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This paper mainly studies the Laplacian-energy-like invariants of the modified hexagonal lattice, modified Union Jack lattice, and
honeycomb lattice. By utilizing the tensor product of matrices and the diagonalization of block circulantmatrices, we derive closed-
form formulas expressing the Laplacian-energy-like invariants of these lattices. In addition, we obtain explicit asymptotic values of
these invariants with software-aided computations of some integrals.

1. Introduction

Molecular structure descriptors or topological indices are
used for modelling information of molecules, including
toxicologic, chemical, and other properties of chemical com-
pounds in theoretical chemistry. Topological indices play a
very important role in mathematical chemistry, especially in
the quantitative structure-property relationship (QSPR) and
quantitative structure activity relationship (QSAR). Many
topological indices have been introduced and investigated
by mathematicians, chemists, and biologists, which contain
energy [1], the Laplacian-energy-like invariant [2–5], the
Kirchhoff index [6–13], and so forth.The energy of the graph
is an important invariant of the adjacency spectrum and is the
sum of the absolute values of all the eigenvalues of a graph 𝐺,
which is studied in chemistry and used to approximate the
total electron energy of a molecule [1]. During researching
the character of the conjugated carbon oxides, chemists found
that the “general electric” 𝐸

𝜋
is closely related to the energy

releasing from the formation progress of the conjugated
carbon oxides and could be approximately calculated by
Hückelmolecular orbital theory. And in themethod ofHMO,
the calculation of 𝐸

𝜋
can be attributed to the sum of the

absolute values of all the eigenvalues of its molecular graph
[14–20].

Comparedwith adjacencymatrix, the definition of Lapla-
cian matrix added to all vertices degrees. As Mohar said,

the Laplacian eigenvalues can reflect more the combination
properties of graphs. Cvetković and Simić [21–23] pointed
out that, as molecular structure descriptors, the Laplacian-
energy-like invariant not only well describes the properties of
most of the descriptors which are indicated, such as entropy,
molar volume, and molar refractivity, but also is able to
describe somemore difficult properties, such as boiling point
and rub points. Due to the fact that Laplacian-energy-like
invariant has a significant physical and chemical background
[24, 25], it has received wide attention to research it from
many mathematical and chemical workers.

All the graphs discussed in this paper are simple, finite,
and undirected. For a graph 𝐺, the vertex set and edge set
of 𝐺 will be denoted by 𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
} and 𝐸(𝐺) =

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}, respectively [26]. The adjacency matrix and

the diagonal matrix of 𝐺 are, respectively, 𝐴(𝐺) and 𝐷(𝐺);
then the matrix 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) is called the Laplacian
matrix of the graph𝐺 [27, 28].The characteristic polynomials
and Laplacian polynomials of the graph 𝐺 are 𝜒

𝐺
(𝜆) =

det(𝜆𝐼 − 𝐴(𝐺)) and 𝜇
𝐺
(𝜆) = det(𝜆𝐼 − 𝐿(𝐺)) [29]. Both 𝐴(𝐺)

and 𝐿(𝐺) are symmetric matrices; their eigenvalues are real
numbers [30, 31]. Thus, we can order the eigenvalues of the
graph 𝐺 as 𝜆

1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
, and the Laplacian eigenvalues

are 𝜇
1
≥ 𝜇
2
≥ ⋅ ⋅ ⋅ ≥ 𝜇

𝑛
[32, 33]. If𝐺 is a connected graph, then

𝜇
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛−1, 𝜇

𝑛
= 0 [34–36]. Next, we will recall

some basic concepts.
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Definition 1 (see [1]). The energy of a graph 𝐺 is the sum of
the absolute values of all the eigenvalues of 𝐺; that is,

𝐸 (𝐺) =

𝑛

∑

𝑖=1

𝜆𝑖
 . (1)

Definition 2 (see [2]). Let 𝐺 be a graph of order 𝑛. The
Laplacian-energy-like invariant of 𝐺, denoted by LEL(𝐺), is
defined as

LEL (𝐺) =

𝑛

∑

𝑖=1

√𝜇
𝑖
. (2)

