = 0, 1, 2, . . .} . (21)

Proof. For 𝜏(0)𝑛0 = min{𝜏(𝑗)𝑛 | 1 ≤ 𝑛 ≤ 𝑛, 𝑗 =0, 1, 2, . . .}, 𝐺(𝑥) = 0 has no positive real roots when 𝜏 ∈[0, 𝜏(0)𝑛0 ), which means that all the roots of (9) have strictly
negative real parts when 𝜏 ∈ [0, 𝜏(0)𝑛0 ). Therefore, 𝐸22 is locally
asymptotically stable for 𝜏 ∈ [0, 𝜏(0)𝑛0 ).

Theorem 6. If 𝑥𝑛0 is a simple root of 𝐺(𝑥) = 0, then there is a
Hopf bifurcation for the system as 𝜏 increases past 𝜏(0)𝑛0 .

See Appendix C for proof.

4. Stability of the Bifurcating
Periodic Solutions

In this section, wewill continue to derive the explicit formulas
for determining the stability, direction, and other properties
of the Hopf bifurcation at a critical value 𝜏(0)𝑛0 by means of the
normal form and the center manifold theory [27].

First, we make the following hypotheses.
(1) Equation (9) has a pair of purely imaginary roots ±𝑖𝜔0

at 𝜏 = 𝜏0, where 𝜏0 ∈ {𝜏(𝑗)𝑛 | 1 ≤ 𝑛 ≤ 𝑛, 𝑗 = 0, 1, 2, . . .}.
(2) The remaining roots of (22) have strictly negative real

parts.
(3) 𝜔0 is a simple root of 𝐺(𝑥) = 0.
We use 𝑢 = 𝜏 − 𝜏0 to represent a new bifurcation parame-

ter. Let𝑋(𝑡) = (𝑥−𝑥2, 𝑒−𝑒2, 𝑦−𝑦2, V−V2, 𝑧−𝑧2, 𝑤−𝑤2)𝑇, and𝑋𝑡(𝜃) = 𝑋(𝑡+𝜃), where 𝜃 ∈ [−𝜏, 0]. Therefore, system (1) can
be written as the following functional differential equation:

�̇� (𝑡) = 𝐿𝑢𝑋𝑡 + 𝑓 (𝑋𝑡 (⋅) , 𝑢) , (22)
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where

𝐿𝑢𝜙 = 𝐹1𝜙 (0) + 𝐹2𝜙 (−𝜏) ,
𝐹1

=
[[[[[[[[[[[
[

−𝜌 − 𝛽V2 0 0 −𝛽𝑥2 0 0
𝛽V2 −𝑎1 − 𝑎2 0 𝛽𝑥2 0 0
0 𝑎2 −𝑎1 − 𝑘1𝑧2 0 −𝑘1𝑦2 0
0 0 𝑘 −𝜀 − 𝑘2𝑧2 −𝑘2V2 0
0 0 0 0 −𝑘4 0
0 0 𝑘1𝑘6𝑧2 0 𝑘1𝑘6𝑦2 −𝑘7

]]]]]]]]]]]
]

,

𝐹2 =
[[[[[[[[[[[
[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑘3𝑧2 𝑘3V2 0
0 0 0 0 0 0

]]]]]]]]]]]
]

,

𝑓 (𝜙, 𝑢) =
[[[[[[[[[[[
[

−𝛽𝜙1 (0) 𝜙4 (0)𝛽𝜙1 (0) 𝜙4 (0)−𝑘1𝜙3 (0) 𝜙5 (0)−𝑘2𝜙4 (0) 𝜙5 (0)𝑘3𝜙4 (−𝜏) 𝜙5 (−𝜏)𝑘1𝑘6𝜙3 (0) 𝜙5 (0)

]]]]]]]]]]]
]

.

(23)

By the Riesz representation theorem [28], there exists a6 × 6matrix-valued function such that

𝐿𝑢𝜙 = ∫0
−𝜏
𝑑𝜂 (𝜃, 𝑢) 𝜙 (𝜃) , (24)

where 𝑑𝜂(𝜃, 𝑢) = 𝐹1𝛿(𝜃)𝑑𝜃 + 𝐹2𝛿(𝜃 + 𝜏)𝑑𝜃.
For 𝜙 ∈ 𝐶([−𝜏, 0], 𝑅6), we further define
𝐴 (𝑢) 𝜙 (𝜃)

= {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , if 𝜃 ∈ [−𝜏, 0) ,
∫0
−𝜏
𝑑𝜂 (𝜉, 𝑢) 𝜙 (𝜉) ≡ 𝐿𝑢𝜙, if 𝜃 = 0,

𝑅 (𝑢) 𝜙 (𝜃) = {{{
0, if 𝜃 ∈ [−𝜏, 0) ,
𝑓 (𝜙, 𝑢) , if 𝜃 = 0.

(25)

Then system (22) can be written as

�̇�𝑡 (𝜃) = 𝐴 (𝑢)𝑋𝑡 (𝜃) + 𝑅 (𝑢)𝑋𝑡 (𝜃) . (26)

For 𝜑 ∈ 𝐶([−𝜏, 0], 𝑅6), define
𝐴∗ (0) 𝜑 (𝑠)

= {{{{{{{

𝑑𝜙 (𝑠)𝑑𝑠 , if 𝑠 ∈ [−𝜏, 0) ,
∫0
−𝜏
𝑑𝜂𝑇 (𝜉, 0) 𝜑 (−𝜉) , if 𝑠 = 0,

(27)

and an inner product of 𝜙, 𝜑
⟨𝜑, 𝜙⟩ = 𝜑𝑇 (0) 𝜙 (0)

− ∫0
𝜃=−𝜏

∫𝜃
𝜉=0

𝜑𝑇 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (28)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and 𝜙 ∈ 𝐶([−𝜏, 0], 𝑅6). Then 𝐴(0) and𝐴∗(0) are adjoint operators.
Let ℎ(𝜃) and ℎ∗(𝑠) be the eigenvectors of 𝐴(0) and 𝐴∗(0)

corresponding to the eigenvalues 𝑖𝜔0 and −𝑖𝜔0, respectively.
We choose ℎ(𝜃) and ℎ∗(𝑠) as

ℎ (𝜃) = (1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6)𝑇 𝑒𝑖𝜔0𝜃,
ℎ∗ (s) = 𝐷 (1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6 )𝑇 𝑒𝑖𝜔0𝑠,

(29)

so that ⟨ℎ∗(𝑠), ℎ(𝜃)⟩ = 1 is satisfied. We give the detailed
computation of (29) in Appendix D.

In the following, we will compute the coefficients,𝑔20, 𝑔11, 𝑔02, and 𝑔21, using the method given in [27]. The
detailed computation of 𝑔20, 𝑔11, 𝑔02, and 𝑔21 is presented in
Appendix E.

Then the following values can be computed:

𝑐1 (0) = 𝑖2𝜔0 (𝑔11𝑔20 − 2 𝑔112 −
𝑔0223 ) + 𝑔212 ,

𝑢2 = − Re (𝑐1 (0))
Re (𝜆 (𝜏0)) ,

𝛽2 = 2Re (𝑐1 (0)) .

