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The trajectory of a robot end-effector is described by a ruled surface and a spin angle about the
ruling of the ruled surface. In this way, the differential properties of motion of the end-effector are
obtained from the well-known curvature theory of a ruled surface. The curvature theory of a ruled
surface generated by a line fixed in the end-effector referred to as the tool line is used for more
accurate motion of a robot end-effector. In the present paper, we first defined tool trihedron in
which tool line is contained for timelike ruled surface with timelike ruling, and transition relations
among surface trihedron: tool trihedron, generator trihedron, natural trihedron, and Darboux
vectors for each trihedron, were found. Then differential properties of robot end-effector’s
motion were obtained by using the curvature theory of timelike ruled surfaces with timelike
ruling.
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1. Introduction

The methods of robot trajectory control currently used are based on PTP (point to point) and
CP (continuous path) methods. These methods are basically interpolation techniques and,
therefore, are approximations of the real path trajectory [1]. In such cases, when a precise
trajectory is needed, or we need to trace a free formed or analytical surface accurately, the
precision is only proportional to the number of intermediate data points for teach-playback
or offline programming.

For accurate robot trajectory, the most important aspect is the continuous repre-
sentation of orientation whereas the position representation is relatively easy. There are
methods such as homogeneous transformation, Quaternion, and Euler Angle representation
to describe the orientation of a body in a three-dimensional space [2]. These methods are easy
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in concept but have high redundancy in parameters and are discrete representation in nature
rather than continuous. Therefore, a method based on the curvature theory of a ruled surface
has been proposed as an alternative [3].

Ruled surfaces were first investigated by G. Monge who established the partial
differential equation satisfied by all ruled surfaces. Ruled surfaces have been widely
applied in designing cars, ships, manufacturing (e.g., CAD/CAM) of products and many
other areas such as motion analysis and simulation of rigid body, as well as model-
based object recognition system. After the period of 1960–1970, Coons, Ferguson, Gordon,
Bezier, and others developed new surface definitions that were investigated in many areas.
However, ruled surfaces are still widely used in many areas in modern surface modelling
systems.

The ruled surfaces are surfaces swept out by a straight line moving along a curve. The
study of ruled surfaces is an interesting research area in the theory of surfaces in Euclidean
geometry. Theory of ruled surfaces is developed by using both surface theory and E. Study
map which enables one to investigate the geometry of ruled surfaces by means of one-
real parameter. It is also known that theory of ruled surfaces is applicable to theoretical
kinematics.

The positional variation and the angular variation of the rigid body are determined
from the curvature theory of a ruled surface. These properties are very important to
determine the properties of the robot end-effector motion. A brief mathematical background
of the curvature theory of a ruled surface may be found in [4–10].

Minkowski space is named after the German mathematician Hermann Minkowski,
who around 1907 realized that the theory of special relativity (previously developed by
Einstein) could be elegantly described by using a four-dimensional space-time model which
combines the dimension of time with the three dimensions of space.

Four-dimensional Euclidean space with a Lorentz metric, which is the space of
special relativity, is called Minkowski space-time, and a Lorentz space is a hypersurface of
Minkowski space-time. There are lots of papers dealing with ruled surfaces in Lorentz space
(see [11–16]).

2. Preliminaries

Let R
3
1 be a 3-dimensional Lorentzian space with Lorentz metric ds2 = dx2

1 + dx2
2 − dx2

3. If
〈X,Y〉 = 0,X and Y are called perpendicular in the sense of Lorentz, where 〈·,·〉 is the induced
inner product in R

3
1. The norm of X ∈ R

3
1 is, as usual, ‖X‖ =

√
|〈X, X〉|.

Let X ∈ R
3
1 be a vector. If 〈X,X〉 < 0, then X is called timelike; if 〈X,X〉 > 0 and X = 0,

then X is called spacelike and if 〈X,X〉 = 0, X /= 0, then X is called lightlike (null) vector [17].
We can observe that a timelike curve corresponds to the path of an observer moving at less
than the speed of light while the spacelike curves faster and the null curves are equal to the
speed of light.

A smooth regular curve α : I ⊂ R → R
3
1 is said to be a timelike, spacelike,

or lightlike curve if the velocity vector α′(s) is a timelike, spacelike, or lightlike vector,
respectively.

