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Multilevel thresholding is a highly useful tool for the application of image segmentation. Otsu’s method, a common exhaustive
search for finding optimal thresholds, involves a high computational cost.There has been a lot of recent research into various meta-
heuristic searches in the area of optimization research. This paper analyses and discusses using a family of artificial bee colony
algorithms, namely, the standard ABC, ABC/best/1, ABC/best/2, IABC/best/1, IABC/rand/1, and CABC, and some particle swarm
optimization-based algorithms for searching multilevel thresholding. The strategy for an onlooker bee to select an employee bee
was modified to serve our purposes. The metric measures, which are used to compare the algorithms, are the maximum number
of function calls, successful rate, and successful performance. The ranking was performed by Friedman ranks. The experimental
results showed that IABC/best/1 outperformed the other techniques when all of themwere applied tomultilevel image thresholding.
Furthermore, the experiments confirmed that IABC/best/1 is a simple, general, and high performance algorithm.

1. Introduction

Image thresholding is a fundamental problem when trying
to extract knowledge from an image. It has been effectively
applied to many types of images. The homogeneous image
regions are grouped together and separated from the rest.
Thresholding can be bilevel or multilevel thresholding, and
both of these types can be classified into parametric or non-
parametric approaches.This problem area has been receiving
attention from various research groups, and hundreds of
algorithms have been proposed based on that research.There
are five publications in various journals that have reviewed
image thresholding [1–5] fromwhich a comprehensive review
can be accessed. The literature review revealed that Otsu’s
method [6] is a commonly used technique. It is a non-
parametric approach and can solve both bilevel and mul-
tilevel thresholding. This method, which finds the optimal
thresholds bymaximizing the weighted sum of between-class
variance of the classes, is called Otsu’s function [6]. However,
its computation is very time consuming; the complexity of the
method grows exponentially with the number of thresholds.

The research carried out by Hammouche et al. has influ-
enced the work carried out in this paper [7]. Their research

focused on solving the image thresholding problem by
merging Otsu’s function with six metaheuristic techniques.
The results of [7] concluded that the differential evolution
(DE) [8] was the most efficient with respect to the quality of
solution and because the particle swarm optimization (PSO)
[9] converged more quickly. In this paper, a new family of
metaheuristic techniques is usedwithOtsu’s function to solve
the image thresholding problem. The aim of this paper is to
find a single metaheuristic technique that has the same char-
acteristics of both DE and PSO. Some researchers proposed
the same criterion as [7]. Kulkarni andVenayagamoorthy [10]
formulated the sensor node localization to solve the image
segmentation problem using PSO and the bacteria foraging
algorithm (BF) [11]. Both of these algorithms are faster
than Otsu’s method for searching the optimal thresholds of
multilevel image thresholding. In 2012, Ghamisi et al. [12]
proposed methods for image segmentation based on two
search techniques, namely, Darwinian particle swarm opti-
mization (DPSO) [13] and the fractional-order Darwinian
particle Swarm optimization (FODPSO) [14]. The results
of FODPSO regarding the fitness value, standard deviation
(STD), and CPU process time were better than those of its
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competitors, namely, DPSO, PSO, genetic algorithm (GA),
and BF, especially when the segmentation level increased.

Artificial bee colony (ABC) is gaining popularity among
the metaheuristic techniques because of its simplicity, gen-
erality, and remarkable performance [15–22]. It was also
successfully applied to image thresholding [23, 24]. The evo-
lution of ABC has seen continued improvements, and it has
shown good performance levels in optimization problems.
Balancing exploration and exploitation during a search is
a successful criterion. In that regard, a family of the five
modified search equations were chosen to generate the can-
didate solutions. The five equations were inspired by DE and
GA.Those equations were embedded in the improved ABCs,
that is, “ABC/best/1” and “ABC/rand/1” proposed in [25],
“ABC/best/1” and “ABC/best/2” proposed in [26], and CABC
proposed in [27]. Due to the fact that the equation used in
ABC/best/1 in [25] is different from the equations used in
ABC/best/1 in [26], this paper has renamed the algorithms
in [25] to “IABC/best/1” and “IABC/rand/1,” respectively.
The improved ABCs showed outstanding performance in
finding solutions to the benchmarking problems. However,
their ability to search the optimal image thresholding is not
known. To the best of the authors’ knowledge, there is no
paper published that reports this problem. The no free lunch
theorem (NFLT) [28] is a major consideration in the area
of optimization research. The theorem states that because
the prior assumptions of the optimization problem are not
known, no optimization algorithm can outperform any other
algorithm. A general-purpose universal optimization algo-
rithm has been proven to be theoretically impossible. One
algorithm can outperform another if the specific problem
is considered under reasonable restrictions. In this research,
not only the five modified ABCs but also the standard ABC
and other metaheuristic searches, that is, PSO, DPSO, and
FODPSO, were implemented in the multilevel thresholding
to compare their capabilities.

The remainder of the paper is organized as follows. In
Section 2, the multilevel thresholding problem is formulated.
Section 3 deals with the overview of ABC algorithm. Details
of the various versions of the ABC algorithm are presented in
Section 4. Performance evaluation and experimental results
are presented in Section 5. The conclusions are given in
Section 6.