(30)

The signs of 𝑢2, 𝛽2 determine the direction of the Hopf
bifurcation and the stability of bifurcating periodic solutions,
respectively [27]. From (C.11) of Appendix C, we obtain
sign[(𝑑𝛼(𝑗)𝑛 (𝜏)/𝑑𝜏)|𝜏=𝜏𝑗𝑛] = sign[(𝑑𝐺/𝑑𝑥)|𝑥=𝑥𝑛].

Let 𝑢∗2 = −Re(𝑐1(0))/𝐺(𝜔20). We obtain the following
theorem.

Theorem 7. Assume the hypotheses (1), (2), and (3) at the
beginning of Section 4 hold.

(1) If 𝑢∗2 > 0 (𝑢∗2 < 0), then the bifurcating periodic
solutions exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0) in a 𝜏0-neighborhood.

(2) If 𝛽2 < 0 (𝛽2 > 0), the bifurcating periodic solutions
are orbitally asymptotically stable as 𝑡 → +∞ (𝑡 → −∞).
Proof. (1) If 𝜏0 = 𝜏(0)𝑛0 , where 𝜏(0)𝑛0 = min{𝜏(𝑗)𝑛 | 1 ≤ 𝑛 ≤ 𝑛, 𝑗 =0, 1, 2, . . .}, and the hypotheses (1), (2), and (3) hold, then,
from Theorem 6, we draw the conclusion that the existence
and stability of the bifurcating periodic solutions are only
determined by Re(𝑐1(0)).

(2) If 𝛽2 < 0, namely, Re(𝑐1(0)) < 0, then there exist
stable periodic solutions for 𝜏 > 𝜏(0)𝑛0 in a 𝜏0-neighborhood. So
the bifurcating periodic solutions are orbitally asymptotically
stable as 𝑡 → +∞.
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5. Simulation and Discussions

In this section, we will numerically illustrate the theoretical
results obtained above and also discuss how the factors such
as the immune response to infected cells and viruses and the
proliferation of hepatocytes affect the dynamics of the model
under time delay.

For the following simulations, we choose the parameter
values for system (1) as follows:

𝜆 = 4.0551,
𝑟 = 0.6933,
𝑑 = 4.4096,
𝛽 = 4.6178,
𝑎1 = 0.0638,
𝑎2 = 1.8858,
𝑘1 = 0.8391,
𝑘 = 2.7011,
𝜀 = 0.5083,
𝑘2 = 0.1963,
𝑘3 = 4.6661,
𝑘4 = 4.8580,
𝑘5 = 1.8046,
𝑘6 = 3.2210,
𝑘7 = 0.3397.

(31)

We set the initial values to 𝑥(𝑡) = 1, 𝑒(𝑡) = 1, 𝑦(𝑡) =1, V(𝑡) = 1, 𝑧(𝑡) = 1, and 𝑤(𝑡) = 1, where 𝑡 ∈ [−𝜏, 0].
5.1. Hopf Bifurcation and the Stability of Periodic Solutions.
With the parameter values given in (31), we have the
positive equilibrium 𝐸22 = (0.4757, 1.1732, 0.3281, 1.0411,1.7470, 9.8727) and the critical time value 𝜏(0)𝑛0 = 0.041.

When 𝜏 > 0.041, we obtain stable bifurcating periodic
solutions. For example, when 𝜏 = 0.05, the simulation result
is shown Figures 2 and 3. Figure 2 indicates that a stable limit
cycle is obtained as expected and Figure 3 indicates the state
dynamics of uninfected cells, exposed cells, infected cells, free
viruses, CTLs, and ALT, which are periodically oscillating.

When 𝜏 < 0.041, the bifurcating periodic solutions are
unstable. For example, when 𝜏 = 0.03, the simulation result
is shown in Figures 4 and 5. From Figures 4 and 5, we know
that the positive equilibrium 𝐸22 is asymptotically stable and
the system will converge to 𝐸22.

With the increasing of time delay (𝜏), the radius of limit
cycle will increase. The simulation result is shown Figure 6.

5.2. The Immune Response to Infected Cells. Here we will
investigate the effect of the immune response to infected cells
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Figure 2: The positive equilibrium 𝐸22 bifurcates into a periodic
solution at 𝜏 = 0.05 (a limit cycle).

on the model dynamics under time delay. When we change𝑘1 = 0.8391 to 𝑘1 = 0.01 by fixing other values given in
(31), we obtain a simulation result at 𝜏 = 0.05, illustrated
in Figure 7. Comparing Figure 2 when 𝑘1 = 0.8391 and
Figure 7 when 𝑘1 = 0.01, we can see that, with the decrease
of 𝑘1, the stable periodic solution becomes unstable, that is,
asymptotically stable.

5.3. The Immune Response to Viruses. We continue to inves-
tigate the effect of the immune response to viruses on the
model dynamics under time delay. When we change 𝑘2 =0.1963 to 𝑘2 = 0.001 by fixing other values given in (31), we
obtain a simulation result at 𝜏 = 0.05, illustrated in Figure 8.
Similarly, comparing Figures 2 and 8, we can see that, with
the decrease of 𝑘2, the stable periodic solution also becomes
unstable, that is, asymptotically stable.We further can see that
the effect of the immune response to infected cells on the
model dynamics is similar to that of the immune response
to viruses.

5.4. Proliferation of Hepatocytes. Then we investigate the
effect of proliferation of hepatocytes on the model dynamics
under time delay. For this, we still keep 𝜏 = 0.05 and change
the value of parameter 𝑟. When we change 𝑟 = 0.6933 to𝑟 = 0.001 by fixing other values given in (31), we obtain a
simulation result at 𝜏 = 0.05, illustrated in Figure 9. Figure 9
shows that when 𝑟 = 0.001, the bifurcating periodic solution
is stable, compared with Figure 2 when 𝑟 = 0.6933. We
also try other values of parameter rand obtaining similar
results. Thus, we can see parameter 𝑟 has a small effect on the
model dynamics, which reflect in periodicity and the positive
equilibrium 𝐸22.
6. Conclusions

In this paper, we consider a comprehensive delayed HBV
model. Different from other existing models, our model not
only considers the immune response to both infected cells
and viruses and a time delay for the immune system to
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Figure 3: The positive equilibrium 𝐸22 bifurcates into a periodic solution at 𝜏 = 0.05.
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Figure 4: The positive equilibrium 𝐸22 at 𝜏 = 0.03.

clear viruses but also incorporates an exposed state and the
proliferation of hepatocytes.

We then prove the positivity and boundedness of solu-
tions and analyze the global stability of two boundary
equilibria and investigate the local asymptotic stability and
Hopf bifurcation of the positive (infection) equilibrium and
also the stability of the bifurcating periodic solutions.We also
numerically illustrate theHopf bifurcation and the stability of
the bifurcating periodic solutions.