A surface in the Minkowski 3-space is called a timelike surface if the induced metric
on the surface is a Lorentz metric, that is, the normal on the surface is a spacelike vector. A
timelike ruled surface in R

3
1 is obtained by a timelike straight line moving along a spacelike

curve or by a spacelike straight line moving along a timelike curve. The timelike ruled surface
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M is given by the parameterization

ϕ : I × R −→ R
3
1, ϕ(s, u) = α(s) + uX(s) (2.1)

in R
3
1 (see [11–13, 18, 19]).

The arc-length of a spacelike curve α, measured from α(t0), t0 ∈ I is

s(t) =
∫ t

t0

‖α′(u)‖du, (2.2)

The parameter, s, is determined such that ‖α′(u)‖ = 1, where α′(s) = dα/ds. Let us
denote V1 = α′ and call V1(s) a unit tangent vector of α at the point s. We define the curvature
by

k1(s) =
√
|〈α′′(s), α′′(s)〉|. (2.3)

If k1(s)/= 0, then the unit principal normal vector, V2(s), of a timelike curve α at the
point s is given by

α′′(s) = k1(s)V2(s). (2.4)

For any X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R
3
1, the Lorentzian vector product of X and

Y is defined as

X ∧ Y =
(
x2y3 − x3y2, x3y1 − x1y3, x2y1 − x1y2

)
. (2.5)

The unit vector V3(s) = V1(s) ∧ V2(s) is called a unit binormal vector of the timelike
curve α at the point s. Now, we give some properties of ∧ without proof: let A,B,C ∈ R

3
1; it

is straightforward to see the following: A ∧ B = −B ∧ A; 〈A ∧ B,A〉 = 〈A ∧ B, B〉 = 0; A or
B is timelike ⇒ A ∧ B is spacelike; 〈A ∧ B,C〉 = 〈B ∧ C,A〉;A and B are spacelike ⇒ A ∧ B
is timelike; 〈A ∧ B,A ∧ B〉 = 〈A,B〉2 − 〈A,A〉〈B, B〉 and A ∧ B = 0 ⇔ A and B are linearly
dependent (see [13, 17]).

A timelike curve α = α(s) ∈ R
3
1, parameterized by natural parameterization, is a frame

field {e1, e2, e3} having the following properties:

e1 ∧ e2 = −e3, e1 ∧ e3 = e2, e2 ∧ e3 = e1. (2.6)

Lorentzian vector product u ∧ v of u and v is defined by

u ∧ v =

∣∣∣∣∣∣

−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
. (2.7)
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Let u and v be vectors in the Minkowski 3-space.

(i) If u and v are future pointing (or past pointing) timelike vectors, then u ∧ v is a
spacelike vector. 〈u, v〉 = −‖u‖ ‖v‖ cosh θ and ‖u ∧ v‖ = ‖u‖ ‖v‖ sinh θ where θ is
the hyperbolic angle between u and v.

(ii) If u and v are spacelike vectors satisfying the inequality |〈u, v〉| < ‖u‖ ‖v‖, then u∧v
is timelike, 〈u, v〉 = ‖u‖ ‖v‖ cos θ and ‖u ∧ v‖ = ‖u‖ ‖v‖ sinh θ where θ is the angle
between u and v (see [12, 16, 20]).

3. Representation of robot trajectory by a ruled surface

The motion of a robot end-effector is referred to as the robot trajectory. A robot trajectory
consists of: (i) a sequence of positions, velocities, and accelerations of a point fixed in the
end-effector; and (ii) a sequence of orientations, angular velocities, and angular accelerations
of the end-effector. The point fixed in the end-effector will be referred to as the Tool Center
Point and denoted as the TCP.

Path of a robot may be represented by a tool center point and tool frame of end-
effector. In Figure 1, the tool frame is represented by three mutually perpendicular unit
vectors [O,A,N], defined as where O is the orientation vector (timelike), A is the approach
vector (spacelike), andN is the normal vector (spacelike), as shown in Figure 1. In this paper,
the ruled surface generated by O is chosen for further analysis without loss of generality.