2. Multilevel Thresholding
Problem Formulation

Searching the optimal thresholding is a method to minimize
or maximize the objective function of the separating classes.
Otsu’s method [6] is based on the maximization of the
between-class variance. Given the image having size𝐻 ×𝑊,
where 𝑊 is the width and 𝐻 is the height, the pixels of a
given picture are represented in 𝐿 gray levels, and these levels
are in the range {0, 1, 2, . . . , 𝐿 − 1}. The number of pixels at
level 𝑖 is denoted by 𝑛

𝑖
and the total number of pixels by

𝑁 = 𝑛
1
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2
+ ⋅ ⋅ ⋅+𝑛

𝐿
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and regarded as a probability distribution:
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where (𝑥, 𝑦) is the coordinate of a pixel, 𝑓(𝑥, 𝑦) denotes the
intensity level of a pixel. The pixels of a given image will be
divided into 𝑛 classes 𝐷

1
, . . . , 𝐷

𝑛
in this regard. If 𝑛 is two,

then 𝐹(𝑥, 𝑦) is called bilevel thresholding.
The optimal threshold is the one that maximizes the

between-class variance, 𝜎2
𝐵
, which can be defined by Otsu’s

function:
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where 𝑗 represents a specific class in such a way that 𝑤
𝑗
and

𝜇
𝑗
are the probability of occurrence and the mean of class

𝑗, respectively. The probabilities of occurrence 𝑤
𝑗
of classes

𝐷
1
, . . . , 𝐷

𝑛
are defined by

𝑤
𝑗
=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑡𝑗

∑

𝑖=1

𝑝
𝑖
, 𝑗 = 1,

𝑡𝑗

∑

𝑖=𝑡𝑗−1+1

𝑝
𝑖
, 1 < 𝑗 < 𝑛,

𝐿

∑

𝑖=𝑡𝑗−1+1

𝑝
𝑖
, 𝑗 = 𝑛.

(5)
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Thus, the 𝑛-level thresholding problem is transformed to an
optimization problem. The process is to search for 𝑛 − 1
thresholds 𝑡

𝑗
that maximize the value 𝜑, which is generally

defined as
𝜑 = max
1<𝑡1<⋅⋅⋅<𝑡𝑛−1<𝐿

𝜎
2

𝐵
(𝑡
𝑗
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The computational complexity of (7) can be as large as
𝑂(𝐿
𝑛−1
) [7]. This is an NP-hard problem, which means that

the exhaustive search will take a very long time if 𝑛 is large.
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3. Standard Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was inspired by
the foraging behaviors of bee colonies. This algorithm was
first proposed by Karaboga [29], and it is referred to as
the standard ABC. The ABC contains three groups of bees:
employed bees, onlooker bees, and scout bees. The number
of employed bees equals the number of onlooker bees. The
employed bees search for the food around the food sources
from their knowledge.Then, they pass their food information
to the onlooker bees. Each onlooker bee tends to select good
food sources founded by the employed bees. It then searches
for more food around the selected food source. The bees that
abandon their food sources will become scout bees, and they
must now search for new food sources. A description of the
algorithm is given below.

3.1. Initialization of the Population. The algorithm generates
a group of food sources corresponding to the solutions in the
search space. The 𝑆𝑁-food sources, represented by 𝑥 = {𝑥

𝑖
|

𝑖 = 1, 2, . . . , 𝑆𝑁}, are produced randomly within the range of
the boundaries of the 𝑛-dimension variables:

𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand (0, 1) (𝑥max,𝑗 − 𝑥min,𝑗) ,

𝑗 = 1, 2, . . . , 𝑛,

(8)

where 𝑥min,𝑗 and 𝑥max,𝑗 are the lower and upper bounds for
the dimension 𝑗, respectively. The fitness of food sources 𝑥

𝑖
,

𝑖 = 1, 2, . . . , 𝑆𝑁 will be evaluated. The counters that store the
number of trials of each bee are set to 0 in this phase.

3.2. Employed Bees Phase. In the employed bees phase, each
employed bee goes to the food source in its knowledge base
and finds a neighboring food source. The neighboring food
source V

𝑖
is defined by (9) as follows:
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where 𝑘 ∈ {1, 2, . . . , 𝑆𝑁} and 𝑗 ∈ {1, 2, . . . , 𝑛} are randomly
chosen indexes: 𝑘 ̸= 𝑗 and 𝜙

𝑖,𝑗
is a uniform random number

in the range [−1, 1].
Fitness value for a minimization problem can be assigned

to the solution V
𝑖
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3.3. Calculating Probability Values Involved in Probabilistic
Selection. After all of the employed bees complete their
searches, the onlookers receive the information of the food
sources from the employed bees. Then, they will each choose

a food source to exploit depending on a probability related
to the nectar amount of the food source (fitness values of
the solution). That is to say, there may be more than one
onlooker bee choosing the same food source if the source has
a higher fitness.The probability is calculated according to (11)
as follows:

𝑝
𝑖
=

fitness
𝑖

∑
𝑆𝑁

𝑗=1
fitness

𝑗

. (11)

The lower the 𝑓
𝑖
, the more probability that the 𝑖 food source

is selected.

