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We suggest and analyze dynamical systems associated with mixed equilibrium problems by using the resolvent operator technique.
We show that these systems have globally asymptotic property. The concepts and results presented in this paper extend and unify
a number of previously known corresponding concepts and results in the literature.

1. Introduction

Equilibrium problems theory has emerged as an interest-
ing and fascinating branch of applicable mathematics. This
theory has become a rich source of inspiration and moti-
vation for the study of a large number of problems arising
in economics, optimization, and operation research in a
general and unified way. There are a substantial number of
papers on existence results for solving equilibrium problems
based on different-relaxed monotonicity notions and var-
ious compactness assumptions; see, for example, [1–6]. In
2002, Moudafi [5] considered a class of mixed equilibrium
problems which includes variational inequalities as well
as complementarity problems, convex optimization, saddle
point problems, problems of finding a zero of a maximal
monotone operator, and Nash equilibria problems as special
cases. He studied sensitivity analysis and developed some
iterative methods for mixed equilibrium problems. In recent
years, much attention has been given to consider and analyze
the projected dynamical systems associated with variational
inequalities and nonlinear programming problems, in which
the right-hand side of the ordinary differential equation is a
projection operator. Such types of the projected dynamical
systemwere introduced and studied byDupuis andNagurney
[7]. Projected dynamical systems are characterized by a
discontinuous right-hand side. The discontinuity arises from

the constraint governing the question. The innovative and
novel feature of a projected dynamical systems is that the set
of stationary points of dynamical system correspond to the
set of solution of the variational inequality problems. It has
been shown in [8–14] that the dynamical systems are useful
in developing efficient and powerful numerical technique
for solving variational inequalities and related optimization
problems. Xia andWang [13], Zhang and Nagurney [14], and
Nagurney and Zhang [11] have studied the globally asymp-
totic stability of these projected dynamical systems. Noor
[15–17] has also suggested and analyzed similar resolvent
dynamical systems for variational inequalities. It is worth
mentioning that there is no such type of the dynamical
systems for mixed equilibrium problems.

In this paper, we show that such type of dynamical sys-
tems can be suggested for the mixed equilibrium problems.
We consider amixed equilibriumproblem and give its related
Wiener-Hopf equation and fixed point formulation. Using
this fixed point formulation and Wiener-Hopf equation, we
suggest dynamical systems associated with mixed equilib-
rium problems. We use these dynamical systems to prove
the uniqueness of a solution of mixed equilibrium problems.
Further, we show that the dynamical systems have globally
asymptotic stability property. Our results can be viewed as
significant and unified extensions of the known results in this
area; see, for example, [6, 13, 15–17].
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2. Formulation and Basic Facts

LetR𝑛 be an Euclidean space, whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐾 be a nonempty
closed convex set in R𝑛, let 𝑇,𝐴 : 𝐾 → 𝐾 be nonlinear
mappings, and let𝑁 : 𝐾×𝐾 → 𝐾 be a nonlinearmapping, if
𝐹 : 𝐾×𝐾 → R is a given bifunction satisfying𝐹(𝑥, 𝑥) = 0 for
all 𝑥 ∈ 𝐾. Consider the followingmixed equilibriumproblem
(for short MEP): find 𝑥 ∈ 𝐾 such that

𝐹 (𝑥, 𝑦) + ⟨𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (1)

This problem has potential and useful applications in
nonlinear analysis and mathematical economics. For exam-
ple, if we set 𝐹(𝑥, 𝑦) = 𝜙(𝑦) − 𝜙(𝑥), for all 𝑥, 𝑦 ∈ 𝐾,
𝜙 : 𝐾 → R, a real-valued function, and 𝑁 = 0, then MEP
(1) reduces to the following minimization problem subject to
implicit constraints:

find 𝑥 ∈ 𝐾 such that 𝜙 (𝑥) ≤ 𝜙 (𝑦) , ∀𝑦 ∈ 𝐾. (2)

The basic case of variational inclusions corresponds to
𝐹(𝑥, 𝑦) = sup

𝑤∈𝐵𝑥
⟨𝑤, 𝑦 − 𝑥⟩ with 𝐵 : 𝐾 → 2

𝐾, a set-valued
maximal monotone operator. Actually, MEP (1) is equivalent
to the following: find 𝑥 ∈ 𝐾 such that

0 ∈ 𝑁 (𝑇𝑥, 𝐴𝑥) + 𝐵𝑥, ∀𝑦 ∈ 𝐾. (3)