The motion of a robot end-effector in space has six degrees of freedom, in general, and
six independent parameters are required to describe the position and orientation of the end-
effector. Since α and �R are vectors in three-dimensional space, there are three independent
parameters to represent each vector. However, the ruling has a constant magnitude which
gives one constraint, therefore, it takes five independent parameters to represent a timelike
ruled surface.

The path of tool center point is referred to as directrix and vector O, ruling. The
directrix and ruling represent five parameters for the 6 degrees of freedom spatial motion.
The final parameter is the spin angle, η, which represents the rotation from the surface normal
vector, Sn, about O.

4. Frames of reference

Each vector of tool frame in end-effector defines its own timelike ruled surface while the robot
moves. The path of tool center point is directrix and O is the ruling. As α(s) is a spacelike
curve and �R(s) is timelike straight line, let us take the following timelike ruled surface as

X(s, u) = α(s) + u�R(s), (4.1)

where the space curve α(s) is the specified path of the TCP (called the directrix of the timelike
ruled surface), u is a real-valued parameter, and �R(s) is the vector generating the timelike
ruled surface (called the ruling). The shape of the ruled surface X(ψ, u) is independent of the
parameter ψ chosen to identify the sequence of lines along it therefore we choose a standard
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Figure 1: Ruled surface generated by O of tool frame.
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Figure 2: Frames of reference.

parametrization. It convenient to use the arc-length of the spherical indicatrix �R(ψ) as this
standard parameter. The arc-length parameter s is defined by

s(ψ) =
∫ ∣∣∣∣

d �R(ψ)
dψ

∣∣∣∣dψ. (4.2)

Here δ = |d �R(ψ)/dψ| is called the speed of �R(ψ). If δ /= 0, then above equation can be inverted
to yield ψ(s) allowing the definition of �R(ψ(s)) = �R(s). �R(ψ) has unit speed, that is, its tangent
vector is of unit magnitude (see, [2, 6, 8, 21]).

To describe the orientation of tool frame relative to the timelike ruled surface, we
define a surface frame at the TCP as shown in Figures 1 and 2. The surface frame, [O,Sn, Sb],
may be determined as follows:

Sn =
Xu ∧Xs

‖Xu ∧Xs‖ , (4.3)

which is the unit normal of timelike ruled surface in TCP;

Sb = O ∧ Sn (4.4)

is the unit binormal vector of the surface.
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Generator trihedron in Figure 2 is used to study the positional and angular variation of
timelike ruled surface. Let us take r = (1/R) �R(s) timelike generator vector, t = �R(s) spacelike
central normal vector, k = r ∧ t spacelike tangent vector, where R is ‖ �R(s)‖.

The striction curve of timelike ruled surface is

β(s) = α(s) − μ(s) �R(s), (4.5)

where the parameter

μ(s) =
|〈α′(s), �R′(s)〉|

‖ �R′‖
(4.6)

indicates the position of the TCP relative to the striction point of the timelike ruled surface.
Since the ruling �R is not necessarily a unit vector, the distance from the striction point of
ruled surface to the TCP is μR in the positive direction of the generator vector. The generator
trihedron and the striction curve of the ruled surface are unique in the sense that they do not
depend on the choice of the directrix of the ruled surface. Therefore, by studying the motion
of generator trihedron and the striction curve, we can obtain the differential motion of the
end-effector in a simple and systematic manner.

The first-order angular variation of the generator trihedron may be expressed in the
matrix form as

d

ds

⎡

⎣
r
t
k

⎤

⎦ =
1
R

⎡

⎣
0 1 0
1 0 −γ
0 γ 0

⎤

⎦

⎡

⎣
r
t
k

⎤

⎦ = Ur ∧
⎡

⎣
r
t
k

⎤

⎦ , (4.7)

where γ is defined as

γ = 〈 �R′′, �R ∧ �R′〉, (4.8)

Ur =
γ

R
r − 1

R
k (4.9)

is the Darboux vector of the generator trihedron.
Differentiating (4.5) gives first order positional variation of the striction point of the

timelike ruled surface expressed in the generator trihedron, with the aid of (4.6), (4.7) and
generator trihedron,

β′(s) = rΓ + Δk, (4.10)

where

Γ = − 1
R
〈α′(s), �R(s)〉 − 1

R
μ′(s),

Δ = − 1
R
〈α′(s), �R(s) ∧ �R′(s)〉.