3.4. Onlooker Bees Phase. After food sources have been
chosen, each onlooker bee 𝑥

𝑖
finds a new food source V

𝑖
in

its neighbourhood, following (9), just like the employed bees
do. If a new food source has better food than 𝑥

𝑖
, the new

food source will replace 𝑥
𝑖
and become a new member in the

population.

3.5. Scout Bees Phase. A greedy selection mechanism is
employed between the old and candidate solutions of the
employed and the onlooker bees phases. The trials counter
of food will be reset to zero if the food source is improved;
otherwise, its value will be incremented by one. In the scout
bees phase, if the value of the trials counter of a food source
is greater than a parameter, known as the “limit,” the food
source is abandoned and the bee becomes a scout bee. A new
food source will be produced randomly in the search space
using (8), as in the case of the initialization phase. The trials
counter of the bee will be reset to zero.

4. The Various Artificial Bee Colony
Algorithms

To enhance the performance of ABC, some modifications to
the classical ABC algorithm have been made; the details of
these modifications are as follows.

4.1. The Modified Probabilistic Selection Phase for the Max-
imization Problem. The original ABC was designed for
minimization problems. However, multilevel thresholding
is a maximization problem. Thus, some modifications are
required. An onlooker bee will choose a food source in a
different way to (10) and (11). That is, an onlooker bee will
randomly choose a food source with a probability value 𝑝

𝑖
,

which is calculated by the following form:

𝑝
𝑖
= 0.9 × (

𝜎
2

𝐵𝑖

𝜎
2

𝐵best
) + 0.1, (12)

where 𝜎2
𝐵𝑖
is obtained from Otsu’s function of the solution 𝑖,

𝜎
2

𝐵best is the best 𝜎2
𝐵
among the employed bees population.

As per (12), a higher between-class variance 𝜎2
𝐵
computed

by (4) obtains a higher probability. Thus, ABC can solve the
maximization problem. That means that if the probability
is calculated by (12), then the information from the elite
employee bees that have higher between-class variances is
passed to the onlooker bees.
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4.2. Various Search Equations. Search equations are usually
beneficial to the performance of metaheuristic techniques.
The standard ABC is good at exploration but poor at
exploitation [25–27]. The modified search equations were
accordingly proposed to address this problem. A family of
search equations have been suggested to create a new value
of the randomly selected dimension 𝑗 ∈ {1, 2, . . . , 𝑛} of the
candidate food source V

𝑖
. The family of search equations are

as follows.
Gao et al. [26] borrowed the mutation strategies of DE

[8] to modify the solution search equation and proposed two
global best-guided artificial bee colony algorithms; the search
equations are shown as follows:

ABC/best/1: V
𝑖,𝑗
= 𝑥best,𝑗 + 𝜙𝑖,𝑗 (𝑥𝑟1,𝑗 − 𝑥𝑟2,𝑗) , (13)

ABC/best/2: V
𝑖,𝑗
= 𝑥best,𝑗 + 𝜙𝑖,𝑗 (𝑥𝑟1,𝑗 − 𝑥𝑟2,𝑗)

+ 𝜙
𝑖,𝑗
(𝑥
𝑟3,𝑗
− 𝑥
𝑟4,𝑗
) ,

(14)

where the indices 𝑟1, 𝑟2, 𝑟3, and 𝑟4 are mutually exclusive
integers randomly chosen from {1, 2, . . . , 𝑆𝑁} and different
for the base index 𝑖, 𝑥best is the best individual vector with
the best fitness in the current population, and 𝜙

𝑖,𝑗
is a random

number in the range [−1, 1].
Gao and Liu [25] also included the other mutation

strategies of DE [8] to ABC and proposed two strategies for
improved artificial bee colony algorithms (IABC/best and
IABC/rand), the equations for which are shown as follows:

IABC/best/1: V
𝑖,𝑗
= 𝑥best,𝑗 + 𝜙𝑖,𝑗 (𝑥𝑖,𝑗 − 𝑥𝑟1,𝑗) , (15)

IABC/rand/1: V
𝑖,𝑗
= 𝑥
𝑟1,𝑗
+ 𝜙
𝑖,𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑟2,𝑗
) , (16)

where the indices 𝑟1 and 𝑟2 are distinct integers uniformly
chosen from the range {1, 2, . . . , 𝑆𝑁}, 𝑟1 ̸= 𝑖, 𝑟2 ̸= 𝑖, 𝑥best is the
best individual vector with the best fitness in the current
population, and 𝜙

𝑖,𝑗
is a random number in the range [−1, 1].

Gao et al. [27] brought the crossover operator of GA [30]
to improve ABC. Their new search equation is as follows:

CABC: V
𝑖,𝑗
= 𝑥
𝑟1,𝑗
+ 𝜙
𝑖,𝑗
(𝑥
𝑟1,𝑗
− 𝑥
𝑟2,𝑗
) , (17)

where the indices 𝑟1 and 𝑟2 are distinct integers uniformly
chosen from the range {1, 2, . . . , 𝑆𝑁}, 𝑟1 ̸= 𝑖, 𝑟2 ̸= 𝑖, and 𝜙

𝑖,𝑗
is

a randomnumber in the range [−1, 1].This search equation is
similar to the crossover operator of GA and is called CABC.