Moreover, if 𝐹(𝑥, 𝑦) = 𝜙(𝑦) − 𝜙(𝑥), then inclusion (3)
reduces to find 𝑥 ∈ 𝐾 such that

𝜙 (𝑦) − 𝜙 (𝑥) + ⟨𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (4)

In particular if 𝜙 = 0, 𝑁(𝑇𝑥, 𝐴𝑥) = 𝑆𝑥 for all 𝑥 ∈ 𝐾,
where 𝑆 : 𝐾 → 𝐾, and 𝐾 is a closed and convex cone, then
inequality (4) can be written as

find 𝑥 ∈ 𝐾 such that 𝑆𝑥 ∈ 𝐾
∗

, ⟨𝑆𝑥, 𝑥⟩ = 0, (5)

where 𝐾
∗

= {𝑥 ∈ R𝑛 : ⟨𝑥, 𝑦⟩ ≥ 0, for all 𝑦 ∈ 𝐾} is
the polar cone to 𝐾. The problem of finding such 𝑥 is an
important instance of well-known complementarity problem
of mathematical programming.

Another example corresponds to Nash equilibria in non-
cooperative games. Let 𝐼 (the set of players) be a finite index
set. For every 𝑖 ∈ 𝐼, let 𝐾

𝑖
(the strategy set of ith player) be a

given set, 𝑓
𝑖
(the loss function of the ith player, defending on

the strategies of all players): 𝐾 → R a given function with
𝐾 := ∏

𝑖∈𝐼
𝐾
𝑖
. For 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼

∈ 𝐾, we define 𝑥
𝑖

:= (𝑥
𝑗
)
𝑗∈𝐼

,
𝑗 ̸= 𝑖. The point 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼

∈ 𝐾 is called Nash equilibrium if
and only if for all 𝑖 ∈ 𝐼 the following inequalities hold true:

𝑓
𝑖
(𝑥) ≤ 𝑓

𝑖
(𝑥
𝑖

, 𝑦
𝑖
) , ∀𝑦

𝑖
∈ 𝐾
𝑖

(6)

(i.e., no player can reduce his loss by varying his strategy
alone). Let 𝑁 = 0 and define 𝐹 : 𝐾 × 𝐾 → R by 𝐹(𝑥, 𝑦) =

∑
𝑖∈𝐼

(𝑓
𝑖
(𝑥
𝑖

, 𝑦
𝑖
) − 𝑓
𝑖
(𝑥)). Then 𝑥 ∈ 𝐾 is a Nash equilibrium if

and only if 𝑥 solves MEP (1).
The following definitions and theorem will be needed in

the sequel.

Definition 1 (see [14]). Let 𝐹 : 𝐾 × 𝐾 → R be a real-valued
function. Then 𝐹 is said to be

(a) monotone if 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, for each 𝑥, 𝑦 ∈ 𝐾;
(b) strictly monotone if 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) < 0, for each

𝑥, 𝑦 ∈ 𝐾, with 𝑥 ̸= 𝑦;
(c) upper hemicontinuous, if, for all 𝑥, 𝑦, 𝑧 ∈ 𝐾,

lim sup
𝑡→0
+𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦).

Theorem 2 (see [14]). If the following conditions hold true for
𝐹 : 𝐾 × 𝐾 → R:

(i) 𝐹 is monotone and upper hemicontinuous,
(ii) 𝐹(𝑥, ⋅) is convex and lower semicontinuous for each 𝑥 ∈

𝐾,
(iii) there exists a compact subset 𝐵 of R𝑛 and there exists

𝑦
0
∈ 𝐵 ∩ 𝐾 such that 𝐹(𝑥, 𝑦

0
) < 0 for each 𝑥 ∈ 𝐾 \ 𝐵,

then the set of solutions to the equilibrium problem

𝑓𝑖𝑛𝑑 𝑥 ∈ 𝐾 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾, (7)

is nonempty convex and compact. Moreover, if 𝐹 is strictly
monotone, then the solution of equilibrium problem is unique.