(4.11)
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5. Central normal surface

The natural trihedron used to study the angular and positional variation of the normalia is
defined by the following three orthonormal vectors: the central normal vector t (spacelike),
principal normal vector n (spacelike), and binormal vector b (timelike), as shown in Figure 2.

As the generator trihedron moves along the striction curve, the central normal vector
generates another ruled surface called the normalia or central normal surface. The normalia,
which is important in the study of the higher order properties of the ruled surface, is defined
as

XT (s, u) = β(s) + ut(s). (5.1)

Let the hyperbolic angle, ρ, be between the timelike vectors r and b. Then, we have

r = sinh ρn + cosh ρb, (5.2)

k = t ∧ r = sinh ρb + cosh ρn. (5.3)

So (5.2) can be written in matrix form as

⎡

⎣
r
t
k

⎤

⎦ =

⎡

⎣
0 sinh ρ cosh ρ
1 0 0
0 cosh ρ sinh ρ

⎤

⎦

⎡

⎣
t
n
b

⎤

⎦ . (5.4)

The solution of (5.4) is

⎡

⎣
t
n
b

⎤

⎦ =

⎡

⎣
0 1 0

− sinh ρ 0 cosh ρ
cosh ρ 0 − sinh ρ

⎤

⎦

⎡

⎣
r
t
k

⎤

⎦ . (5.5)

Substituting (4.7) into (5.5) and using t′ = κn, it follows that

t′ =
1
R
(r − γk) = κ(− sinh ρr + cosh ρk). (5.6)

Hence

cosh ρ = − γ

Rκ
,

sinh ρ = − 1
Rκ

.

(5.7)

Then the geodesic curvature may also be written as

coth ρ = γ. (5.8)
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Substituting this into (4.7) we get

d

ds

⎡

⎣
r
t
k

⎤

⎦ =
1
R

⎡

⎣
0 1 0
1 0 − coth ρ
0 coth ρ 0

⎤

⎦

⎡

⎣
r
t
k

⎤

⎦ (5.9)

and from the following equality

Ur =
γ

R
r − 1

R
k =

1
R
(coth ρr − k). (5.10)

The natural trihedron consists of the following vectors:

t = �R′,

n =
1
κ
t′,

b = t ∧ n,

(5.11)

where κ = ‖t′‖ is the curvature. The origin of the natural trihedron is a striction point of the
normalia. The striction curve is defined as

βT (s) = β(s) − μT (s)t(s), (5.12)

where

μT (s) =
∣∣∣∣
〈β′(s), t′(s)〉
〈t′(s), t′(s)〉

∣∣∣∣, (5.13)

which is the distance from the striction point of the normalia to the striction point of the
timelike ruled surface in the positive direction of the central normal vector. Substituting (5.9)
and (4.10) into (5.13), we obtain

μT (s) = R2cosh2ρ(−Γ + Δ coth ρ). (5.14)

The first-order angular variation of natural trihedron may be expressed in the matrix
form as

d

ds

⎡

⎣
t
n
b

⎤

⎦ =

⎡

⎣
0 κ 0
−κ 0 τ
0 −τ 0

⎤

⎦

⎡

⎣
t
n
b

⎤

⎦ = UT ∧
⎡

⎣
t
n
b

⎤

⎦ , (5.15)

where τ = 〈n′, b〉 is torsion.
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As in the case of the generator trihedron, (5.15) may also be written as

UT = −τt − κb (5.16)

is referred to as the Darboux vector of the natural trihedron.
Observe that both the Darboux vector of the generator trihedron and the Darboux

vector of the natural trihedron describe the angular motion of the ruled surface and the
central normal surface. The curvature κ is defined by (5.9) as follows:

κ =
1
R

√
| − 1 + cosh2ρ| = 1

R sinh ρ
. (5.17)

Differentiating (5.12) and substituting (4.7) and (4.10) into the result, we obtain

β′T = ΓT t + ΔTb, (5.18)

where

ΓT = η′T t, ΔT = −Γcosh ρ + Δ sinh ρ. (5.19)

The four functions, given by (5.17) and (5.19), characterize the normalia in the same
way as (4.7) and (4.11) characterize the timelike ruled surface.