Definition 3 (see [35]). For two matrices 𝐴 = (𝑎
𝑖,𝑗
)
𝑚×𝑛

, 𝐵 =

(𝑏
𝑖,𝑗
)
𝑠×𝑡
, the tensor product of 𝐴 and 𝐵, denoted by 𝐴 ⊗ 𝐵, is

defined as

(

𝑎
11
𝐵 𝑎
12
𝐵 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐵

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑚1

𝐵 𝑎
𝑚2

𝐵 ⋅ ⋅ ⋅ 𝑎
𝑚𝑛

𝐵

). (3)

Theorem 4 (see [35]). Let {𝐺
𝑛
} be a sequence of finite simple

graphs with bounded average degree such that

lim
𝑛→∞

𝑉 (𝐺
𝑛
)
 = ∞,

lim
𝑛→∞

𝐿𝐸𝐿 (𝐺
𝑛
)

𝑉 (𝐺
𝑛
)


= ℎ ̸= 0.

(4)

Let {𝐻
𝑛
} be a sequence of spanning subgraphs of {𝐺

𝑛
} such

that

lim
𝑛→∞


{V ∈ 𝑉 (𝐻

𝑛
) : 𝑑
𝐻
𝑛
(V) = 𝑑

𝐺
𝑛
(V)}


𝑉 (𝐺
𝑛
)


= 1; (5)

then

lim
𝑛→∞

𝐿𝐸𝐿 (𝐻
𝑛
)

𝑉 (𝐺
𝑛
)


= ℎ. (6)

That is, 𝐺
𝑛
and 𝐻

𝑛
have the same asymptotic Laplacian-

energy-like invariant.

In what follows, we will explore the Laplacian-energy-
like invariants formulas of the modified hexagonal lattice,
modified Union Jack lattice, and honeycomb lattice.

2. Main Results

2.1. The Laplacian-Energy-Like Invariant of the Modified
Hexagonal Lattice. The modified hexagon lattice with tor-
oidal boundary condition is denoted by MH𝑡(𝑛

1
, 𝑛
2
).

Theorem 5. Let 𝛼
𝑖
= 2𝜋𝑖/𝑛

1
, 𝛽
𝑗
= 2𝜋𝑗/𝑛

2
. Then

(1) 𝐿𝐸𝐿 (𝑀𝐻
𝑡

(𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√6 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 2 cos (𝛼

𝑖
− 𝛽
𝑗
),

(2) lim
𝑛
1
→∞

lim
𝑛
2
→∞

𝐿𝐸𝐿 (𝑀𝐻
𝑡

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

=
1

4𝜋2

⋅ ∬

2𝜋

0

√6 − 2 cos𝑥 − 2 cos𝑦 − 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

≈ 2.3705.

(7)

Proof. With the proper labelling of the vertices of the modi-
fied hexagonal lattice, its Laplacian matrix is

𝐿 (MH𝑡 (𝑛
1
, 𝑛
2
))

=

(
(
(
(
(
(
(
(
(

(

𝐶 −𝑃 0 ⋅ ⋅ ⋅ 0 0 −𝑃
𝑇

−𝑃
𝑇

𝐶 −𝑃 ⋅ ⋅ ⋅ 0 0 0

0 −𝑃
𝑇

𝐶 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 𝐶 −𝑃 0

0 0 0 ⋅ ⋅ ⋅ −𝑃
𝑇

𝐶 −𝑃

−𝑃 0 0 ⋅ ⋅ ⋅ 0 −𝑃
𝑇

𝐶

)
)
)
)
)
)
)
)
)

)𝑛
2
×𝑛
2

,

𝐶 =

(
(
(
(
(
(
(
(

(

6 −1 0 ⋅ ⋅ ⋅ 0 0 −1

−1 6 −1 ⋅ ⋅ ⋅ 0 0 0

0 −1 6 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 6 −1 0

0 0 0 ⋅ ⋅ ⋅ −1 6 −1

−1 0 0 ⋅ ⋅ ⋅ 0 −1 6

)
)
)
)
)
)
)
)

)𝑛
1
×𝑛
1

,

𝑃 =

(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0 1

1 1 0 ⋅ ⋅ ⋅ 0 0 0

0 1 1 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1 0 0

0 0 0 ⋅ ⋅ ⋅ 1 1 0

0 0 0 ⋅ ⋅ ⋅ 0 1 1

)
)
)
)
)
)
)
)