Moreover, we numerically illustrate how the factors such
as the time delay, the immune response to infected cells
and viruses, and the proliferation of hepatocytes affect the
dynamics of the model, which shows that the former two
factors have a big effect on the model dynamics, while the
latter one does not have a big effect.

Appendix

A. The Proof of Theorem 1

We construct a Lyapunov functional as follows:

𝑉0 = 𝑎2𝑘𝑎1 + 𝑎2 [𝑥 (𝑡) − 𝑥0 − 𝑥0 ln 𝑥 (𝑡)𝑥0 ]
+ 𝑎2𝑘𝑎1 + 𝑎2 𝑒 (𝑡) + 𝑘𝑦 (𝑡) + 𝑎1V (𝑡) .

(A.1)

Calculating the derivative of 𝑉0 along with the trajectories of
system (1), we obtain

�̇�0 = 𝑎2𝑘𝑎1 + 𝑎2 (1 −
𝑥0𝑥 (𝑡)) (𝜆 − 𝜌𝑥 − 𝛽𝑥V)

+ 𝑎2𝑘𝑎1 + 𝑎2 (𝛽𝑥V − 𝑎1𝑒 (𝑡) − 𝑎2𝑒 (𝑡))
+ 𝑘 (𝑎2𝑒 (𝑡) − 𝑎1𝑦 − 𝑘1𝑦𝑧)
+ 𝑎1 (𝑘𝑦 − 𝜀V − 𝑘2V𝑧)

= − 𝑎2𝑘𝜌𝑎1 + 𝑎2 ⋅
(𝑥 (𝑡) − 𝑥0)2𝑥 (𝑡) − 𝑎2𝑘𝑎1 + 𝑎2𝛽𝑥V

+ 𝑎2𝑘𝑎1 + 𝑎2 ⋅
𝑥0𝑥 (𝑡) ⋅ 𝛽𝑥V + 𝑎2𝑘𝑎1 + 𝑎2𝛽𝑥V

− 𝑎2𝑘𝑎1 + 𝑎2 (𝑎1 + 𝑎2) 𝑒 (𝑡) + 𝑘𝑎2𝑒 (𝑡) − 𝑘𝑎1𝑦
− 𝑘𝑘1𝑦𝑧 + 𝑎1𝑘𝑦 − 𝑎1𝜀V − 𝑎1𝑘2V𝑧
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Figure 5: The positive equilibrium 𝐸22 remains stale at 𝜏 = 0.03.
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= − 𝑎2𝑘𝜌𝑎1 + 𝑎2 ⋅
(𝑥 (𝑡) − 𝑥0)2𝑥 (𝑡)

− 𝑎1𝜀 (1 − 𝑎2𝑘𝑥0𝛽𝑎1𝜀 (𝑎1 + 𝑎2)) V − 𝑘𝑘1𝑦𝑧 − 𝑎1𝑘2V𝑧

= − 𝑎2𝑘𝜌𝑎1 + 𝑎2 ⋅
(𝑥 (𝑡) − 𝑥0)2𝑥 (𝑡) − 𝑎1𝜀 (1 − 𝑅0) V

− 𝑘𝑘1𝑦𝑧 − 𝑎1𝑘2V𝑧.
(A.2)

Therefore, when 𝑅0 = 𝑎2𝑘𝑥0𝛽/𝑎1𝜀(𝑎1 + 𝑎2) < 1, �̇�0 ≤ 0 holds
true. Furthermore, if and only if 𝑥 = 𝑥0, 𝑒 = 0, 𝑦 = 0, V =0, 𝑧 = 0, and 𝑤 = 𝑤0, the Lyapunov functional satisfies�̇�0 = 0. According to LaSalle’s invariance principle [29],
the infection-free equilibrium 𝐸00 is globally asymptotically
stable when𝑅0 < 1. Apparently, when𝑅0 > 1, 𝐸00 is unstable.
B. The Proof of Theorem 2

Similarly, we define the following Lyapunov functional:

𝑉1 = 𝑘3𝜀𝛽𝑥1 [𝑥 (𝑡) − 𝑥1 − 𝑥1 ln 𝑥 (𝑡)𝑥1 ]
+ 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2) [𝑒 (𝑡) − 𝑒1 − 𝑒1 ln 𝑒 (𝑡)𝑒1 ]
+ 𝑘𝑘3𝑎1 [𝑦 (𝑡) − 𝑦1 − 𝑦1 ln 𝑦 (𝑡)𝑦1 ]
+ 𝑘3 [V (𝑡) − V1 − V1 ln

V (𝑡)
V1

] + 𝑘2𝑧
+ 𝑘2𝑘3 ∫𝑡

𝑡−𝜏
V (𝜃) 𝑧 (𝜃) 𝑑𝜃.

(B.1)

The derivative of 𝑉1 along with the trajectories of system (1)
can be calculated as

�̇�1 = 𝑘3𝜀𝛽𝑥1 (1 −
𝑥1𝑥 ) (𝜆 − 𝜌𝑥 − 𝛽𝑥V)

+ 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2) (1 −
𝑒1𝑒 (𝑡))
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Figure 7: The positive equilibrium 𝐸22 remains stable at 𝜏 = 0.05 when 𝑘1 = 0.01 (blue line) and exists at stable periodic solutions when𝑘1 = 0.8391 (red line).

⋅ (𝛽𝑥V − 𝑎1𝑒 (𝑡) − 𝑎2𝑒 (𝑡)) + 𝑘𝑘3𝑎1 (1 − 𝑦1𝑦 )
⋅ (𝑎2𝑒 (𝑡) − 𝑎1𝑦 − 𝑘1𝑦𝑧) + 𝑘3 (1 − V1

V
)

⋅ (𝑘𝑦 − 𝜀V − 𝑘2V𝑧)
+ 𝑘2 [𝑘3V (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜏) − 𝑘4𝑧]
+ 𝑘2𝑘3 ∫𝑡

𝑡−𝜏
V (𝜃) 𝑧 (𝜃) 𝑑𝜃 = − 𝑘3𝜀𝛽𝑥1

𝜌 (𝑥1 − 𝑥)2
𝑥

+ 𝑘3𝜀𝛽𝑥1𝛽𝑥1V1 −
𝑘3𝜀𝛽𝑥1𝛽𝑥V −

𝑚1𝛽𝑥21V1𝑥 + 𝑘3𝜀𝛽𝑥1𝛽𝑥1V
+ 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)𝛽𝑥V −

𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)𝑎1𝑒 (𝑡)
− 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)𝑎2𝑒 (𝑡) −

𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)
𝑒1𝑒 (𝑡)𝛽𝑥V

+ 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)𝑎1𝑒1 +
𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)𝑎2𝑒1 +