Let us recall the extension of the Yosida approximation
notion introduced in [5]. Let 𝜇 > 0, for a given bifunction
𝐹; the associated Yosida approximation, 𝐹

𝜇
, over 𝐾 and the

corresponding regularized operator, 𝐴𝐹
𝜇
, are defined as follows:

𝐹
𝜇
(𝑥, 𝑦) = ⟨

1

𝜇
(𝑥 − 𝐽

𝐹

𝜇
(𝑥)) , 𝑦 − 𝑥⟩ ,

𝐴
𝐹

𝜇
:=

1

𝜇
(𝑥 − 𝐽

𝐹

𝜇
(𝑥)) ,

(8)

in which 𝐽
𝐹

𝜇
(𝑥) ∈ 𝐾 is the unique solution of

𝜇𝐹 (𝐽
𝐹

𝜇
(𝑥) , 𝑦) + ⟨𝐽

𝐹

𝜇
(𝑥) − 𝑥, 𝑦 − 𝐽

𝐹

𝜇
(𝑥)⟩ ≥ 0, ∀𝑦 ∈ 𝐾.

(9)

Remark 3 (see [5]). (i) The existence and uniqueness of the
solution of problem (9) follow by invokingTheorem 2.

(ii) If 𝐹(𝑥, 𝑦) = sup
𝑢∈𝐵𝑥

⟨𝑢, 𝑦 − 𝑥⟩ and 𝐾 = R𝑛, 𝐵 being a
maximal monotone operator, it directly yields

𝐽
𝐹

𝜇
(𝑥) = (𝐼 + 𝜇𝐵)

−1

𝑥, 𝐴
𝐹

𝜇
(𝑥) = 𝐵

𝜇
(𝑥) , (10)

where 𝐵
𝜇
:= (1/𝜇)(𝐼−(𝐼+𝜇𝐵)

−1

) is the Yosida approximation
of 𝐵, and one recovers classical concepts.

(iii) The operator 𝐽𝐹
𝜇
is cocoercive and nonexpansive.

Lemma 4. Assume that conditions of Theorem 2 are fulfilled;
then the operator 𝐽𝐹

𝜇
is cocoercive with modulus 1; that is,

⟨𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦) , 𝑥 − 𝑦⟩ ≥

󵄨󵄨󵄨󵄨󵄨
𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

,

∀𝑥, 𝑦 ∈ 𝐾.

(11)
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𝐽
𝐹

𝜇
is 1-firmly nonexpansive, that is,

󵄨󵄨󵄨󵄨󵄨
𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
2

−
󵄨󵄨󵄨󵄨󵄨
(𝐼 − 𝐽

𝐹

𝜇
) 𝑥 − (𝐼 − 𝐽

𝐹

𝜇
) 𝑦

󵄨󵄨󵄨󵄨󵄨

2

,

(12)

and 𝐴
𝐹

𝜇
is cocoercive with modulus 𝜇, that is,

⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜇

󵄨󵄨󵄨󵄨󵄨
𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

∀𝑥, 𝑦 ∈ 𝐾.

(13)

Proof. From the relation (9), we can write

𝜇𝐹 (𝐽
𝐹

𝜇
(𝑥) , 𝐽

𝐹

𝜇
(𝑦)) + ⟨𝐽

𝐹

𝜇
(𝑥) − 𝑥, 𝐽

𝐹

𝜇
(𝑦) − 𝐽

𝐹

𝜇
(𝑥)⟩ ≥ 0,

∀𝑥, 𝑦 ∈ 𝐾,

𝜇𝐹 (𝐽
𝐹

𝜇
(𝑦) , 𝐽

𝐹

𝜇
(𝑥)) + ⟨𝐽

𝐹

𝜇
(𝑦) − 𝑦, 𝐽

𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)⟩ ≥ 0,

∀𝑥, 𝑦 ∈ 𝐾.

(14)

By adding the last two inequalities and using the monotonic-
ity of 𝐹, we obtain the desired result.

Equation (12) follows from (11); indeed we have succes-
sively

󵄨󵄨󵄨󵄨󵄨
(𝐼 − 𝐽

𝐹

𝜇
) 𝑥 − (𝐼 − 𝐽

𝐹

𝜇
) 𝑦

󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
2

− 2 ⟨𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦) , 𝑥 − 𝑦⟩

+
󵄨󵄨󵄨󵄨󵄨
𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
2

−
󵄨󵄨󵄨󵄨󵄨
𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

.

(15)

Now combining (11) with 𝑥 = 𝐽
𝐹

𝜇
(𝑥)+𝜆𝐴

𝐹

𝜇
(𝑥) and𝑦 = 𝐽

𝐹

𝜇
(𝑦)+

𝜆𝐴
𝐹

𝜇
(𝑦), we obtain

⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝐽

𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)⟩ ≥ 0. (16)

On the other hand

⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝑥 − 𝑦⟩

= ⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝑥 − 𝐽

𝐹

𝜇
(𝑥) − (𝑦 − 𝐽

𝐹

𝜇
(𝑦))⟩

+ ⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝐽

𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑦)⟩ .