)𝑛
1
×𝑛
1

,

(8)

where 𝐼
𝑛
1

, 𝐼
𝑛
2

are the unit matrices and 𝑀 ⊗ 𝑁 is tensor
product of matrices𝑀 and𝑁. Consider

𝐵
𝑛
2

=
(
(

(

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 0 1

1 0 0 ⋅ ⋅ ⋅ 0 0

)
)

)𝑛
2
×𝑛
2

. (9)
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The matrix 𝐿(MH𝑡(𝑛
1
, 𝑛
2
)) can be defined as follows:

𝐿 (MH𝑡 (𝑛
1
, 𝑛
2
)) = 𝐼

𝑛
2

⊗ 𝐶
𝑛
1

− 𝐵
𝑛
2

⊗ 𝑃
𝑛
1

− 𝐵
𝑇

𝑛
2

⊗ 𝑃
𝑇

𝑛
1

= 𝐼
𝑛
2

⊗ (6𝐼
𝑛
1

− 𝐵
𝑛
1

− 𝐵
𝑇

𝑛
1

) − 𝐵
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

) − 𝐵
𝑇

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑛
1

) .

(10)

Let {1 = 𝑔
0

, 𝑔
1

, . . . , 𝑔
𝑛−1

} be a cyclic group of order 𝑛.
Obviously, 𝜌 : 𝑔

𝑖

→ 𝐵
𝑖

𝑛
can express the group. The cyclic

group of order 𝑛 has linear values of 𝑛 𝜒
𝑖
(𝑖 = 0, 1, . . . , 𝑛 −

1), 𝜒
𝑖
(𝑔) = 𝜔

𝑖

𝑛
, where 𝜔

𝑛
are said 𝑛-times unit roots.

Therefore, there is a reversible matrix

𝑄
𝑛
= (

𝜔
𝑖𝑗

𝑛

√𝑛
)

0≤𝑖,𝑗≤𝑛−1

, (11)

such that

𝑄
−1

𝑛
𝐵
𝑛
𝑄
𝑛
= diag (1, 𝜔

𝑛
, . . . , 𝜔

𝑛−1

𝑛
) =: 𝐷

𝑛
. (12)

In fact,

𝐵
𝑇

𝑛
= 𝐵
−1

𝑛
,

𝑄
𝑇

𝑛
= 𝑄
−1

𝑛
;

(13)

hence

𝑄
−1

𝑛
𝐵
𝑇

𝑛
𝑄
𝑛
= diag (1, 𝜔−1, . . . , 𝜔−(𝑛−1)

𝑛
) =: 𝐷

−1

𝑛
. (14)

So

(𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

) 𝐿 (MH𝑡 (𝑛
1
, 𝑛
2
)) (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

) = (𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

) [𝐼
𝑛
2

⊗ (6𝐼
𝑛
1

− 𝐵
𝑛
1

− 𝐵
𝑇

𝑛
1

) − 𝐵
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

) − 𝐵
𝑇

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑛
1

)] (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

)

= 𝐼
𝑛
2

⊗ (6𝐼
𝑛
1

− 𝐷
𝑛
1

− 𝐷
−1

𝑛
1

) − 𝐷
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
−1

𝑛
1

)

− 𝐷
−1

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
𝑛
1

) .

(15)

It is not difficult to find that 𝐼
𝑛
2

⊗ (6𝐼
𝑛
1

− 𝐷
𝑛
1

− 𝐷
−1

𝑛
1

) −

𝐷
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
−1

𝑛
1

) − 𝐷
−1

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
𝑛
1

) is a diagonal matrix
whose diagonal elements are

6 − 𝜔
𝑖

𝑛
1

− 𝜔
−𝑖

𝑛
1

− 𝜔
𝑗

𝑛
2

− 𝜔
−𝑗

𝑛
2

− (𝜔
𝑖

𝑛
1

𝜔
−𝑗

𝑛
2

+ 𝜔
−𝑖

𝑛
1

𝜔
𝑗

𝑛
2

)

= 6 − 2 cos 2𝑖𝜋
𝑛
1

− 2 cos
2𝑗𝜋

𝑛
2

− 2(cos 2𝑖𝜋
𝑛
1

− cos
2𝑗𝜋

𝑛
2

) ,

(16)

where 0 ≤ 𝑖 ≤ 𝑛
1
− 1 and 0 ≤ 𝑗 ≤ 𝑛

2
− 1.