𝑘𝑘3𝑎1
⋅ 𝑎2𝑒 (𝑡) − 𝑘𝑘3𝑎1 𝑎1𝑦 − 𝑘𝑘3𝑎1 𝑘1𝑦𝑧 −

𝑘𝑘3𝑎1
𝑦1𝑎2𝑒 (𝑡)𝑦

+ 𝑘𝑘3𝑎1 𝑦1𝑎1 +
𝑘𝑘3𝑎1 𝑦1𝑘1𝑧 + 𝑘3𝑘𝑦 − 𝑘3𝜀V − 𝑘3𝑘2V𝑧

− 𝑘3V1𝑘𝑦
V

+ 𝑘3V1𝜀 + 𝑘3V1𝑘2𝑧 + 𝑘2𝑘3V (𝑡 − 𝜏)
⋅ 𝑧 (𝑡 − 𝜏) − 𝑘2𝑘4𝑧 + 𝑘2𝑘3V𝑧 − 𝑘2𝑘3V (𝑡 − 𝜏)
⋅ 𝑧 (𝑡 − 𝜏) = − 𝑘3𝜀𝛽𝑥1

𝜌 (𝑥1 − 𝑥)2
𝑥

+ 𝑘3𝜀V1 (4 − 𝑥1𝑥 − 𝑦1𝑒 (𝑡)𝑒1𝑦 − 𝑥𝑒1V𝑥1𝑒 (𝑡) V1 −
V1𝑦𝑦1V)

+ (𝑘3V1𝑘2 − 𝑘2𝑘4 + 𝑘𝑘3𝑎1 𝑦1𝑘1)𝑧 − 𝑘𝑘3𝑎1 𝑘1𝑦𝑧

= − 𝑎2𝑘𝑘3𝑎1 (𝑎1 + 𝑎2)
𝜌 (𝑥1 − 𝑥)2

𝑥
+ 𝑘3𝜀V1 (4 − 𝑥1𝑥 − 𝑦1𝑒 (𝑡)𝑒1𝑦 − 𝑥𝑒1V𝑥1𝑒 (𝑡) V1 −

V1𝑦𝑦1V)
− 𝑘2𝑘4 (1 − 𝑅1) 𝑧 − 𝑘𝑘3𝑎1 𝑘1𝑦𝑧.

(B.2)
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Figure 8: The positive equilibrium 𝐸22 remains stable at 𝜏 = 0.05 when 𝑘2 = 0.001 (blue line) and exists at stable periodic solutions when𝑘2 = 0.1963 (red line).

Therefore, 𝑅1 = 𝑘3V1/𝑘4 + 𝑘𝑘3𝑦1𝑘1/𝑎1𝑘2𝑘4 < 1 ensures that�̇�0 ≤ 0 holds true. Furthermore, if and only if 𝑥 = 𝑥1, 𝑒 =𝑒1, 𝑦 = 𝑦1, V = V1, 𝑧 = 0, and 𝑤 = 𝑤1, the Lyapunov
functional satisfies �̇�0 = 0. Using the LaSalle’s invariance
principle, we can see that the equilibrium without immune
response 𝐸11 = (𝑥1, 𝑒1, 𝑦1, V1, 0, 𝑤1) is globally asymptotically
stable.

C. The Proof of Theorem 6

The characteristic equation (9) can be written into the
following form:

𝑓0 (𝜆) + 𝑓1 (𝜆) 𝑒−𝜆𝜏 = 0, (C.1)

where

𝑓0 (𝜆) = 𝜆6 + 𝐷1𝜆5 + 𝐷2𝜆4 + 𝐷3𝜆3 + 𝐷4𝜆2 + 𝐷5𝜆
+ 𝐷6,

𝑓1 (𝜆) = 𝑆1𝜆5 + 𝑆2𝜆4 + 𝑆3𝜆3 + 𝑆4𝜆2 + 𝑆5𝜆 + 𝑆6,
(C.2)

and 𝑓0(𝜆) and 𝑓1(𝜆) are continuously differentiable to 𝜆.
Suppose that one of the roots of (C.1) is 𝜆(𝜏) = 𝛼(𝜏) +𝑖𝜔(𝜏), satisfying 𝛼(𝜏0) = 0 and 𝜔(𝜏0) = 𝜔0 for a positive real

number 𝜏0.

Let

Φ (𝜔) = 𝑓0 (𝑖𝜔)2 − 𝑓1 (𝑖𝜔)2 . (C.3)

Calculating the derivative of |𝑓0(𝑖𝜔)|2 to 𝜔, we have
𝑑𝑑𝜔 (𝑓0 (𝑖𝜔)2) = −2 lm [𝑓0 (𝑖𝜔) ̇𝑓0 (𝑖𝜔)]
= 12𝜔11 + (−20𝐷2 + 10𝐷21) 𝜔9

+ (16𝐷4 − 16𝐷1𝐷3 + 8𝐷22) 𝜔7
+ (12𝐷1𝐷5 − 12𝐷2𝐷4 + 6𝐷23 − 12𝐷6) 𝜔5
+ (−8𝐷3𝐷5 + 4𝐷24 + 8𝐷2𝐷6) 𝜔3
+ (2𝐷25 − 4𝐷4𝐷6) 𝜔.

(C.4)

Then we have

12𝜔 ⋅ 𝑑Φ𝑑𝜔 = 12𝜔 ⋅ 𝑑𝑑𝜔 (𝑓0 (𝑖𝜔)2 − 𝑓1 (𝑖𝜔)2)
= lm[𝑓1 (𝑖𝜔)2 ̇𝑓1 (𝑖𝜔)𝜔𝑓1 (𝑖𝜔) −

𝑓0 (𝑖𝜔)2 ̇𝑓0 (𝑖𝜔)𝜔𝑓0 (𝑖𝜔)] .
(C.5)
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Figure 9: The positive equilibrium 𝐸22 remains stable at 𝜏 = 0.05 when 𝑟 = 0.001 (blue line) and exists at stable periodic solutions when𝑟 = 0.6933 (red line).

Because |𝑓0(𝑖𝜔0)|2 = |𝑓1(𝑖𝜔0)|2, we have

( 12𝜔 ⋅ 𝑑Φ𝑑𝜔)𝜔=𝜔0
= 𝑓0 (𝑖𝜔0)2 lm[ ̇𝑓1 (𝑖𝜔0)𝜔0𝑓1 (𝑖𝜔0) −

̇𝑓0 (𝑖𝜔0)𝜔0𝑓0 (𝑖𝜔0)] .
(C.6)

Calculating the derivative of both sides of (C.1) to 𝜏, we have

̇𝑓0 (𝜆) 𝑑𝜆𝑑𝜏 + ̇𝑓1 (𝜆) 𝑑𝜆𝑑𝜏 𝑒−𝜆𝜏 − (𝜆 + 𝜏𝑑𝜆𝑑𝜏)𝑓1 (𝜆) 𝑒−𝜆𝜏
= 0.