4.3. Procedure of Various Artificial Bee Colony Algorithms
for Multilevel Image Thresholding. This subsection shows the
pseudocode of the five modified ABCs which apply to the
image thresholding selection. The most important changes
to these algorithms were the creation of a new candidate
solution in each. Thus, the modified probabilistic selection
phase and modified search equations from the previous sub-
sections will be reformed in the pseudocode. In summary,
IABC/best/1 is depicted as Algorithm 1. The four remaining
algorithms have the same structure as of IABC/best/1, but line
09 and line 24 are different.

The Evaluate(⋅) functions at lines 02, 10, 25, and 41 are
performed by Otsu’s function, (4). Line 09 and line 24 of
IABC/best/1 algorithm produce new candidates using the
search equation (15). The algorithm can be performed as
ABC/best/1, ABC/best/2, IABC/rand/1, or CABC algorithms
by replacing (15) with (13), (14), (16), or (17), respectively.
When the algorithm is applied tomultilevel image threshold-
ing, 𝑛 is the number of thresholds. A food source represents a
candidate 𝑛-threshold values. Once the algorithm terminates,
the best food source is the solution, and the optimal 𝑛-
threshold is the expected outcome. At this point in time,
there are six algorithms where the standard ABC is included.
Hence, the six-ABCs refers to them from now on.

5. Experiments and Results

5.1. Experimental Setup. The multilevel thresholding prob-
lem deals with finding optimal thresholds within the range
[0, 𝐿 − 1] that maximize a fitness criterion. The dimension
of the optimization problem is the number of thresholds, 𝑛,
and the search space is [0, 𝐿 − 1]𝑛. Five new metaheuristic
algorithms, that is, ABC/best/1, ABC/best/2, IABC/best/1,
IABC/rand/1, and CABC, have never been applied to image
thresholding before. These techniques are implemented and
compared with the existing metaheuristics that perform
image thresholding, that is, PSO, DPSO, FODPSO, and ABC
algorithms. All methods were programmed in MATLAB on
a personal computer with a 3.2GHz CPU with 8GB RAM
running on a Microsoft Windows 7 system. Experiments
were conducted on 12 real images. The images, namely
starfish, snow, fox, human, burro, mountain, girl, scenery,
penguin, pillar, waterfall, and bridge, were taken from the
Berkeley Segmentation Dataset and Benchmark [31]. Each
image has a unique gray level histogram. These original test
images and their histograms are depicted in Figure 1. The
segmented images, with regards to their optimal thresholds
(listed in Table 2) are depicted in Figure 2. A subproblem
refers to a process of an image thresholding with respect to
a given number of thresholds. The numbers of thresholds
investigated in the experiments were two to five. Thus, the
total number of sub-problems is 12 × 4. Each sub-problem
was repeated 50 times per image, and each time is called a
run.

With reference to the six-ABCs and PSO algorithms, the
objective function evaluation is computed for𝑁

𝑝
×𝑁
𝑖
, where

𝑁
𝑝
is the population size and𝑁

𝑖
is the number of generations.

A PSO particle calls Otsu’s function one time per generation.
The population size in the PSO algorithm was set to 50.
A bee in the six-ABCs calls Otsu’s function two times per
generation their numbers of food sources were set to a half of
the PSO’s size, 25. As for the DPSO and FODPSO algorithms
comprising of 25 particles with 4 swarms, their objective
function evaluations per generation are twice those of the six-
ABCs and PSO. In this regard, the number of generations
cannot be used as a metric for algorithm comparison, but
the NFC is comparable.The other control parameters of PSO,
DPSO, and FODPSO are tabulated in Table 1. The maximum
number of generations was set to 50, 100, 150, and 150 when
𝑛 is 2, 3, 4, and 5, respectively.
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01 Initialize the population: 𝑛 is the number of the threshold. SN is the population size.
𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand(0, 1)(𝑥max,𝑗 − 𝑥min,𝑗), 𝑖 = 1, 2, . . . , 𝑆𝑁, 𝑗 = 1, 2, . . . , 𝑛.

02 Evaluate the population: 𝑦 = Evaluate(𝑥) by Otsu’s function, (4)
03 generation = 1, trial

𝑖
= 0, limit = 50, NFC = SN,

04 Repeat
05 /∗ Employed Bees Phase ∗/
06 For 𝑖 = 1 to SN
07 Randomly choose 𝑥

𝑟1
̸= 𝑥
𝑖
, 𝑥
𝑟2
̸= 𝑥
𝑖
, 𝑥
𝑟1
̸= 𝑥
𝑟2
from current population

08 Randomly choose 𝑗 from {1, 2, . . . , 𝑛}

09 V
𝑖,𝑗
= 𝑥best,𝑗 + 𝜙𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑟1,𝑗), (15)

10 𝑦new = Evaluate(V
𝑖
) by Otsu’s function, (4), NFC = NFC + 1,

11 If 𝑦new > 𝑦𝑖
12 𝑥

𝑖
= V
𝑖
, 𝑦
𝑖
= 𝑦new, trial𝑖 = 0

13 Else
14 trial

𝑖
= trial

𝑖
+ 1

15 End If
16 End For
17 Calculate the probability values 𝑝

𝑖
by (12)