This means that the eigenvalues of the matrix 𝐿 are 𝜇 =

6 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 2 cos(𝛼

𝑖
− 𝛽
𝑗
), 0 ≤ 𝑖 ≤ 𝑛

1
− 1, and 0 ≤

𝑗 ≤ 𝑛
2
− 1, where 𝛼

𝑖
= 2𝜋𝑖/𝑛

1
and 𝛽

𝑗
= 2𝜋𝑗/𝑛

2
.

By formula (2), the Laplacian-energy-like invariant is

LEL (MH𝑡 (𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√6 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 2 cos (𝛼

𝑖
− 𝛽
𝑗
).

(17)

So

lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (MH𝑡 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

1

𝑛
1
𝑛
2

⋅

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√6 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 2 cos (𝛼

𝑖
− 𝛽
𝑗
)

= ∬

1

0

√6 − 2 cos 2𝜋𝑥 − 2 cos 2𝜋𝑦 − 2 cos 2𝜋 (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

=
1

4𝜋2
∬

2𝜋

0

√6 − 2 cos𝑥 − 2 cos𝑦 − 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

≈ 2.3705.

(18)

Remark 6. The numerical integration value in last line is
calculated with the software MATLAB [37]. As such compu-
tations would be possible on a computer with high memory
and processing speed, we used Mac Pro with processor 2 ×

2.93GHz 6-core Intel Xeon (24 hyperthreads in total) and
memory 24GB 1333MHz DDR3 to obtain the results.

By Theorems 4 and 5, we can immediately arrive at the
following theorem.

Theorem 7. For the modified hexagonal lattices𝑀𝐻
𝑡

(𝑛
1
, 𝑛
2
),

𝑀𝐻
𝑐

(𝑛
1
, 𝑛
2
), and𝑀𝐻

𝑓

(𝑛
1
, 𝑛
2
) with toroidal, cylindrical, and

free boundary conditions, then,

(1) lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑀𝐻
𝑡

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (MH𝑐 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (MH𝑓 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

≈ 2.3705,

(2) LEL (MH𝑡 (𝑛
1
, 𝑛
2
)) = LEL (MH𝑐 (𝑛

1
, 𝑛
2
))

= LEL (MH𝑓 (𝑛
1
, 𝑛
2
)) ≈ 2.3705𝑛

1
𝑛
2
.

(19)

2.2. The Laplacian-Energy-Like Invariant of the Modified
Union Jack Lattice. The modified Union Jack lattice with
toroidal boundary condition is denoted by 𝑆

𝑡

(𝑛
1
, 𝑛
2
).

Theorem 8. Let 𝛼
𝑖
= 2𝜋𝑖/𝑛

1
; 𝛽
𝑗
= 2𝜋𝑗/𝑛

2
. Then

(1) LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√8 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 4 cos𝛼

𝑖
cos𝛽
𝑗
,
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(2) lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

=
1

4𝜋2

⋅ ∬

2𝜋

0

√8 − 2 cos𝑥 − 2 cos𝑦 − 4 cos𝑥 cos𝑦𝑑𝑥𝑑𝑦

≈ 2.7586.

(20)

Proof. With a proper labelling of the vertices of the modified
Union Jack lattice, its Laplacian matrix can be represented as

𝐿 (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

=

(
(
(
(
(
(
(
(
(

(

𝐺 −𝑈 0 ⋅ ⋅ ⋅ 0 0 −𝑈
𝑇

−𝑈
𝑇

𝐺 −𝑈 ⋅ ⋅ ⋅ 0 0 0

0 −𝑈
𝑇

𝐺 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 𝐺 −𝑈 0

0 0 0 ⋅ ⋅ ⋅ −𝑈
𝑇

𝐺 −𝑈

−𝑈 0 0 ⋅ ⋅ ⋅ 0 −𝑈
𝑇

𝐺

)
)
)
)
)
)
)
)
)