(C.7)

Then we have

[𝑑𝜆𝑑𝜏]
−1 = ̇𝑓0 (𝜆) + ̇𝑓1 (𝜆) 𝑒−𝜆𝜏 − 𝜏𝑓1 (𝜆) 𝑒−𝜆𝜏𝜆𝑓1 (𝜆) 𝑒−𝜆𝜏

= ̇𝑓0 (𝜆) 𝑒𝜆𝜏 + ̇𝑓1 (𝜆)𝜆𝑓1 (𝜆) − 𝜏𝜆 .
(C.8)

Since 𝑓0(𝑖𝜔0) + 𝑓1(𝑖𝜔0)𝑒−𝑖𝜔0𝜏 = 0, we obtain

Re[ 𝑑𝑠𝑑𝜏
𝜏=𝜏0]

−1 = Re[ ̇𝑓0 (𝑖𝜔0) 𝑒𝑖𝜔0𝜏 + ̇𝑓1 (𝑖𝜔0)𝑖𝜔0𝑓1 (𝑖𝜔0) ]

= Re[ ̇𝑓0 (𝑖𝜔0)𝜔0𝑓0 (𝑖𝜔0) 𝑖]
+ Re[− ̇𝑓1 (𝑖𝜔0)𝜔0𝑓1 (𝑖𝜔0) 𝑖]

= lm[ ̇𝑓1 (𝑖𝜔0)𝜔0𝑓1 (𝑖𝜔0) −
̇𝑓0 (𝑖𝜔0)𝜔0𝑓0 (𝑖𝜔0)] .

(C.9)

Thus, we have

sign[ 𝑑Re (𝜆)𝑑𝜏
𝜏=𝜏0] = sign Re[ 𝑑𝜆𝑑𝜏

𝜏=𝜏0]

= sign Re[ 𝑑𝜆𝑑𝜏
𝜏=𝜏0]

−1

= sign[( 12𝜔 ⋅ 𝑑Φ𝑑𝜔)𝜔=𝜔0] .
(C.10)
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When Re(𝜆) = 𝛼(𝑗)𝑛 (𝜏), obviously, we have
sign[ 𝑑𝛼(𝑗)𝑛 (𝜏)𝑑𝜏

𝜏=𝜏𝑗𝑛] = sign[(𝑑𝐺𝑑𝑥 )𝑥=𝑥𝑛] . (C.11)

As 𝑥𝑛0 is a simple root of 𝐺(𝑥) = 0, we know �̇�(𝑥𝑛0) ̸=
0. From (C.11), we further know (𝑑𝛼(0)𝑛0 /𝑑𝜏)|𝜏=𝜏(0)𝑛0 ̸= 0. If
(𝑑𝛼(0)𝑛0 /𝑑𝜏)|𝜏=𝜏(0)𝑛0 < 0; we obtain that the roots of (9) have
positive real part when 𝜏 ∈ [0, 𝜏(0)𝑛0 ), which contrasted with
Theorem 5. Hence, we can see that (𝑑𝛼(0)𝑛0 /𝑑𝜏)|𝜏=𝜏(0)𝑛0 > 0.
When 𝜏 = 𝜏(0)𝑛0 , except for the pair of purely imaginary
roots, the remaining roots of 𝐻(𝜆; 𝜏) have strictly negative
real parts, so the system has Hopf bifurcation.

D. The Detailed Computation of (29)

In what follows, we will compute (29).
Substituting𝑋 = 𝑒𝜆𝑡 into (26), we have

𝜆𝑒𝜆𝑡 = 𝐹1𝑒𝜆𝑡 + 𝐹2𝑒𝜆𝑡 (𝑒−𝜆𝑡) ⇒
(𝜆𝐼 − 𝐹1 − 𝐹2𝑒−𝜆𝑡) 𝑒𝜆𝑡 = 0. (D.1)

Therefore, det|𝜆𝐼 − 𝐹1 − 𝐹2𝑒−𝜆𝑡| = 0 is the characteristic
equation of 𝐴(0).

As 𝐴(0) = 𝐹1 + 𝐹2𝑒−𝑖𝜔0𝜏0 , we have
(𝐴 (0) − 𝑖𝜔0𝐼) ℎ (𝜃) = 0, (D.2)

where

𝐴 (0) =
[[[[[[[[
[

−𝜌 − 𝛽V2 0 0 −𝛽𝑥2 0 0𝛽V2 −𝑎1 − 𝑎2 0 𝛽𝑥2 0 00 𝑎2 −𝑎1 − 𝑘1𝑧2 0 −𝑘1𝑦2 00 0 𝑘 −𝜀 − 𝑘2𝑧2 −𝑘2V2 0
0 0 0 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 −𝑘4 + 𝑘3V2𝑒−𝑖𝜔0𝜏0 00 0 𝑘1𝑘6𝑧2 0 𝑘1𝑘6𝑦2 −𝑘7

]]]]]]]]
]
. (D.3)

So we have

(𝐴 (0) − 𝑖𝜔0𝐼) ℎ (𝜃)

=
[[[[[[[[[[[
[

−𝜌 − 𝛽V2 − 𝑖𝜔0 0 0 −𝛽𝑥2 0 0
𝛽V2 −𝑎1 − 𝑎2 − 𝑖𝜔0 0 𝛽𝑥2 0 0
0 𝑎2 −𝑎1 − 𝑘1𝑧2 − 𝑖𝜔0 0 −𝑘1𝑦2 0
0 0 𝑘 −𝜀 − 𝑘2𝑧2 − 𝑖𝜔0 −𝑘2V2 0
0 0 0 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 −𝑘4 + 𝑘3V2𝑒−𝑖𝜔0𝜏0 − 𝑖𝜔0 0
0 0 𝑘1𝑘6𝑧2 0 𝑘1𝑘6𝑦2 −𝑘7 − 𝑖𝜔0

]]]]]]]]]]]
]

[[[[[[[[[[[
[

1
ℎ2ℎ3ℎ4ℎ5ℎ6

]]]]]]]]]]]
]

= 0.

(D.4)

The eigenvectors of 𝐴(0) are
ℎ1 = 1,
ℎ2 = −𝜌 − 𝑖𝜔0𝑎1 + 𝑎2 + 𝑖𝜔0 ,
ℎ3 = 𝑎2 (−𝜌 − 𝑖𝜔0)(𝑎1 + 𝑘1𝑧2 + 𝑖𝜔0) (𝑎1 + 𝑎2 + 𝑖𝜔0)

− 𝑘1𝑦2ℎ5𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 (−𝜌 − 𝛽V2 − 𝑖𝜔0)(𝑎1 + 𝑘1𝑧2 + 𝑖𝜔0) 𝛽𝑥2 (𝑘4 − 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 + 𝑖𝜔0) ,
ℎ4 = −𝜌 − 𝛽V2 − 𝑖𝜔0𝛽𝑥2 ,

ℎ5 = 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 (−𝜌 − 𝛽V2 − 𝑖𝜔0)𝛽𝑥2 (𝑘4 − 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 + 𝑖𝜔0) ,

ℎ6 = 𝑘1𝑘6𝑧2𝑘7 + 𝑖𝜔0 [
𝑎2 (−𝜌 − 𝑖𝜔0)(𝑎1 + 𝑘1𝑧2 + 𝑖𝜔0) (𝑎1 + 𝑎2 + 𝑖𝜔0)