18 /∗ Onlooker Bees Phase ∗/
19 𝑖 = 1

20 For 𝑡 = 1 to SN
21 If rand(0, 1) < 𝑝

𝑖
then

22 Randomly choose 𝑥
𝑟1
̸= 𝑥
𝑖
, 𝑥
𝑟2
̸= 𝑥
𝑖
, 𝑥
𝑟1
̸= 𝑥
𝑟2
from current population

23 Randomly choose 𝑗 from {1, 2, . . . , 𝑛}

24 V
𝑖,𝑗
= 𝑥best,𝑗 + 𝜙𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑟1,𝑗), (15)

25 𝑦new = Evaluate(V
𝑖
) by (4), NFC = NFC + 1,

26 If 𝑦new > 𝑦𝑖
27 𝑥

𝑖
= V
𝑖
,𝑦
𝑖
= 𝑦new, trial𝑖 = 0

28 Else
29 trial

𝑖
= trial

𝑖
+ 1

30 End If
31 End If
32 𝑖 = 𝑖 + 1

33 If 𝑖 > 𝑆𝑁
34 𝑖 = 1

35 End If
36 End For
37 /∗ Scout Bees Phase ∗/
38 For 𝑖 = 1 to SN
39 If trial

𝑖
> limit

40 𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand(0, 1)(𝑥max,𝑗 − 𝑥min,𝑗), 𝑗 = 1, 2, . . . , 𝑛, trial𝑖 = 0

41 𝑦
𝑖
= Evaluate(𝑥

𝑖
) by (4), NFC = NFC + 1,

42 End If
43 End For
44 Memorize the best solution achieved so far
45 generation = generation + 1
46 Until (generation = Maximum Generation)

Algorithm 1: (IABC/best/1 algorithm).

5.2. Comparing Strategies and Metrics. To minimize the
effect of the stochastic nature of the algorithms on the
metrics, the reported number of function calls for each
sub-problem is the average or the maximum value over 50
runs. In this study, three metrics, namely, the maximum
number of function calls (NFCmax), successful rate (SR), and
successful performance (SP), have been utilized to compare
the algorithms. The convergence speed was compared by
the measurement of the maximum number of function calls

NFCmax. A smallerNFCmax means higher convergence speed.
The termination criterion of an algorithm is generally to find
a value smaller than the value to reach (VTR) before reaching
both themaximum number of function calls NFCmax and the
maximum number of generations. The VTR in this research
is the maximum between-class variance when the optimal
thresholds were obtained from Otsu’s method. Finding the
NFCmax is a priority. Once all 50 runs were completed, the
runs that reached the optimal solutions within the maximum
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Figure 1: The test images and corresponding histograms.
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(a)

Figure 2: Continued.
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(b)

Figure 2: The result of segmentation with 2, 3, 4, and 5 thresholds, respectively (from left to right).

number of generations were selected. These were called the
successful runs.Themaximumvalue of theirNFCs represents
the NFCmax. The average of NFCmax represents the NFCmax.

The ratio for which the algorithm succeeds in reaching
the VTR for each sub-problem is measured as the successful
rate. SR is

SR = number of successful runs
total number of runs

. (18)

Furthermore, the average successful rate (SRavg) over the
entire data set per sub-problem is calculated as follows:

SRavg =
1

N

𝑁

∑

𝑖=1

SR
𝑖
, (19)

where SR
𝑖
represents the SR of each image of each sub-

problem, and𝑁 represents the number of images.Thehighest
SR and the lowest NFCmax are the ultimate goals in an

optimization process. Therefore, two individual objectives
must be considered simultaneously. In order to produce a
single measure, called successful performance (SP), the two
measures mentioned above have to be combined; this gives
the following:

SP =
NFCmax

SR
. (20)

The SP is the main measure in judging which algorithm
performs better than others.

5.2.1. Results of Otsu’s Method. TheVTR and optimal thresh-
olds provided comparative experimental results as shown
in columns 3 and 4 in Table 2. The results were as same
as the optimal values of the nine metaheuristic techniques.
However, the number of Otsu’s function evaluations, in the
case of an exhaustive searchmethod based onOtsu’s method,
is 𝐿!/((𝐿 − 𝑛)!𝑛!), where 𝐿 is the total number of gray-levels
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Table 1: Essential parameters of the PSO, DPSO, and FODPSO.

Parameter PSO DPSO FODPSO
Population 50 25 25
𝜌
1

1.5 1.5 1.5
𝜌
2

1.5 1.5 1.5
𝑊 1.2 1.2 1.2
𝑉max 2 2 2
𝑉min −2 −2 −2

𝑥max 255 255 255
𝑥min 0 0 0
Min population — 10 10
Max population — 50 50
Num of swarms — 4 4
Min swarms — 2 2
Max swarms — 6 6
Stagnancy — 10 10
Fractional coefficient — — 0.75

(usually 256) and 𝑛 is the number of thresholds. For instance,
when 𝐿 = 256 and 𝑛 = 1, the number of objective function
evaluations is 256, and when 𝐿 = 256 and 𝑛 = 2, it is
32640.Thus, the computational complexity ofOtsu’smethods
is 𝑂(𝐿𝑛) which grows exponentially with the number of
thresholds. The computation time of a sub-problem with 𝑛 =
5 took over 10 days to compute on our test machine.