)𝑛
2
×𝑛
2

,

𝐺 =

(
(
(
(
(
(
(
(

(

8 −1 0 ⋅ ⋅ ⋅ 0 0 −1

−1 8 −1 ⋅ ⋅ ⋅ 0 0 0

0 −1 8 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 8 −1 0

0 0 0 ⋅ ⋅ ⋅ −1 8 −1

−1 0 0 ⋅ ⋅ ⋅ 0 −1 8

)
)
)
)
)
)
)
)

)𝑛
1
×𝑛
1

,

𝑈 =

(
(
(
(
(
(
(
(

(

1 1 0 ⋅ ⋅ ⋅ 0 0 1

1 1 1 ⋅ ⋅ ⋅ 0 0 0

0 1 1 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1 1 0

0 0 0 ⋅ ⋅ ⋅ 1 1 1

1 0 0 ⋅ ⋅ ⋅ 0 1 1

)
)
)
)
)
)
)
)

)𝑛
1
×𝑛
1

.

(21)

Based onTheorem 5, we get

𝐿 (𝑆
𝑡

(𝑛
1
, 𝑛
2
)) = 𝐼

𝑛
2

⊗ 𝐺
𝑛
1

− 𝐵
𝑛
2

⊗ 𝑈
𝑛
1

− 𝐵
𝑇

𝑛
2

⊗ 𝑈
𝑇

𝑛
1

= 𝐼
𝑛
2

⊗ (8𝐼
𝑛
1

− 𝐵
𝑛
1

− 𝐵
𝑇

𝑛
1

) − 𝐵
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑛
1

+ 𝐵
𝑇

𝑛
1

) − 𝐵
𝑇

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

+ 𝐵
𝑛
1

) .

(22)

Let

𝑄
𝑛
= (

𝜔
𝑖𝑗

𝑛

√𝑛
)

0≤𝑖,𝑗≤𝑛−1

, (23)

such that
𝑄
−1

𝑛
𝐵
𝑛
𝑄
𝑛
= diag (1, 𝜔

𝑛
, . . . , 𝜔

𝑛−1

𝑛
) =: 𝐷

𝑛
. (24)

Actually,

𝐵
𝑇

𝑛
= 𝐵
−1

𝑛
,

𝑄
𝑇

𝑛
= 𝑄
−1

𝑛
;

(25)

consequently,

𝑄
−1

𝑛
𝐵
𝑇

𝑛
𝑄
𝑛
= diag (1, 𝜔−1, . . . , 𝜔−(𝑛−1)

𝑛
) =: 𝐷

−1

𝑛
. (26)

So
(𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

) 𝐿 (𝑆
𝑡

(𝑛
1
, 𝑛
2
)) (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

) = (𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

) [𝐼
𝑛
2

⊗ (8𝐼
𝑛
1

− 𝐵
𝑛
1

− 𝐵
𝑇

𝑛
1

) − 𝐵
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑛
1

+ 𝐵
𝑇

𝑛
1

) − 𝐵
𝑇

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

+ 𝐵
𝑛
1

)] (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

) = 𝐼
𝑛
2

⊗ (8𝐼
𝑛
1

− 𝐷
𝑛
1

− 𝐷
−1

𝑛
1

) − 𝐷
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
𝑛
1

+ 𝐷
−1

𝑛
1

) − 𝐷
−1

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
−1

𝑛
1

+ 𝐷
𝑛
1

) .

(27)

It is not difficult to find that
𝐼
𝑛
2

⊗ (8𝐼
𝑛
1

− 𝐷
𝑛
1

− 𝐷
−1

𝑛
1

) − 𝐷
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
𝑛
1

+ 𝐷
−1

𝑛
1

)

− 𝐷
−1

𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
−1

𝑛
1

+ 𝐷
𝑛
1

)

(28)

is a diagonal matrix whose diagonal elements are

8 − 𝜔
𝑖

𝑛
1

− 𝜔
−𝑖

𝑛
1

− 𝜔
𝑗

𝑛
2

− 𝜔
−𝑗

𝑛
2

− (𝜔
𝑖

𝑛
1

𝜔
𝑗

𝑛
2

+ 𝜔
𝑖

𝑛
1

𝜔
−𝑗

𝑛
2

+ 𝜔
−𝑖

𝑛
1

𝜔
−𝑗

𝑛
2

+ 𝜔
−𝑖

𝑛
1

𝜔
𝑗

𝑛
2

)

= 8 − 2 cos 2𝑖𝜋
𝑛
1

− 2 cos
2𝑗𝜋

𝑛
2

− 4 cos 2𝑖𝜋
𝑛
1

cos
2𝑗𝜋

𝑛
2

,

(29)

where 0 ≤ 𝑖 ≤ 𝑛
1
− 1 and 0 ≤ 𝑗 ≤ 𝑛

2
− 1.