− 𝑘1𝑦2ℎ5𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 (−𝜌 − 𝛽V2 − 𝑖𝜔0)(𝑎1 + 𝑘1𝑧2 + 𝑖𝜔0) 𝛽𝑥2 (𝑘4 − 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 + 𝑖𝜔0)]

+ 𝑘1𝑘6𝑦2𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 (−𝜌 − 𝛽V2 − 𝑖𝜔0)(𝑘7 + 𝑖𝜔0𝛽𝑥2) (𝑘4 − 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 + 𝑖𝜔0) .
(D.5)
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Similarly,

𝐴∗ (0)

=
[[[[[[[[
[

−𝜌 − 𝛽V2 𝛽V2 0 0 0 00 −𝑎1 − 𝑎2 𝑎2 0 0 00 0 −𝑎1 − 𝑘1𝑧2 𝑘 0 𝑘1𝑘6𝑧2−𝛽𝑥2 𝛽𝑥2 0 −𝜀 − 𝑘2𝑧2 𝑘3𝑧2𝑒−𝑖𝜔0𝜏0 00 0 −𝑘1𝑦2 −𝑘2V2 −𝑘4 + 𝑘3V2𝑒−𝑖𝜔0𝜏0 𝑘1𝑘6𝑦20 0 0 0 0 −𝑘7

]]]]]]]]
]

[[[[[[[[
[

−𝜌 − 𝛽V2 + 𝑖𝜔0 𝛽V2 0 0 0 00 −𝑎1 − 𝑎2 + 𝑖𝜔0 𝑎2 0 0 00 0 −𝑎1 − 𝑘1𝑧2 + 𝑖𝜔0 𝑘 0 𝑘1𝑘6𝑧2−𝛽𝑥2 𝛽𝑥2 0 −𝜀 − 𝑘2𝑧2 + 𝑖𝜔0 𝑘3𝑧2𝑒𝑖𝜔0𝜏0 00 0 −𝑘1𝑦2 −𝑘2V2 −𝑘4 + 𝑘3V2𝑒𝑖𝜔0𝜏0 + 𝑖𝜔0 𝑘1𝑘6𝑦20 0 0 0 0 −𝑘7 + 𝑖𝜔0

]]]]]]]]
]

[[[[[[[[
[

1ℎ∗2ℎ∗3ℎ∗4ℎ∗5ℎ∗6

]]]]]]]]
]= 0.

(D.6)

The eigenvectors of 𝐴∗(0) are
ℎ∗1 = 1,
ℎ∗2 = −−𝜌 − 𝛽V2 + 𝑖𝜔0𝛽V2 ,
ℎ∗3 = −(𝑎1 + 𝑎2 − 𝑖𝜔0) (−𝜌 − 𝛽V2 + 𝑖𝜔0)𝑎2𝛽V2 ,
ℎ∗4 = −(𝑎1 + 𝑘1𝑧2 − 𝑖𝜔0) (𝑎1 + 𝑎2 − 𝑖𝜔0) (−𝜌 − 𝛽V2 + 𝑖𝜔0)𝑎2𝑘𝛽V2 ,
ℎ∗5 = −𝑘1𝑦2 (𝑎1 + 𝑎2 − 𝑖𝜔0) (−𝜌 − 𝛽V2 + 𝑖𝜔0)𝑎2𝛽V2 (−𝑘4 + 𝑘3V2𝑒𝑖𝜔0𝜏0 + 𝑖𝜔0)

− 𝑘2 (𝑎1 + 𝑘1𝑧2 − 𝑖𝜔0) (𝑎1 + 𝑎2 − 𝑖𝜔0) (−𝜌 − 𝛽V2 + 𝑖𝜔0)𝑎2𝑘𝛽 (−𝑘4 + 𝑘3V2𝑒𝑖𝜔0𝜏0 + 𝑖𝜔0) ,
ℎ∗6 = 0.

(D.7)

Since

1 = ⟨ℎ∗, ℎ⟩ = 𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)
[[[[[[[
[

1ℎ2ℎ3ℎ4ℎ5ℎ6

]]]]]]]
]

− ∫0
−𝜏0

∫𝜃
𝜉=0

𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)

⋅ 𝑒−𝑖𝜔0(𝜉−𝜃)𝑑𝜂 (𝜃)
[[[[[[[
[

1ℎ2ℎ3ℎ4ℎ5ℎ6

]]]]]]]
]
𝑒𝑖𝜔0𝜉𝑑𝜉 = 𝐷(1 + ℎ2ℎ∗2

+ ℎ3ℎ∗3 + ℎ4ℎ∗4 + ℎ5ℎ∗5 + ℎ6ℎ∗6)
− lim
𝑛→∞

𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)( 𝑛∑
𝑖=1
𝑒𝑖𝜔0𝜉𝑖𝜃𝑖 (𝜂 (𝜃𝑖)

− 𝜂 (𝜃𝑖−1)))
[[[[[[[
[

1ℎ2ℎ3ℎ4ℎ5ℎ6

]]]]]]]
]
= 𝐷(1 + ℎ2ℎ∗2 + ℎ3ℎ∗3 + ℎ4ℎ∗4

+ ℎ5ℎ∗5 + ℎ6ℎ∗6 − 𝜏0𝑒−𝑖𝜔0𝜏0𝑘3𝑧ℎ4ℎ∗5
− 𝜏0𝑒−𝑖𝜔0𝜏0𝑘3Vℎ5ℎ∗5) ,

(D.8)

we have that

𝐷 = (1 + ℎ2ℎ∗2 + ℎ3ℎ∗3 + ℎ4ℎ∗4 + ℎ5ℎ∗5 + ℎ6ℎ∗6
− 𝜏0𝑒−𝑖𝜔0𝜏0𝑘3𝑧ℎ4ℎ∗5 − 𝜏0𝑒−𝑖𝜔0𝜏0𝑘3Vℎ5ℎ∗5)−1 .

(D.9)

E. The Detailed Computation of𝑔20, 𝑔11, 𝑔02, and 𝑔21
In the following, we will compute coefficients, 𝑔20, 𝑔11, 𝑔02,
and 𝑔21, using the method given in [27].