(17)

The announced result follows by noticing that

⟨𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦) , 𝑥 − 𝐽

𝐹

𝜇
(𝑥) − (𝑦 − 𝐽

𝐹

𝜇
(𝑦))⟩

= 𝜇
󵄨󵄨󵄨󵄨󵄨
𝐴
𝐹

𝜇
(𝑥) − 𝐴

𝐹

𝜇
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

.

(18)

Lemma 5. MEP (1) has a solution 𝑥 if and only if 𝑥 satisfies

𝑥 = 𝐽
𝐹

𝜇
(𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)) , 𝑓𝑜𝑟 𝜇 > 0. (19)

Proof. Let 𝑥 ∈ 𝐾 be a solution of MEP (1); then

𝐹 (𝑥, 𝑦) + ⟨𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (20)

which can be written as

𝜇𝐹 (𝑥, 𝑦) + ⟨𝜇𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑦 − 𝑥⟩ ≥ 0, (21)

where 𝜇 > 0 is a constant. Thus, for all 𝑥 ∈ 𝐾, we have

𝜇𝐹 (𝑥, 𝑦) + ⟨𝑥 − (𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)) , 𝑦 − 𝑥⟩ ≥ 0, (22)

which is equivalent to

𝑥 = 𝐽
𝐹

𝜇
(𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)) , (23)

by Lemma 4. This completes the proof.

We now define the residue vector 𝑅(𝑥) by the relation

𝑅 (𝑥) = 𝑥 − 𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] . (24)

Invoking Lemma 5, one can observe that 𝑥 ∈ 𝐾 is a
solution of MEP (1) if and only if 𝑥 ∈ 𝐾 is a zero of

𝑅 (𝑥) = 0. (25)

Now related to MEP (1), we consider the following
Wiener-Hopf equation (in short, WHE): find 𝑧 ∈ R𝑛 such
that, for 𝑥 ∈ 𝐾,

𝑁(𝑇𝑥, 𝐴𝑥) + 𝐴
𝐹

𝜇
(𝑧) = 0,

𝑥 = 𝐽
𝐹

𝜇
(𝑧) , for 𝜇 > 0.

(26)

Lemma 6. MEP (1) has a solution 𝑥 if and only if WHE (26)
has a solution 𝑧 ∈ R𝑛 where

𝑥 = 𝐽
𝐹

𝜇
(𝑧) ,

𝑧 = 𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑓𝑜𝑟 𝜇 > 0.

(27)

Using (27), WHE (26) can be written as

𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥) − 𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

+ 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)])) = 0.

(28)

Thus it is clear from Lemma 6 that 𝑥 ∈ 𝐾 is a solution of
MEP (1) if and only if 𝑥 ∈ 𝐾 satisfies (28).
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Using this equivalence, we suggest a new dynamical system
associated with MEP (1) as

𝑑𝑥

𝑑𝑡
= 𝜆 {𝐽

𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+𝜇𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑥} ,

= 𝜆 { − 𝑅 (𝑥) + 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)])} ,

𝑥 (𝑡
0
) = 𝑥

0
∈ 𝐾,

(29)

where 𝜆 is a constant. The system of type (29) is called the
resolvent dynamical system associated with mixed equilibrium
problem (29) (in short, RDS-MEP). Here the right-hand side
is associated with resolvent and hence is discontinuous on
the boundary of 𝐾. It is clear from the definitions that
the solution to (29) belongs to the constraints set 𝐾. This
implies that the results such as the existence, uniqueness, and
continuous dependence on the given data can be studied. It is
worth mentioning that RDS-MEP (29) is different from one
considered and studied in [15–17].

The following concepts and results are useful in the
sequel.

Definition 7. The dynamical system is said to converge to the
solution set 𝐾∗ of MEP (1) if and only if, irrespective of the
initial point, the trajectory of the dynamical system satisfies

lim
𝑡→∞

dist (𝑥 (𝑡) , 𝐾
∗

) , (30)

where

dist (𝑥, 𝐾∗) = inf
𝑦∈𝐾
∗

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (31)

It is easy to see that if the set 𝐾∗ has a unique point 𝑥∗,
then (30) implies that lim

𝑡→∞
𝑥(𝑡) = 𝑥

∗.
If the dynamical system is still stable at𝑥∗ in the Lyapunov

sense, then the dynamical system is globally asymptotically
stable at 𝑥∗.