This means that the eigenvalues of the matrix 𝐿 are 𝜇 =

8 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 4 cos𝛼

𝑖
𝛽
𝑗
, 0 ≤ 𝑖 ≤ 𝑛

1
− 1, and 0 ≤ 𝑗 ≤

𝑛
2
− 1, where 𝛼

𝑖
= 2𝜋𝑖/𝑛

1
and 𝛽

𝑗
= 2𝜋𝑗/𝑛

2
.

By formula (2), the Laplacian-energy-like invariant is

LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√8 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 4 cos𝛼

𝑖
cos𝛽
𝑗
.

(30)

So

lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

1

𝑛
1
𝑛
2

⋅

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√8 − 2 cos𝛼
𝑖
− 2 cos𝛽

𝑗
− 4 cos𝛼

𝑖
cos𝛽
𝑗

= ∬

1

0

√8 − 2 cos 2𝜋𝑥 − 2 cos 2𝜋𝑦 − 4 cos 2𝜋𝑥 cos 2𝜋𝑦 𝑑𝑥 𝑑𝑦

=
1

4𝜋2
∬

2𝜋

0

√8 − 2 cos𝑥 − 2 cos𝑦 − 4 cos𝑥 cos𝑦𝑑𝑥𝑑𝑦

≈ 2.7586.

(31)
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By Theorems 4 and 8, it is not difficult to arrive at the
following theorem.

Theorem 9. For the modified Union Jack lattices 𝑆
𝑡

(𝑛
1
, 𝑛
2
),

𝑆
𝑐

(𝑛
1
, 𝑛
2
), and 𝑆

𝑓

(𝑛
1
, 𝑛
2
) with toroidal, cylindrical, and free

boundary conditions, then,

(1) lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑆
𝑐

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (𝑆
𝑓

(𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

≈ 2.7586,

(2) LEL (𝑆
𝑡

(𝑛
1
, 𝑛
2
)) = LEL (𝑆

𝑐

(𝑛
1
, 𝑛
2
))

= LEL (𝑆
𝑓

(𝑛
1
, 𝑛
2
)) ≈ 2.7586𝑛

1
𝑛
2
.

(32)

2.3. The Laplacian-Energy-Like Invariant of the Honeycomb
Lattice. The honeycomb lattice with toroidal boundary con-
dition, denoted byHC𝑡(𝑛

1
, 𝑛
2
), can be constructed by starting

with an𝑚×𝑛 square lattice and adding two diagonal edges to
each square.

Theorem 10. Let 𝛼
𝑖
= 2𝜋𝑖/𝑛

1
and 𝛽

𝑗
= 2𝜋𝑗/𝑛

2
. Then

(1) LEL (HC𝑡 (𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 + √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
)

+

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 − √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
),

(2) lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (HC𝑡 (𝑛
1
, 𝑛
2
))

2𝑛
1
𝑛
2

=
1

8𝜋2

⋅ ∬

2𝜋

0

√3 + √3 + 2 cos𝑥 + 2 cos𝑦 + 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

+
1

8𝜋2

⋅ ∬

2𝜋

0

√3 − √3 + 2 cos𝑥 + 2 cos𝑦 + 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

≈ 1.6357.