5.2.2. Stability Analysis. In general, the metaheuristic meth-
ods are stochastic and random searching algorithms. The
results are not absolutely identical in each run of the algo-
rithm and are influenced by the searching ability of the
algorithm. As a result, it is necessary to evaluate the stability
of the algorithms. The comparison of the convergence gives
us valuable information in terms of the ratio representing the
successful rates (SR) in Table 2.

Table 2 presents the number of thresholds, the maximum
between-class variance or VTR, the optimal threshold values,
successful rates (SR) of the 50 independent runs, and the
maximum number of function calls (NFCmax). The average
successful rate for each sub-problem SRavg is shown in
Table 3. The last row and respective column of Table 3 show
the averages from all of the experiments. A higher SR means
a higher stability. From the results, the stability of each
algorithm can be sorted in decreasing order by SRavg into
the following order: IABC/best/1, ABC/best/2, ABC/best/1,
IABC/best/2, ABC, PSO, DPSO, CABC, and FODPSO. This
means that the IABC/best/1 is the most stable metaheuristic
algorithm when compared to the others.

5.2.3. Convergence Rate Comparison. The maximum num-
bers of NFC of the successful runs are listed in Table 2. A
smaller NFCmax means a higher convergence rate. The aver-
age of NFCmax for each sub-problem is shown in Table 3.The
last row and respective column of Table 3 show the average of
each NFCmax from all of the experiments. From the results,
the convergence rate can be sorted in decreasing order by

NFCmax into the following order: IABC/best/1, ABC/best/1,
ABC/best/2, IABC/rand/1, CABC, PSO, ABC, DPSO, and
FODPSO. This means that the IABC/best/1 has the highest
convergent rate when compared to the other algorithms. The
results also revealed that the NFCmax increases significantly
as the number of thresholds increases.

5.2.4. PerformanceComparison. Scatter plots helped to reveal
the relationships between the variables.There are four figures,
one figure per threshold number; that is, Figure 3 is for 𝑛 = 2,
Figure 4 is for 𝑛 = 3, Figure 5 is for 𝑛 = 4, and Figure 6 is
for 𝑛 = 5. Each figure is constructed using two data sets,
the successful rates (SR) versus the maximum number of
function calls NFCmax of all competitors from Table 2 and
the average successful rates (SRavg) versus the average of
NFCmax(NFCmax) from Table 3; the locations are pointed to
using arrows. Those locations represent the average perfor-
mances over twelve tested images of the algorithms. Some
of the algorithm’s labels are not shown because its NFCmax
is much larger than that of the others, and therefore, they are
out of range. To interpret a figure, a lowerNFCmax and a larger
SR imply a higher performing algorithm in the search for
optimal thresholds. This relationship can be seen as a point
at the topleft of each scatter graph. Due to the fact that all
of the scatter graph results are so similar, only information
regarding the IABC/best/1 will be interpreted. In Figures 3 to
6, it was realized that the positions of IABC/best/1 are closer
to the left-top corners than those of the other techniques for
all the figures. This means that IABC/best/1 outperformed its
competitors.

However, if there is a lot of data, the conclusion from the
previous paragraphmay not be so clear.Therefore, a new tool
is required. The successful performance (SP) is a measure
that considers the maximum number of function calls and
the successful rate simultaneously, as listed in Table 4. The
best SPs are highlighted in boldface. To rank the algorithm
by successful performance, an average ranking of Friedman
ranks [32] was used to compare the performance.The average
ranks are shown in the last row of Table 4. A smaller rank
means a better performance. We noticed that the SPs of the
nine algorithms can be sorted in decreasing order by average
ranking into the following order: IABC/best/1, ABC/best/1,
ABC/best/2, IABC/rand/1, CABC, PSO, ABC, DPSO, and
FODPSO. The best average ranking was obtained by the
IABC/best/1 algorithm, which outperformed the other eight
algorithms.

6. Conclusions

This paper adopted the ABC algorithm to solve the max-
imization problem by modifying the strategy of the elite
employee bees selection. Five methods for multilevel seg-
mentation of images were presented, namely, ABC/best/1,
ABC/best/2, IABC/best/1, IABC/rand/1, and CABC. These
methods were used to solve the Otsu problem for examining
multilevel threshold values of images and to overcome the
disadvantages of previous metaheuristic methods in terms of



10 Mathematical Problems in Engineering

Ta
bl
e
2:
Th

es
uc
ce
ss
fu
lr
at
e(
SR

)a
nd

m
ax
im

um
nu

m
be
ro

ff
un

ct
io
n
ca
lls

(N
FC

m
ax
)o

ft
he

ni
ne

m
et
ho

ds
.

Im
ag
e

𝑛

Be
tw
ee
n-
cla

ss
va
ria

nc
e

Th
re
sh
ol
ds

PS
O

D
PS

O
FO

D
PS

O
A
BC

A
BC

/b
es
t/1

A
BC

/b
es
t/2

IA
BC

/b
es
t/1

IA
BC

/r
an
d/
1

CA
BC

(a
.k
.a.