Let

𝑓 (𝜙, 0) =
[[[[[[[[[[[
[

−𝛽𝜙1 (0) 𝜙4 (0)𝛽𝜙1 (0) 𝜙4 (0)−𝑘1𝜙3 (0) 𝜙5 (0)−𝑘2𝜙4 (0) 𝜙5 (0)𝑘3𝜙4 (−𝜏) 𝜙5 (−𝜏)𝑘1𝑘6𝜙3 (0) 𝜙5 (0)

]]]]]]]]]]]
]

= (𝑓𝑧2) 𝑧22 + (𝑓𝑧𝑧) 𝑧𝑧 + (𝑓𝑧2) 𝑧22
+ (𝑓𝑧2𝑧) 𝑧2𝑧2 ,

𝑋𝑡 =
[[[[[[[[[[[
[

𝜙1𝜙2𝜙3𝜙4𝜙5𝜙6

]]]]]]]]]]]
]

= 𝑧ℎ (𝜃) + 𝑧ℎ (𝜃) + 𝑤 (𝑧, 𝑧, 𝜃)

= 𝑧
[[[[[[[[[[[
[

1
ℎ2ℎ3ℎ4ℎ5ℎ6

]]]]]]]]]]]
]

𝑒𝑖𝜔0𝜃 + 𝑧
[[[[[[[[[[[
[

1
ℎ∗2ℎ∗3ℎ∗4ℎ∗5ℎ∗6

]]]]]]]]]]]
]

𝑒𝑖𝜔0𝜃 + 𝑤 (𝑧, 𝑧, 𝜃) ,

(E.1)
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where

𝑤 (𝑧, 𝑧, 𝜃) = 𝑤20 (𝜃) 𝑧22 + 𝑤11 (𝜃) 𝑧𝑧 + 𝑤02 (𝜃) 𝑧22
+ ⋅ ⋅ ⋅ .

(E.2)

Then we have

𝜙1 (0) = 𝑧 + 𝑧 + 𝑤20 (0) 𝑧22 + 𝑤11 (0) 𝑧𝑧 + 𝑤02 (0) 𝑧22
+ ⋅ ⋅ ⋅ ,

𝜙3 (0) = 𝑧ℎ3 + 𝑧ℎ3 + 𝑤320 (0) 𝑧22 + 𝑤311 (0) 𝑧𝑧
+ 𝑤302 (0) 𝑧22 + ⋅ ⋅ ⋅ ,

𝜙4 (0) = 𝑧ℎ4 + 𝑧ℎ4 + 𝑤420 (0) 𝑧22 + 𝑤411 (0) 𝑧𝑧
+ 𝑤402 (0) 𝑧22 + ⋅ ⋅ ⋅ ,

𝜙5 (0) = 𝑧ℎ5 + 𝑧ℎ5 + 𝑤520 (0) 𝑧22 + 𝑤511 (0) 𝑧𝑧
+ 𝑤502 (0) 𝑧22 + ⋅ ⋅ ⋅ ,

𝜙4 (−𝜏) = 𝑧ℎ4𝑒−𝑖𝜔0𝜏 + 𝑧ℎ4𝑒𝑖𝜔0𝜏 + 𝑤420 (−𝜏) 𝑧22
+ 𝑤411 (−𝜏) 𝑧𝑧 + 𝑤402 (−𝜏) 𝑧22 + ⋅ ⋅ ⋅ ,

𝜙5 (−𝜏) = 𝑧ℎ5𝑒−𝑖𝜔0𝜏 + 𝑧ℎ5𝑒𝑖𝜔0𝜏 + 𝑤520 (−𝜏) 𝑧22
+ 𝑤511 (−𝜏) 𝑧𝑧 + 𝑤502 (−𝜏) 𝑧22 + ⋅ ⋅ ⋅ ,

𝛽𝜙1 (0) 𝜙4 (0) = 2𝛽ℎ4 𝑧22 + 𝛽 (ℎ4 + ℎ4) 𝑧𝑧 + 2𝛽ℎ4 𝑧22
+ 𝛽 (𝑤20 (0) ℎ4 + 𝑤220 (0) + 2𝑤211 (0)
+ 2ℎ4𝑤11 (0)) 𝑧2𝑧2 + ⋅ ⋅ ⋅ ,

− 𝑘1𝜙3 (0) 𝜙5 (0) = −2𝑘1ℎ3ℎ5 𝑧22 − 𝑘1 (ℎ3ℎ5 + ℎ3ℎ5)
⋅ 𝑧𝑧 − 2𝑘1ℎ3ℎ5 𝑧22 − 𝑘1 (2ℎ3𝑤511 (0) + ℎ3𝑤520
+ ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0)) 𝑧2𝑧2 + ⋅ ⋅ ⋅ ,

𝑘1𝑘6𝜙3 (0) 𝜙5 (0) = 2𝑘1𝑘6ℎ3ℎ5 𝑧22 + 𝑘1𝑘6 (ℎ3ℎ5
+ ℎ3ℎ5) 𝑧𝑧 + 2𝑘1𝑘6ℎ3ℎ5 𝑧22 + 𝑘1𝑘6 (2ℎ3𝑤511 (0)
+ ℎ3𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0)) 𝑧2𝑧2 + ⋅ ⋅ ⋅ ,

− 𝑘2𝜙4 (0) 𝜙5 (0) = −2𝑘2ℎ4ℎ5 𝑧22 − 𝑘2 (ℎ4ℎ5 + ℎ4ℎ5)
⋅ 𝑧𝑧 − 2𝑘2ℎ4ℎ5 𝑧22 − 𝑘2 (2ℎ4𝑤511 (0) + ℎ4𝑤520
+ ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0)) 𝑧2𝑧2 + ⋅ ⋅ ⋅ ,

𝑘3𝜙4 (−𝜏) 𝜙5 (−𝜏) = 2𝑘3ℎ4ℎ5𝑒−2𝑖𝜔0𝜏 𝑧22 + 𝑘3 (ℎ4ℎ5
+ ℎ4ℎ5) 𝑧𝑧 + 2𝑘3ℎ4ℎ5𝑒2𝑖𝜔0𝜏 𝑧22
+ 𝑘3 (2ℎ4𝑤511 (−𝜏) 𝑒−𝑖𝜔0𝜏 + ℎ4𝑤520 (−𝜏) 𝑒𝑖𝜔0𝜏
+ ℎ5𝑤420 (−𝜏) 𝑒𝑖𝜔0𝜏 + 2ℎ5𝑤411 (−𝜏) 𝑒−𝑖𝜔0𝜏) 𝑧2𝑧2 + ⋅ ⋅ ⋅ .

(E.3)

We further obtain

𝑓 (𝜙, 0) =
[[[[[[[[[[[[
[

−2𝛽ℎ4
2𝛽ℎ4

−2𝑘1ℎ3ℎ5
−2𝑘2ℎ4ℎ5

2𝑘3ℎ4ℎ5𝑒−2𝑖𝜔0𝜏
2𝑘1𝑘6ℎ3ℎ5

]]]]]]]]]]]]
]

𝑧22 +

[[[[[[[[[[[[[[
[

−𝛽 (ℎ4 + ℎ4)
𝛽 (ℎ4 + ℎ4)

−𝑘1 (ℎ3ℎ5 + ℎ3ℎ5)
−𝑘2 (ℎ4ℎ5 + ℎ4ℎ5)
𝑘3 (ℎ4ℎ5 + ℎ4ℎ5)

−𝑘1𝑘6 (ℎ3ℎ5 + ℎ3ℎ5)

]]]]]]]]]]]]]]
]

𝑧𝑧 +

[[[[[[[[[[[[[
[

−2𝛽ℎ4
2𝛽ℎ4

−2𝑘1ℎ3ℎ5
−2𝑘2ℎ4ℎ5

2𝑘3ℎ4ℎ5𝑒2𝑖𝜔0𝜏
𝑘1𝑘6ℎ3ℎ5

]]]]]]]]]]]]]
]