(33)

Proof. Similarly, the Laplacian matrix of the honeycomb
lattice is 𝐿(HC𝑡(𝑛

1
, 𝑛
2
)) = (

3𝐼
𝑀
−𝐹

−𝐹
𝑇

3𝐼
𝑀

), where 𝑀 = 𝑛
1
𝑛
2
and

𝐹 is an 𝑀 × 𝑀 matrix. The matrix 𝐹 can be written in the
following form:

𝐹 =

(
(
(
(
(
(
(
(

(

𝑊 0 0 ⋅ ⋅ ⋅ 0 𝐼 𝐼

𝐼 𝑊 0 ⋅ ⋅ ⋅ 0 0 0

0 𝐼 𝑊 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 𝑊 0 0

0 0 0 ⋅ ⋅ ⋅ 𝐼 𝑊 0

0 0 0 ⋅ ⋅ ⋅ 0 𝐼 𝑊

)
)
)
)
)
)
)
)

)𝑛
2
×𝑛
2

,

𝑊 =

(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0 1

1 1 0 ⋅ ⋅ ⋅ 0 0 0

0 1 1 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1 0 0

0 0 0 ⋅ ⋅ ⋅ 1 1 0

1 0 0 ⋅ ⋅ ⋅ 0 1 1

)
)
)
)
)
)
)
)

)𝑛
1
×𝑛
1

,

(34)

where 𝐼 represents the unitmatrix of 𝑛
1
×𝑛
1
and 𝐼
𝑀
represents

the unit matrix of𝑀 × 𝑀, respectively.
Based onTheorem 5, the matrix 𝐹 can be written as

𝐹 = 𝐼
𝑛
2

⊗ 𝑊
𝑛
1

+ 𝐵
𝑇

𝑛
2

⊗ 𝐼
𝑛
1

= 𝐼
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

) + 𝐵
𝑇

𝑛
2

⊗ 𝐼
𝑛
1

.

(35)

Let

𝑄
𝑛
= (

𝜔
𝑖𝑗

𝑛

√𝑛
)

0≤𝑖,𝑗≤𝑛−1

, (36)

such that

𝑄
−1

𝑛
𝐵
𝑛
𝑄
𝑛
= diag (1, 𝜔

𝑛
, . . . , 𝜔

𝑛−1

𝑛
) =: 𝐷

𝑛
. (37)

Similarly,

𝐵
𝑇

𝑛
= 𝐵
−1

𝑛
,

𝑄
𝑇

𝑛
= 𝑄
−1

𝑛
;

(38)

hence,

𝑄
−1

𝑛
𝐵
𝑇

𝑛
𝑄
𝑛
= diag (1, 𝜔−1, . . . , 𝜔−(𝑛−1)

𝑛
) =: 𝐷

−1

𝑛
. (39)

So

(𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

) 𝐹 (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

) = (𝑄
−1

𝑛
2

⊗ 𝑄
−1

𝑛
1

)

⋅ [𝐼
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐵
𝑇

𝑛
1

) + 𝐵
𝑇

𝑛
2

⊗ 𝐼
𝑛
1

] (𝑄
𝑛
2

⊗ 𝑄
𝑛
1

) = 𝐼
𝑛
2

⊗ (𝐼
𝑛
1

+ 𝐷
−1

𝑛
1

) + 𝐷
−1

𝑛
2

⊗ 𝐼
𝑛
1

.

(40)

It is not difficult to find that 𝐼
𝑛
2

⊗(𝐼
𝑛
1

+𝐷
−1

𝑛
1

)+𝐷
−1

𝑛
2

⊗𝐼
𝑛
1

is a
diagonal matrix whose diagonal elements are 1+𝜔

−𝑖

𝑛
1

+𝜔
−𝑗

𝑛
2

, so
matrix 𝐿(HC𝑡(𝑛

1
, 𝑛
2
)) can be reduced to the following form:

𝐿 (HC𝑡 (𝑛
1
, 𝑛
2
))

= (

3 −1 − 𝜔
−𝑖

𝑛
1

− 𝜔
−𝑗

𝑛
2

−1 − 𝜔
−𝑖

𝑛
1

− 𝜔
−𝑗

𝑛
2

3
) .

(41)
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By det(𝜇𝐼 − 𝐿(HC𝑡(𝑛
1
, 𝑛
2
))) = 0, we can get

(𝜇 − 3)
2

= (−1 − 𝜔
−𝑖

𝑛
1

− 𝜔
−𝑗

𝑛
2

) (−1 − 𝜔
−𝑖

𝑛
1

− 𝜔
−𝑗

𝑛
2

)

= 3 + 𝜔
𝑖

𝑛
1

+ 𝜔
−𝑖

𝑛
1

+ 𝜔
𝑗

𝑛
2

+ 𝜔
−𝑗

𝑛
2

+ 𝜔
−𝑖

𝑛
1

𝜔
𝑗

𝑛
2

+ 𝜔
𝑖

𝑛
1

𝜔
−𝑗

𝑛
2

= 3 + 2 cos 2𝜋𝑖
𝑛
1

+ 2 cos
2𝜋𝑗

𝑛
2

+ 2 cos(cos 2𝜋𝑖
𝑛
1

− cos
2𝜋𝑗

𝑛
2

) .