V
TR

)
SR

N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

St
ar
fis
h

2
25
46

.8
85

85
,1
57

1.0
0

13
50

1.0
0

32
00

1.0
0

42
00

1.0
0

11
50

0.
96

50
0

1.0
0

65
0

1.0
0

45
0

1.0
0

10
00

0.
94

80
0

3
27
79
.9
25

68
,1
19
,1
77

1.0
0

20
50

1.0
0

56
00

0.
92

86
00

1.0
0

19
00

1.0
0

85
0

1.0
0

95
0

1.0
0

80
0

1.0
0

12
50

1.0
0

10
00

4
28
65
.7
07

60
,1
01
,1
38
,1
87

1.0
0

45
50

0.
98

11
10
0

0.
60

14
70
0

1.0
0

65
00

1.0
0

20
00

1.0
0

33
50

1.0
0

22
00

1.0
0

39
00

0.
96

53
50

5
29
12
.8
59

52
,8
6,
117

,1
50
,1
94

0.
72

74
50

0.
56

15
00

0
0.
26

12
90
0

0.
66

72
50

0.
88

51
50

0.
90

75
00

1.0
0

46
00

0.
76

73
00

0.
76

66
50

Sn
ow

2
52
61
.7
05

80
,1
69

1.0
0

11
50

1.0
0

35
00

1.0
0

67
00

1.0
0

15
00

1.0
0

70
0

1.0
0

95
0

1.0
0

55
0

1.0
0

11
00

0.
98

10
00

3
56
24
.2
89

71
,1
39
,2
07

1.0
0

21
50

1.0
0

88
00

0.
94

66
00

1.0
0

21
50

1.0
0

75
0

1.0
0

90
0

1.0
0

75
0

1.0
0

11
50

0.
94

11
50

4
57
29
.11
6

50
,9
2,
14
4,
20
8

0.
98

41
50

0.
98

12
00

0
0.
68

15
00

0
1.0

0
35
00

1.0
0

15
50

1.0
0

21
50

1.0
0

22
50

1.0
0

40
50

1.0
0

42
50

5
57
85
.13

8
49
,9
1,
14
0,
19
2,
23
1

0.
58

71
00

0.
60

14
90
0

0.
12

14
90
0

0.
98

72
00

1.0
0

27
00

1.0
0

39
00

1.0
0

25
50

1.0
0

65
50

0.
92

70
00

Fo
x

2
12
93
7.7

30
54
,1
73

1.0
0

55
0

1.0
0

22
00

1.0
0

31
00

1.0
0

65
0

1.0
0

30
0

1.0
0

40
0

1.0
0

35
0

1.0
0

50
0

1.0
0

45
0

3
12
97
3.
37
0

28
,8
5,
19
0

1.0
0

12
00

1.0
0

45
00

0.
98

71
00

1.0
0

20
50

1.0
0

70
0

1.0
0

11
00

1.0
0

85
0

1.0
0

17
50

0.
76

14
00

4
12
99
0.
70
0

23
,5
8,
12
3,
20
8

0.
96

25
00

0.
86

82
00

0.
60

83
00

1.0
0

31
50

0.
88

12
50

1.0
0

19
50

1.0
0

13
50

1.0
0

24
00

0.
82

24
50

5
12
99
8.
99
0

19
,4
0,
79
,1
39
,2
14

0.
98

35
50

0.
02

12
30
0

0.
88

81
00

0.
98

55
00

1.0
0

24
50

1.0
0

33
00

1.0
0

22
00

0.
98

64
00

0.
80

56
50

H
um

an

2
30
64

.7
96

10
8,
17
9

1.0
0

13
50

1.0
0

33
00

1.0
0

42
00

1.0
0

10
50

1.0
0

35
0

1.0
0

65
0

1.0
0

55
0

1.0
0

75
0

0.
96

95
0

3
32
70
.6
71

89
,1
45
,1
94

1.0
0

26
50

1.0
0

47
00

0.
94

95
00

1.0
0

22
50

1.0
0

75
0

1.0
0

10
00

1.0
0

80
0

1.0
0

110
0

0.
92

95
0

4
33
36
.3
02

87
,1
40

,1
80
,2
13

0.
98

42
00

0.
90

11
20
0

0.
40

15
00

0
0.
98

62
00

0.
98

75
00

1.0
0

40
00

1.0
0

38
00

0.
74

70
00

0.
56

74
50

5
33
73
.6
72

74
,1
10
,1
47
,1
83
,2
15

0.
70

70
50

0.
48

14
30
0

0.
24

14
60

0
0.
66

73
50

0.
84

36
00

1.0
0

51
00

1.0
0

46
00

0.
92

44
50

0.
40

68
00

Bu
rr
o

2
31
61
.2
77

64
,1
31

1.0
0

14
00

1.0
0

31
00

0.
98

58
00

1.0
0

17
50

0.
96

45
0

1.0
0

11
00

1.0
0

85
0

1.0
0

14
00

0.
98

18
00

3
32
93
.7
18

57
,1
07
,1
65

1.0
0

31
50

1.0
0

64
00

0.
98

88
00

1.0
0

21
00

1.0
0

85
0

1.0
0

12
00

1.0
0

10
50

1.0
0

14
00

1.0
0

11
50

4
33
53
.6
39

49
,7
9,
12
2,
17
1

0.
96

38
00

0.
88

13
00

0
0.
34