𝑧22
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+

[[[[[[[[[[[[[
[

−𝛽 (𝑤20 (0) ℎ4 + 𝑤220 (0) + 2𝑤211 (0) + 2ℎ4𝑤11 (0))
𝛽 (𝑤20 (0) ℎ4 + 𝑤220 (0) + 2𝑤211 (0) + 2ℎ4𝑤11 (0))

−𝑘1 (2ℎ3𝑤511 (0) + ℎ3𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))
−𝑘2 (2ℎ4𝑤511 (0) + ℎ4𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))

𝑘3 (2ℎ4𝑤511 (−𝜏) 𝑒−𝑖𝜔0𝜏 + ℎ4𝑤520 (−𝜏) 𝑒𝑖𝜔0𝜏 + ℎ5𝑤420 (−𝜏) 𝑒𝑖𝜔0𝜏 + 2ℎ5𝑤411 (−𝜏) 𝑒−𝑖𝜔0𝜏)
𝑘1𝑘6 (2ℎ3𝑤511 (0) + ℎ3𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))

]]]]]]]]]]]]]
]

𝑧2𝑧2 .

(E.4)

Using the method [27], we obtain the following coefficients:

𝑔20 = ℎ∗ (0) 𝑓𝑧2 = 𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)
[[[[[[[[[[[
[

−2𝛽ℎ42𝛽ℎ4−2𝑘1ℎ3ℎ5−2𝑘2ℎ4ℎ5
2𝑘3ℎ4ℎ5𝑒−2𝑖𝜔0𝜏2𝑘1𝑘6ℎ3ℎ5

]]]]]]]]]]]
]

,

𝑔11 = ℎ∗ (0) 𝑓𝑧𝑧 = 𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)

[[[[[[[[[[[[[
[

−𝛽 (ℎ4 + ℎ4)
𝛽 (ℎ4 + ℎ4)

−𝑘1 (ℎ3ℎ5 + ℎ3ℎ5)
−𝑘2 (ℎ4ℎ5 + ℎ4ℎ5)
𝑘3 (ℎ4ℎ5 + ℎ4ℎ5)

−𝑘1𝑘6 (ℎ3ℎ5 + ℎ3ℎ5)

]]]]]]]]]]]]]
]

,

𝑔02 = ℎ∗ (0) 𝑓𝑧2 = 𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6)
[[[[[[[[[[[[
[

−2𝛽ℎ4
2𝛽ℎ4

−2𝑘1ℎ3ℎ5
−2𝑘2ℎ4ℎ5

2𝑘3ℎ4ℎ5𝑒2𝑖𝜔0𝜏
𝑘1𝑘6ℎ3ℎ5

]]]]]]]]]]]]
]

,

𝑔21 = ℎ∗ (0) 𝑓𝑧2𝑧

= 𝐷(1, ℎ∗2 , ℎ∗3 , ℎ∗4 , ℎ∗5 , ℎ∗6) ⋅

[[[[[[[[[[[[[
[

−𝛽 (𝑤20 (0) ℎ4 + 𝑤220 (0) + 2𝑤211 (0) + 2ℎ4𝑤11 (0))
𝛽 (𝑤20 (0) ℎ4 + 𝑤220 (0) + 2𝑤211 (0) + 2ℎ4𝑤11 (0))

−𝑘1 (2ℎ3𝑤511 (0) + ℎ3𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))
−𝑘2 (2ℎ4𝑤511 (0) + ℎ4𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))

𝑘3 (2ℎ4𝑤511 (−𝜏) 𝑒−𝑖𝜔0𝜏 + ℎ4𝑤520 (−𝜏) 𝑒𝑖𝜔0𝜏 + ℎ5𝑤420 (−𝜏) 𝑒𝑖𝜔0𝜏 + 2ℎ5𝑤411 (−𝜏) 𝑒−𝑖𝜔0𝜏)
𝑘1𝑘6 (2ℎ3𝑤511 (0) + ℎ3𝑤520 + ℎ5𝑤420 (0) + 2ℎ5𝑤411 (0))

]]]]]]]]]]]]]
]

,

(E.5)
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where

𝑤20 (𝜃) = 𝑖𝑔20𝜔0 𝑒𝑖𝜔0𝜃ℎ (0) +
𝑖𝑔203𝜔0 𝑒−𝑖𝜔0𝜃ℎ (0)

+ 𝐸20𝑒2𝑖𝜔0𝜃,
𝑤11 (𝜃) = −𝑖𝑔11𝜔0 𝑒𝑖𝜔0𝜃ℎ (0) +

𝑖𝑔11𝜔0 𝑒−𝑖𝜔0𝜃ℎ (0) + 𝐸11,
(E.6)

where

𝐸20 = [2𝑖𝜔0𝐼 − ∫0
−𝜏0

𝑒−2𝑖𝜔0𝜃𝑑𝜂 (0, 𝜃)]−1 𝑓𝑧2 = [2𝑖𝜔0𝐼
− lim
𝜆→0

(𝑒2𝑖𝜔0𝜉1 (𝜂 (𝜃1) − 𝜂 (𝜃0)) + ⋅ ⋅ ⋅
+ 𝑒2𝑖𝜔0𝜉𝑛 (𝜂 (𝜃𝑛) − 𝜂 (𝜃𝑛−1)))]−1 𝑓𝑧2 = [2𝑖𝜔0𝐼
− lim
𝜆→0

(𝑒2𝑖𝜔0𝜉1𝐹2 + 𝑒2𝑖𝜔0𝜉𝑛𝐹1)]−1 𝑓𝑧2 = (2𝑖𝜔0𝐼 − 𝐹1
− 𝐹2𝑒−2𝑖𝜔0𝜏)−1 𝑓𝑧2 = (2𝑖𝜔0𝐼 − 𝐹1 − 𝐹2𝑒−2𝑖𝜔0𝜏)−1

⋅
[[[[[[[[[[[
[

−2𝛽ℎ42𝛽ℎ4−2𝑘1ℎ3ℎ5−2𝑘2ℎ4ℎ5
2𝑘3ℎ4ℎ5𝑒−2𝑖𝜔0𝜏2𝑘1𝑘6ℎ3ℎ5

]]]]]]]]]]]
]

,

𝐸11 = −[∫0
−𝜏0

𝑑𝜂 (0, 𝜃)]−1 ⋅ 𝑓𝑧𝑧 = − [𝐹1 + 𝐹2]−1 ⋅ 𝑓𝑧𝑧

= −2 [𝐹1 + 𝐹2]−1
[[[[[[[[[[[[
[

−𝛽Re ℎ4𝛽Re ℎ4
−𝑘1 Re ℎ3ℎ5
−𝑘2 Re ℎ4ℎ5
𝑘3 Re ℎ4ℎ5

−𝑘1𝑘6 Re ℎ3ℎ5

]]]]]]]]]]]]
]

.

(E.7)

So far, we have obtained 𝑔20, 𝑔11, 𝑔02, and 𝑔21.
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