6. Relationship between the frames of reference

To utilize the curvature theory of timelike ruled surfaces in the accurate motion of a robot
end-effector, we must first determine the position of (i) the TCP relative to the striction point
of the timelike ruled surface, and (ii) the striction point of the timelike ruled surface relative
to the striction point of the normalia; and the orientation of (i) the tool frame relative to the
generator trihedron, and (ii) the generator trihedron relative to the natural trihedron. The
position solutions may be obtained from (4.6) and (5.13), the orientation solutions will be
presented in this section.

The orientation of the surface frame relative to the tool frame and the generator
trihedron is shown in Figure 2. Let angle between Sb and A spacelike vectors be defined
by ϕ, referred to as spin angle, we have

〈Sb,A〉 = cosϕ,

A = sinϕSn + cosϕSb, A ∧O =N = sinϕSb − cosϕSn.
(6.1)

We may express the results in matrix form as

⎡

⎣
O
A
N

⎤

⎦ =

⎡

⎣
1 0 0
0 sinϕ cosϕ
0 − cosϕ sinϕ

⎤

⎦

⎡

⎣
O
Sn
Sb

⎤

⎦ . (6.2)
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Equation (6.2) may also be rewritten as

⎡

⎣
O
Sn
Sb

⎤

⎦ =

⎡

⎣
1 0 0
0 sinϕ − cosϕ
0 cosϕ sinϕ

⎤

⎦

⎡

⎣
O
A
N

⎤

⎦ . (6.3)

Let the angle between the spacelike vectors Sb and k be defined as φ. We have

Sn = sinφt + cosφk,

Sb = cosφt − sinφk.
(6.4)

We may express the results in matrix form as

⎡

⎣
O
Sn
Sb

⎤

⎦ =

⎡

⎣
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤

⎦

⎡

⎣
r
t
k

⎤

⎦ . (6.5)

With the aid of (6.2) and (6.5), we have

⎡

⎣
O
A
N

⎤

⎦ =

⎡

⎢⎢
⎣

1 0 0

0 sin
∑

cos
∑

0 − cos
∑

sin
∑

⎤

⎥⎥
⎦

⎡

⎣
r
t
k

⎤

⎦ , (6.6)

where ϕ + φ =
∑

. The solution of (6.6) is

⎡

⎣
r
t
k

⎤

⎦ =

⎡

⎢⎢
⎣

1 0 0

0 sin
∑

− cos
∑

0 cos
∑

sin
∑

⎤

⎥⎥
⎦

⎡

⎣
O
A
N

⎤

⎦ , (6.7)

where
∑

describes the orientation of the end-effector. Substituting the partial derivatives of
(4.1) into (4.3).

Because the surface normal vector is determined at the TCP which is on the directrix,
u is zero:

Xu ∧Xs = �R ∧ α′, (6.8)

and substituting

α′ = β′ + μ�R′ + μ′ �R (6.9)

and with the aid of (4.10),

Xu ∧Xs = Δt − μk, ‖Xu ∧Xs‖ =
√
Δ2 + μ2. (6.10)
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Finally

Sn =
Δt − μk
√
Δ2 + μ2

, (6.11)

Sb =
Δk + μt
√
Δ2 + μ2

. (6.12)

Comparing (6.11) with (6.5), we observe that

cosφ =
Δ

√
Δ2 + μ2

, sinφ =
−μ

√
Δ2 + μ2

. (6.13)

Substituting (5.5) and (5.19) into (5.10) gives

Ur =
1
R
(coth ρr − k) = κb, (6.14)

which shows that the binormal vector plays the role of the instantaneous axis of rotation for
the generator trihedron.

7. Differential motion of the tool frame

In this section, we obtain expressions for the first and second-order positional variation of the
TCP. The space curve generated by TCP from (4.5) is

α(s) = β(s) + μ�R(s). (7.1)

Differentiating (7.1) with respect to the arc length, using (4.7) and (4.10), the first-order
positional variation of the TCP, expressed in the generator trihedron is

α′(s) = r(Γ + μ′R) + Δk + μt. (7.2)

Substituting (6.7) into (7.2), it gives

α′(s) = (Γ + μ′R)O + (μ sinΣ + Δ cosΣ)A + (−μ cosΣ + Δ sinΣ)N,

α′′(s) =
(
Γ′ + μ′′R +

μ

R

)
r +

(
Γ
R

+ 2μ′ +
Δ
R

cothσ
)
t +

(
Δ′ − μ

R
cothσ

)
k.