(42)

Therefore, the 𝐿(HC𝑡(𝑛
1
, 𝑛
2
)) characteristic eigenvalues

are

𝜇 = 3

± √3 + 2 cos 2𝜋𝑖
𝑛
1

+ 2 cos
2𝜋𝑗

𝑛
2

+ 2 cos(2𝜋𝑖

𝑛
1

−
2𝜋𝑗

𝑛
2

),

(43)

where 0 ≤ 𝑖 ≤ 𝑛
1
− 1 and 0 ≤ 𝑗 ≤ 𝑛

2
− 1.

Let 𝛼
𝑖
= 2𝜋𝑖/𝑛

1
and 𝛽

𝑗
= 2𝜋𝑗/𝑛

2
. By formula (2), we may

obtain the Laplacian-energy-like invariant:

LEL (HC𝑡 (𝑛
1
, 𝑛
2
))

=

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 + √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
)

+

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 − √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
).

(44)

By the definition of double integration, we arrive at

lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (HC𝑡 (𝑛
1
, 𝑛
2
))

2𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

1

2𝑛
1
𝑛
2

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 + √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
)

+ lim
𝑛
1
→∞

lim
𝑛
2
→∞

1

2𝑛
1
𝑛
2

𝑛
1
−1

∑

𝑖=0

𝑛
2
−1

∑

𝑗=0

√3 − √3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
− 𝛽
𝑗
)

=
1

2
∬

1

0

√3 + √3 + 2 cos 2𝜋𝑥 + 2 cos 2𝜋𝑦 + 2 cos 2𝜋 (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

+
1

2
∬

1

0

√3 − √3 + 2 cos 2𝜋𝑥 + 2 cos 2𝜋𝑦 + 2 cos 2𝜋 (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

=
1

8𝜋2
∬

2𝜋

0

√3 + √3 + 2 cos𝑥 + 2 cos𝑦 + 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦

+
1

8𝜋2
∬

2𝜋

0

√3 − √3 + 2 cos𝑥 + 2 cos𝑦 + 2 cos (𝑥 − 𝑦)𝑑𝑥 𝑑𝑦 ≈ 1.6357.

(45)

ByTheorems 4 and 10, we can easily obtain the following
theorem.

Theorem 11. For the honeycomb lattices HC𝑡(𝑛
1
, 𝑛
2
),

HC𝑐(𝑛
1
, 𝑛
2
), and HC𝑓(𝑛

1
, 𝑛
2
) with toroidal, cylindrical, and

free boundary conditions, then,

(1) lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (HC𝑡 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (HC𝑐 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

= lim
𝑛
1
→∞

lim
𝑛
2
→∞

LEL (HC𝑓 (𝑛
1
, 𝑛
2
))

𝑛
1
𝑛
2

≈ 1.6357;

(2) LEL (HC𝑡 (𝑛
1
, 𝑛
2
)) = LEL (HC𝑐 (𝑛

1
, 𝑛
2
))

= LEL (HC𝑓 (𝑛
1
, 𝑛
2
)) ≈ 1.6357𝑛

1
𝑛
2
.

(46)

3. Conclusions

In this paper, we mainly studied the Laplacian-energy-
like invariants of the modified hexagonal lattice, modified
Jack lattice, and honeycomb lattice. The Laplacian-energy-
like invariants formulas of these lattices are obtained. The
proposed results imply that the asymptotic Laplacian-energy-
like invariants of those lattices are independent of the three
boundary conditions.

The problems on the various topological indices of lat-
tices have much important significance in the mathematical
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theory, chemical energy, statistical physics, and networks
science. This paper investigated the Laplacian-energy-like
invariants of some lattices. However, the other topological
indices of the general lattices remain to be studied.
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