Definition 8. The dynamical system is said to be globally
exponentially stable with degree 𝜂 at 𝑥

∗ if and only if,
irrespective of the initial point, the trajectory of the system
𝑥(𝑡) satisfies
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜇
1

󵄩󵄩󵄩󵄩𝑥 (𝑡
0
) − 𝑥
∗󵄩󵄩󵄩󵄩 exp (−𝜂 (𝑡 − 𝑡

0
)) , ∀𝑡 ≥ 𝑡

0
,

(32)

where 𝜇
1
and 𝜂 are positive constants independent of the

initial point. It is clear that globally exponential stability is
necessarily globally asymptotical stability and the dynamical
system converges arbitrarily fast.

Lemma 9 (Gronwall; see [9]). Let 𝑥 and 𝑦 be real-valued
nonnegative continuous function with domain {𝑡 : 𝑡 ≤ 𝑡

0
}

and let 𝛼(𝑡) = 𝛼
0
(|𝑡 − 𝑡

0
|), where 𝛼

0
is a monotone increasing

function. If, for 𝑡 ≥ 𝑡
0
,

𝑥 ≤ 𝛼 (𝑡) + ∫
𝑡

𝑡
0

𝑥 (𝑠) 𝑦 (𝑠) 𝑑𝑠, (33)

then

𝑥 (𝑠) ≤ 𝛼 (𝑡) + exp({∫
𝑡

𝑡
0

𝑦 (𝑠) 𝑑𝑠}) . (34)

In the sequel, one assumes that the bifunction 𝐹 involved
in MEP (1) satisfies conditions of Theorem 2. Further, from
now onward one assumes that𝐾∗ is nonempty and is bounded,
unless otherwise specified. Furthermore, assume that, for all
𝑥 ∈ 𝐾, there exists a constant 𝜏 > 0 such that

‖𝑁 (𝑇𝑥, 𝐴𝑥)‖ ≤ 𝜏 (‖𝑇𝑥‖ + ‖𝐴𝑥‖) . (35)

We study some properties of RDS-MEP (29) and analyze
the global stability of the system. First of all, we discuss the
existence and uniqueness of RDS-MEP (29).

3. Existence and Uniqueness of Solution

First, we define the following concepts.

Definition 10. Let 𝑇,𝐴 : 𝐾 → 𝐾, 𝐹 : 𝐾 × 𝐾 → R, and 𝑁 :

𝐾×𝐾 → 𝐾 be nonlinear mappings.Then, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈

𝐾,

(a) 𝑇 is 𝛿-Lipschitz continuous if there exists a constant
𝛿 > 0 such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ; (36)

(b) 𝑁 is (𝛼, 𝛽)-Lipschitz continuous if there exist constants
𝛼, 𝛽 > 0 such that

󵄩󵄩󵄩󵄩𝑁 (𝑥, 𝑦) − 𝑁 (𝑧, 𝑤)
󵄩󵄩󵄩󵄩 ≤ 𝛼 ‖𝑥 − 𝑧‖ + 𝛽

󵄩󵄩󵄩󵄩𝑦 − 𝑤
󵄩󵄩󵄩󵄩 ; (37)

(c) 𝑁 ismixed monotone with respect to 𝑇 and 𝐴, if

⟨𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑁 (𝑇𝑦, 𝐴𝑦) , 𝑥 − 𝑦⟩ ≥ 0; (38)
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(d) 𝐹 is said to be 𝜃-pseudomonotone, where 𝜃 is a real-
valued multivariate function, if

𝐹 (𝑥, 𝑦) + 𝜃 ≥ 0 implies − 𝐹 (𝑦, 𝑥) + 𝜃 ≥ 0. (39)

Theorem 11. Let the mappings 𝑇, 𝐴, and 𝑁 be 𝛿-Lipschitz
continuous, 𝛾-Lipschitz continuous, and (𝛼, 𝛽)-Lipschitz con-
tinuous, respectively. For each 𝑥

0
∈ R𝑛, there exists a unique

continuous solution 𝑥(𝑡) of RDS-MEP (29)with 𝑥(𝑡
0
) = 𝑡
0
over

[𝑡
0
,∞).