(7.3)
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With the aid of (6.7) gives

α′′(s) =
(
Γ′ + μ′′R +

μ

R

)
O +

[
sinΣ

(
Γ
R

+ 2μ′ +
Δ
R

cothσ
)
+ cosΣ

(
Δ′ − μ

R
cothσ

)]
A

+
[
− cosΣ

(
Γ
R

+ 2μ′ +
Δ
R

cothσ
)
+ sinΣ

(
Δ′ − μ

R
cothσ

)]
N.

(7.4)

Differentiating (6.6) and substituting (5.9) into the result to determine the first order
angular variation of the tool frame and substituting (6.7) into result gives

d

ds

⎡

⎣
O
A
N

⎤

⎦ =
1
R

⎡

⎢
⎢⎢
⎣

0 sin
∑

− cos
∑

sin
∑

0 −ΩR

− cos
∑

ΩR 0

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎣

O
A

N

⎤

⎥
⎦ = UO ∧

⎡

⎣
O
A
N

⎤

⎦ , (7.5)

where

Ω =
′∑
+

coth ρ
R

. (7.6)

Thus,

UO = ΩO − 1
R

cos
∑

A − 1
R

sin
∑

N (7.7)

is the Darboux vector of the tool frame. Substituting (6.7) into (7.7) gives

UO = Ωr − 1
R
k (7.8)

and with the aid of (7.6) we have

UO = Σ′r +
1
R

coth ρr − 1
R
k (7.9)

and using (5.10), it becomes

UO = Σ′r +Ur. (7.10)

Substituting (6.14) into the result, it gives

UO = Σ′r + κb. (7.11)
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The second-order angular variation of the frames may now be obtained by
differentiating the Darboux vectors. Differentiating (5.16) gives

U′
t = −κ′t − τ ′b. (7.12)

Differentiating (6.14) gives

U′
r = −κ′b − κb′ (7.13)

with the aid of (5.15) the first order derivatives of the generator trihedron may be written as

U′
r = −κ′b − κτn. (7.14)

Differentiating (7.8) gives

U′
O = Ω′r + Ωr ′b − 1

R
κ′. (7.15)

With the aid of (4.7), it is rewritten as

U′
O = Ω′r + t

(
Ω

1
R

− 1
R

coth ρ
)

(7.16)

or the first order derivatives of the tool frame may be written as

U′
O = Ω′r +

Σ′

R
t. (7.17)

From the chain rule, the linear velocity and the linear acceleration of the TCP, respec-
tively, are

V = α′
•
S, a = α′

••
S +α′′

•
S2 . (7.18)

Also, the angular acceleration of the end-effector, respectively, are

w = UO

•
S,

•
w= UO

••
S +U

′ •
S2 . (7.19)

Example 7.1. For the timelike ruled surface, shown in Figure 3,

ϕ(s, u) =
(√

2 cos s − 2
√

2u sin s,
√

2 sin s + 2
√

2u cos s, s + 3u
)

(7.20)
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Figure 3: The timelike ruled surface with timelike rulings.

it is easy to see that α(s) = (
√

2 cos s,
√

2 sin s, s) is the base curve (spacelike) and �R(s) =
(−2

√
2 sin s, 2

√
2 cos s, 3) is the generator (timelike). The striction curve is the base curve. This

surface is a timelike ruled surface. Differentiating α(s)gives

α′(s) = (−
√

2 sin s,
√

2 cos s, 1), (7.21)

where 〈α′(s), α′(s)〉 = 2 sin2s + 2 cos2s − 1 = 1, so α(s) is spacelike vector. However, 〈 �R, �R〉 =
8 sin2s + 8 cos2s − 9 = −1, therefore R = ‖ �R(s)‖ = 1. Hence, generator trihedron is defined as

r =
�R

R
= (−2

√
2 sin s, 2

√
2 cos s, 3),

t = (− cos s,− sin s, 0),

(7.22)