Proof. Let

𝐺 (𝑥) = 𝜆 {𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+ 𝜇𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑥} ,

(40)

where 𝜆 is a constant. For all 𝑥, 𝑦 ∈ R𝑛, we have

󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)
󵄩󵄩󵄩󵄩

≤ 𝜆 {
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝐽

𝐹

𝜇
[𝑦 − 𝜇𝑁 (𝑇𝑦, 𝐴𝑦)]

󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄩󵄩󵄩󵄩𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑁 (𝑇𝑦, 𝐴𝑦)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑇 (𝐽

𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

− 𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑦 − 𝜇𝑁 (𝑇𝑦, 𝐴𝑦)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑦 − 𝜇𝑁 (𝑇𝑦, 𝐴𝑦)]))

󵄩󵄩󵄩󵄩󵄩
}

≤ 𝜆 {2
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 2𝜇
󵄩󵄩󵄩󵄩𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑁 (𝑇𝑦, 𝐴𝑦)

󵄩󵄩󵄩󵄩

+ 𝜇 (𝛼𝛿 + 𝛽𝛾)

× [
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑁 (𝑇𝑦, 𝐴𝑦)

󵄩󵄩󵄩󵄩]}

≤ 𝜆 {2 + 3𝜇 (𝛼𝛿 + 𝛽𝛾) + 𝜇
2

(𝛼𝛿 + 𝛽𝛾)
2

}
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(41)

This implies that the mapping 𝐺 is Lipchitz continuous
in R𝑛. So, for each 𝑥

0
∈ R𝑛, there exists a unique and

continuous solution 𝑥(𝑡) of RDS-MEP (29), defined in an
interval 𝑡

0
≤ 𝑡 < 𝑇 with initial condition 𝑥(𝑡

0
) = 𝑥

0
. Let

[𝑡
0
, 𝑇) be its maximal interval of existence; we show that 𝑇 =

∞. We estimate

‖𝐺 (𝑥)‖ = 𝜆
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+ 𝜇𝑁 (𝑇𝑥, 𝐴𝑥) − 𝑥
󵄩󵄩󵄩󵄩󵄩
.

≤ 𝜆
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝑥

󵄩󵄩󵄩󵄩󵄩

+ 𝜆𝜇 (𝛼𝛿 + 𝛽𝛾)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝑥

󵄩󵄩󵄩󵄩󵄩

= 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾))
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝑥

󵄩󵄩󵄩󵄩󵄩

≤ 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾))

× {
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝐽

𝐹

𝜇
(𝑥)

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥) − 𝐽

𝐹

𝜇
(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

) − 𝑥
󵄩󵄩󵄩󵄩󵄩
}

≤ 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾))

× {𝜇 ‖𝑁 (𝑇𝑥, 𝐴𝑥)‖ +
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

) − 𝑥
󵄩󵄩󵄩󵄩󵄩
}

≤ 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾))

× {𝜇𝜏 (‖𝑇𝑥‖ + ‖𝐴𝑥‖) + ‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
+ ‖𝑥‖} ,

≤ 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾))

× {(𝜇𝜏 (𝛿 + 𝛾) + 2) ‖𝑥‖ +
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩} .

= 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾)) (2 + 𝜇𝜏 (𝛿 + 𝛾)) ‖𝑥‖

+ 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾)) {
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩} ,

(42)

for any 𝑢 ∈ R𝑛; then

‖𝑥 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + ∫
𝑡

𝑡
0

‖𝐺𝑥 (𝑠)‖ 𝑑𝑠,

≤ (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝑘
1
(𝑡 − 𝑡
0
)) + 𝑘

2
∫
𝑡

𝑡
0

‖𝑥 (𝑠)‖ 𝑑𝑠,

(43)

where

𝑘
1
= 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾)) {

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩} ,

𝑘
2
= 𝜆 (1 + 𝜇 (𝛼𝛿 + 𝛽𝛾)) (2 + 𝜇𝜏 (𝛿 + 𝛾)) .

(44)

Therefore, using Lemma 9, we have

‖𝑥 (𝑡)‖ ≤ (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝑘
1
(𝑡 − 𝑡
0
)) exp {𝑘

2
(𝑡 − 𝑡
0
)} , 𝑡 ∈ [𝑡

0
, 𝑇) .

(45)

Hence, the solution ‖𝑥(𝑡)‖ is bounded on [𝑡
0
, 𝑇). So 𝑇 =

∞. This completes the proof.
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4. Stability Analysis

We now study the stability of RDS-MEP (29). The analysis is
in the spirit of Xia and Wang [13].

Theorem 12. Let the mappings 𝑇, 𝐴, and 𝑁 be the same as
Theorem 11. Let the function 𝐹 be 𝜃-pseudomonotone with
respect to 𝜃, where 𝜃 is defined as

𝜃 (𝑥, 𝑦) = ⟨𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑦 − 𝑥⟩ , ∀𝑥, 𝑦 ∈ 𝐾, (46)

and let 𝑁 be mixed monotone with respect to 𝑇 and 𝐴. If
𝜇 < 1/(𝛼𝛿 + 𝛽𝛾), then RDS-MEP (29) is stable in the sense of
Lyapunov and globally converges to the solution subset of MEP
(1).

Proof. Since the mappings 𝑇, 𝐴, and 𝑁 are Lipschitz contin-
uous, it follows from Theorem 11 that RDS-MEP (29) has a
unique continuous solution𝑥(𝑡) over [𝑡

0
, 𝑇) for any fixed𝑥

0
∈

𝐾. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
; 𝑥
0
) be the solution of the initial-value

problem (29). For a given 𝑥
∗

∈ 𝐾, consider the following
Lyapunov function:

𝐿 (𝑥) =
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩
2

, 𝑥 ∈ R
𝑛

. (47)

It is clear that lim
𝑛→∞

𝐿(𝑥
𝑛
) = +∞, whenever the

sequence {𝑥
𝑛
} ⊂ 𝐾 and lim

𝑛→∞
𝑥
𝑛

= +∞. Consequently,
we conclude that the level sets of 𝐿 are bounded. Let 𝑥∗ ∈ 𝐾

be a solution of MEP (1); then
𝐹 (𝑥
∗

, 𝑦) + ⟨𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (48)

Since 𝐹 is 𝜃-pseudomonotone and𝑁 is mixed monotone
then (48) implies that

−𝐹 (𝑦, 𝑥
∗

) + ⟨𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

) , 𝑦 − 𝑥
∗

⟩ ≥ 0

−𝐹 (𝑦, 𝑥
∗

) ≥ − ⟨𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

) , 𝑦 − 𝑥
∗

⟩

≥ − ⟨𝑁 (𝑇𝑦, 𝐴𝑦) , 𝑦 − 𝑥
∗

⟩ .

(49)

That is,
−𝐹 (𝑦, 𝑥

∗

) + ⟨𝑁 (𝑇𝑦, 𝐴𝑦) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (50)

Taking 𝑦 = 𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁(𝑇𝑥, 𝐴𝑥)] in (50), we have

− 𝐹 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] , 𝑥

∗

)

+ ⟨𝑁(𝑇𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝑥

∗

⟩ ≥ 0.

(51)

Setting 𝑦 = 𝑥
∗, 𝑥 = 𝑥 − 𝜇𝑁(𝑇𝑥, 𝐴𝑥), and 𝐽

𝐹

𝜇
(𝑥) = 𝐽

𝐹

𝜇
[𝑥 −

𝜇𝑁(𝑇𝑥, 𝐴𝑥)] in (9), we have

𝜇𝐹 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] , 𝑥

∗

)

+ ⟨𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)] − 𝑥

+ 𝜇𝑁 (𝑇𝑥, 𝐴𝑥) , 𝑥
∗

−𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]⟩ ≥ 0.

(52)

From (51), (52), and (24), we have

⟨−𝑅 (𝑥) + 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)])) ,

𝑥
∗

− 𝑥 + 𝑅 (𝑥)⟩ ≥ 0,

(53)

which implies that

⟨𝑥 − 𝑥
∗

, 𝑅 (𝑥) − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)

+ 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))⟩

≥ ‖𝑅 (𝑥)‖
2

− 𝜇⟨𝑅 (𝑥) ,𝑁 (𝑇𝑥, 𝐴𝑥)

− 𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))⟩

≥ ‖𝑅 (𝑥)‖
2

− 𝜇 (𝛼𝛿 + 𝛽𝛾) ‖𝑅 (𝑥)‖

×
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝜇 (𝛼𝛿 + 𝛽𝛾)) ‖𝑅(𝑥)‖
2

.

(54)

Thus, from (29), (47), and (54), we have

𝑑

𝑑𝑡
𝐿 (𝑥) =

𝑑𝐿

𝑑𝑥

𝑑𝑥

𝑑𝑡

= 2𝜆 ⟨𝑥 − 𝑥
∗

, −𝑅 (𝑥) + 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))⟩

≤ −2𝜆 (1 − 𝜇 (𝛼𝛿 + 𝛽𝛾)) ‖𝑅(𝑥)‖
2

≤ 0, for 𝜇 <
1

(𝛼𝛿 + 𝛽𝛾)
.