where 〈t, t〉 = sin2s + cos2s = 1 then t is spacelike vector and ‖ �R′(s)‖ = 2
√

2. Also, k = t ∧ r =
(3 sin s,−3 cos s,−2

√
2) where 〈k, k〉 = 1 > 0. So k is spacelike vector. Therefore, we get μ = 0,

μ′(s) = 0, Γ = −1, Δ = −√2 and γ = −3.
The natural trihedron is defined by

t = (− cos s,− sin s, 0), t′ = (sin s,− cos s, 0), (7.23)

where κ =
√
|〈t′, t′〉| = 1,

n =
t′

κ
= (sin s,− cos s, 0) (7.24)

and 〈n, n〉 = cos2s + sin2s = 1. So n is a spacelike vector. Hence b = t ∧ n = (0, 0, 1).
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The Darboux vector of generator trihedron is

Ur = (0, 0, 2
√

2), (7.25)

and since τ = 〈n′, b〉 = 0, the Darboux vector of natural trihedron is UT = (0, 0,−2
√

2).
Substituting the equation Δ = −√2 into (6.13), we have

cosφ =
−√2

√
2 + μ2

, sinφ =
−μ

√
2 + μ2

. (7.26)

So tanφ = μ/
√

2. Differentiating equation gives

(1 + tan2φ)φ′ =
μ′
√

2
. (7.27)

Thus

φ′ =

√
2μ′

2 + μ2
, φ′′ =

√
2

2 + μ2

(
μ′′ − 2μ(μ′)2

2 + μ2

)
. (7.28)

Since the spin angle is zero, ϕ = 0 so ϕ′ = 0, Σ = φ, Σ′ = φ′ and Ω = φ′ − 3. The approach
vector and the normal vector, respectively, are

A =
1

√
2 + μ2

(−3 sin s + μ cos s, 3
√

2 cos s + μ sin s, 4),

N =
1

√
2 + μ2

(−
√

2 cos s − 3μ sin s,−
√

2 sin s + 3μ cos s, 2
√

2μ).

(7.29)

The first order positional variation of the TCP may be expressed in the tool frame as

α′ = (−1 + μ′)O +
2 − μ2

√
2 + μ2

A +
2
√

2μ
√

2 + μ2
N (7.30)

and the Darboux vector of the tool frame is

UO = ΩO +
√

2
√

2 + μ2
A +

μ
√

2 + μ2
N. (7.31)

The first order derivative of the Darboux vector of the tool frame

U′
O = φ′′r + φ′t. (7.32)
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Figure 4: The timelike ruled surface with timelike rulings.

Example 7.2. Let us now consider the timelike ruled surface,

ϕ(s, u) =
(

2
√

3
3

s − u
√

3
3
, cosh

(√
3

3
s

)
− u2

√
3

3
sinh

(√
3

3
s

)
, sinh

(√
3

3
s

)

− u2
√

3
3

cosh
(√

3
3
s

))
.

(7.33)

It is easy to see that α(s) = ((2
√

3/3)s, cosh((
√

3/3)s), sinh((
√

3/3)s)) is the base curve
(spacelike) and �R(s) = (−(√3/3),−(2√3/3) sinh((

√
3/3)s),−(2√3/2)cosh((

√
3/3)s)) is the

generator (timelike). The striction curve is the base curve. It is clear that this surface is a
timelike ruled surface with timelike rulings. Differentiating α(s) gives

α′(s) =
(

2
√

3
3

,

√
3

3
sinh

(√
3

3
s

)
,

√
3

3
cosh

(√
3

3
s

))
, (7.34)

where 〈α′(s), α′(s)〉 = 4/3 + (1/3)sinh2((
√

3/3)s) − (1/3)cosh2((
√

3/3)s) = 1, so α(s) is
spacelike vector. 〈 �R, �R〉 = −1, therefore R = ‖ �R(s)‖ = 1. Hence, generator trihedron is defined
as

r =
�R

R
=
(
−
√

3
3
,−2

√
3

3
sinh

(√
3

3
s

)
,−2

√
3

3
cosh

(√
3

3
s

))
,

t =
(

0,−cosh
(√

3
3
s

)
,− sinh

(√
3

3
s

))
,

(7.35)

where 〈t, t〉 = cosh2((
√

3/3)s) − sinh2((
√

3/3)s) = 1, then t is spacelike vector and ‖ �R′(s)‖ =
2/3.
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Also, k = t ∧ r = (−(2√3/3),−(√3/3) sinh((
√

3/3)s),−(√3/3)cosh ((
√

3/3)s)) where
〈k, k〉=1 > 0. So k is spacelike vector. Therefore, we obtain μ = 0, μ′(s) = 0, Γ = 0, Δ = −(2/3)
and γ = 4/27.

The natural trihedron is defined by

t′ =
(

0,−
√

3
3

sinh
(√

3
3
s

)
,−

√
3

3
cosh

(√
3

3
s

))
. (7.36)

Hence

κ =
√
|〈t′, t′〉| = 1√

3
,

n =
t′

κ
=
(

0,− sinh
(√

3
3
s

)
,−cosh

(√
3

3
s

))
,

b = t ∧ n = (−1, 0, 0).

(7.37)

Here 〈n, n〉 = sinh2((
√

3/3)s) − cosh2((
√

3/3)s) = −1. So n is a timelike vector.
The Darboux vector of generator trihedron is

Ur =
(
− 1√

3
, 0, 0

)
, (7.38)

and since τ = 〈n′, b〉 = 0, the Darboux vector of natural trihedron is UT = (1/
√

3, 0, 0).
Substituting the equation Δ = −(2/3) into (6.13), we have

cosφ =
−2

√
4 + 9μ2

, sinφ =
−3μ

√
4 + 9μ2

. (7.39)

Thus

φ′ =
6μ′

4 + 9μ2
, φ′′ =

6
4 + 9μ2

(
μ′′ − 18μ(μ′)2

4 + 9μ2

)
.

Since the spin-angle is zero, ϕ = 0 so ϕ′ = 0, Σ = φ, Σ′ = φ′, and Ω = φ′ + 4/27. The
approach vector and the normal vector, respectively, are

A=
1

√
12 + 27μ2

(
4, 3

√
3μ cosh

(√
3

3
s

)
+2 sinh

(√
3

3
s

)
, 3
√

3μ sinh
(√

3
3
s

)
−2 cosh

(√
3

3
s

))
,

N =
1

√
12 + 27μ2

(
6μ, 2

√
3 cosh

(√
3

3
s

)
+ 3μ sinh

(√
3

3
s

)
,

− 2
√

3 sinh
(√

3
3
s

)
+ 3μ cosh

(√
3

3
s

))
.

(7.40)
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The first order positional variation of the TCP may be expressed in the tool frame as

α′ = μ′O +
4 − 9μ2

3
√

4 + 9μ2
A +

4μ
√

4 + 9μ2
N (7.41)

and the Darboux vector of the tool frame is

UO = ΩO +
2

√
4 + 9μ2

A +
3μ

√
4 + 9μ2

N. (7.42)

Finally, the first order derivative of the Darboux vector of the tool frame

U′
O = φ′′r + φ′t. (7.43)

8. Conclusion

The results of this paper will make the accurate motion of the end-effector of a robotic device
possible. The paper presents the curvature theory of a general timelike ruled surface. The
curvature theory of timelike ruled surfaces is used to determine the differential properties
of the motion of a robot end-effector. This provides the properties of the robot end-effector
motion in analytical form. The trajectory of a robot end-effector is described by a ruled surface
and a spin angle about the ruling of the ruled surface. We consider the curvature theory
of timelike ruled surface in Lorentz three-space. This follows three-space series of works in
Euclidean space, mainly of [4, 6, 7, 9, 10]. In [2, 3], Ryuh have studied motion of robot by using
the curvature theory of ruled surfaces. In [1, 14], the authors have studied of Manipulators.
In [3, 16], the authors studied the motion and curvatures in Minkowski space. In [8, 11–
13, 18, 19, 22], the authors have studied timelike ruled surfaces in Minkowski space.

This paper has presented the study of the motion of a robot end-effector based on the
curvature theory of timelike ruled surfaces with timelike rulings in the Minkowski space.
Special types of timelike ruled surfaces such as developable surfaces, which have many
practical applications, are not included in this paper. The different studies on the timelike
ruled surfaces may be presented in a future publication.
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