(55)

This implies that 𝐿(𝑥) is a global Lyapunov function for RDS-
MEP (29) which is stable in the sense of Lyapunov. Since
{𝑥(𝑡) : 𝑡 ≥ 𝑡

0
} ⊂ 𝐾

0
where 𝐾

0
= {𝑥 ∈ 𝐾 : 𝐿(𝑥) ≤ 𝐿(𝑥

0
)}

and the function 𝐿(𝑥) is continuously differentiable on the
bounded and closed set𝐾, it follows from LaSalle’s invariance
principle [9] that the trajectories 𝑥(𝑡) will converge to Ω, the
largest invariant subset of the following set:

𝐸 = {𝑥 ∈ 𝐾 :
𝑑𝑥

𝑑𝑡
= 0} . (56)
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Note that if (𝑑𝐿/𝑑𝑡) = 0, then

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]

󵄩󵄩󵄩󵄩󵄩

2

= 0, (57)

and hence 𝑥 is an equilibrium point of RDS-MEP (29); that
is, 𝑑𝑥/𝑑𝑡 = 0.

Conversly, if (𝑑𝑥/𝑑𝑡) = 0, then it follows that (𝑑𝐿/𝑑𝑡) =

0.
Thus, we conclude that 𝐸 = {𝑥 ∈ 𝐾 : (𝑑𝑥/𝑑𝑡) = 0} = 𝐾

0
∩

𝐾
∗, which is nonempty, convex, and invariant set contained

in the solution set 𝐾∗. So, lim
𝑡→∞

dist(𝑥(𝑡), 𝐸) = 0.
Therefore RDS-MEP (29) converges globally to the solu-

tion set of MEP (1). In particular, if we set 𝐸 = {𝑥
∗

}, then

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
∗

. (58)

Hence RDS-MEP (29) is globally asymptotically stable.
This completes the proof.

Theorem 13. Let the mappings 𝑇, 𝐴, and𝑁 be the same as in
Theorem 11. If 𝜆 < 0, then RDS-MEP (29) converges globally
exponentially to the unique solution of MEP (1).

Proof. It follows from Theorem 11 that there exists a unique
continuously differentiable solution of RDS-MEP (29) over
[𝑡
0
,∞). Then

𝑑𝐿

𝑑𝑡
= 2𝜆 ⟨𝑥 (𝑡) − 𝑥

∗

,

𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡)) − 𝑥 (𝑡)⟩

= −2𝜆
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2𝜆 ⟨𝑥 (𝑡) − 𝑥
∗

, 𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+ 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡)) − 𝑥
∗

⟩ ,

(59)

where 𝑥∗ ∈ 𝐾 is the solution of MEP (1). Thus

𝑥
∗

= 𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 − 𝜇𝑁 (𝑇𝑥, 𝐴𝑥)]))

+ 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

) .

(60)

Now, we estimate
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]))

+ 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡)) − 𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]

− 𝜇𝑁(𝑇 (𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]))

+𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩

+ 2𝜇
󵄩󵄩󵄩󵄩𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡)) − 𝑁 (𝑇𝑥

∗

, 𝐴𝑥
∗

)
󵄩󵄩󵄩󵄩

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑇 (𝐽

𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥 (𝑡) − 𝜇𝑁 (𝑇𝑥 (𝑡) , 𝐴𝑥 (𝑡))]))

− 𝑁 (𝑇 (𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]) ,

𝐴 (𝐽
𝐹

𝜇
[𝑥
∗

− 𝜇𝑁 (𝑇𝑥
∗

, 𝐴𝑥
∗

)]))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩 + 2𝜇 (𝛼𝛿 + 𝛽𝛾)
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝜇 (𝛼𝛿 + 𝛽𝛾) {
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜇 (𝛼𝛿 + 𝛽𝛾)
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩}

= {1 + 3𝜇 (𝛼𝛿 + 𝛽𝛾) + 𝜇
2

(𝛼𝛿 + 𝛽𝛾)
2

}
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩 .

(61)

From (59) and (61), we have

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ 2𝜆𝜃
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩
2

, (62)

where 𝜃 = 𝜇(𝛼𝛿 + 𝛽𝛾){3 + 𝜇(𝛼𝛿 + 𝛽𝛾)}.
Thus, for𝜆 = −𝜆

1
, where𝜆

1
is a positive constant, we have

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 (𝑡
0
) − 𝑥
∗󵄩󵄩󵄩󵄩 exp {−𝜃𝜆

1
(𝑡 − 𝑡
0
)} , (63)

which shows that the trajectory of the solution of RDS-MEP
(29) converges globally exponentially to the unique solution
of MEP (1). This completes the proof.
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