15
00

0
1.0

0
38
50

0.
72

14
00

0.
96

22
00

1.0
0

17
00

1.0
0

26
50

0.
98

29
00

5
33
82
.2
61

45
,7
0,
10
1,
14
0,
17
7

0.
66

72
00

0.
78

14
70
0

0.
66

12
50
0

0.
44

75
00

0.
90

70
50

0.
82

62
50

0.
92

70
00

0.
48

74
50

0.
20

69
50

M
ou

nt
ai
n

2
23
72
.9
23

61
,1
28

1.0
0

17
50

1.0
0

28
00

1.0
0

54
00

1.0
0

110
0

0.
96

35
0

1.0
0

65
0

1.0
0

45
0

1.0
0

60
0

0.
94

55
0

3
24
96
.11
3

33
,7
7,
13
1

1.0
0

21
50

1.0
0

63
00

0.
96

93
00

1.0
0

24
00

1.0
0

10
00

1.0
0

12
50

1.0
0

80
0

1.0
0

19
50

1.0
0

18
00

4
25
51
.9
55

33
,7
3,
10
9,
14
7

0.
98

57
50

0.
96

13
80
0

0.
36

13
70
0

1.0
0

46
00

0.
96

30
00

1.0
0

26
50

1.0
0

20
00

1.0
0

28
00

0.
94

45
00

5
25
80
.33

6
32
,6
9,
99
,1
25
,1
59

0.
70

72
00

0.
66

14
80
0

0.
28

14
70
0

1.0
0

65
00

0.
98

19
50

1.0
0

32
00

1.0
0

20
50

1.0
0

43
00

0.
72

64
50

G
irl

2
26
39
.52

6
72
,1
45

1.0
0

13
50

1.0
0

32
00

1.0
0

49
00

1.0
0

14
00

1.0
0

50
0

1.0
0

70
0

1.0
0

50
0

1.0
0

90
0

0.
98

75
0

3
28
67
.8
82

46
,9
6,
16
1

1.0
0

19
00

1.0
0

63
00

0.
88

10
00
0

1.0
0

22
50

1.0
0

80
0

1.0
0

12
00

1.0
0

80
0

1.0
0

16
50

0.
76

18
00

4
29
71
.76

1
42
,8
4,
12
8,
18
2

0.
96

69
50

0.
94

14
40

0
0.
52

14
90
0

1.0
0

40
50

1.0
0

25
00

1.0
0

23
50

1.0
0

19
00

1.0
0

26
00

0.
94

46
50

5
30
22
.6
02

37
,7
0,
10
2,
14
0,
18
9

0.
74

74
50

0.
78

14
50
0

0.
66

14
80
0

0.
82

73
50

0.
98

28
50

1.0
0

69
00

1.0
0

47
00

0.
84

74
50

0.
48

65
00

Sc
en
er
y

2
46

86
.12

4
10
5,
18
0

1.0
0

11
50

1.0
0

41
00

1.0
0

69
00

1.0
0

21
50

1.0
0

75
0

1.0
0

10
50

1.0
0

80
0

1.0
0

15
50

0.
96

38
00

3
48
37
.8
68

76
,1
42
,2
11

1.0
0

35
00

1.0
0

82
00

0.
84

97
00

0.
98

40
00

0.
98

13
50

1.0
0

31
50

1.0
0

14
50

0.
96

49
50

0.
92

40
50

4
49
44

.4
89

67
,1
11
,1
69
,2
18

0.
98

50
50

0.
96

11
20
0

0.
48

12
40

0
1.0

0
30
50

0.
98

18
00

1.0
0

18
00

1.0
0

13
00

1.0
0

21
00

0.
98

22
00

5
49
83
.32

9
64

,9
8,
14
1,
18
4,
22
1
0.
84

70
00

0.
58

14
40

0
0.
22

13
80
0

0.
80

75
00

0.
98

71
00

0.
96

73
00

0.
98

47
50

0.
56

72
00

0.
58

73
00

Pe
ng

ui
n

2
18
23
.2
15

71
,1
59

1.0
0

12
00

1.0
0

31
00

1.0
0

34
00

1.0
0

80
0

1.0
0

35
0

1.0
0

45
0

1.0
0

35
0

1.0
0

55
0

1.0
0

50
0

3
18
92
.5
83

68
,1
19
,1
94

1.0
0

22
00

1.0
0

47
00

0.
92

56
00

1.0
0

18
50

0.
98

70
0

1.0
0

90
0

1.0
0

80
0

1.0
0

11
00

0.
98

10
50

4
19
15
.0
04

54
,7
6,
12
1,
19
5

0.
54

43
00

0.
62

15
00

0
0.
22

13
80
0

0.
56

67
50

0.
70

50
00

0.
84

55
50

0.
88

63
50

0.
80

73
00

0.
76

74
00

5
19
32
.4
41

53
,7
5,
114

,1
67
,2
20

0.
82

72
50

0.
56

12
50
0

0.
20

13
20
0

0.
90

63
00

0.
96

22
00

1.0
0

32
00

1.0
0

21
50

1.0
0

32
50

0.
94

36
00

Pi
lla
r

2
33
06
.6
12

87
,1
64

1.0
0

10
50

1.0
0

37
00

1.0
0

47
00

1.0
0

14
00

0.
98

60
0

1.0
0

85
0

1.0
0

55
0

1.0
0

12
00

0.
94

14
50

3
35
34
.7
00

58
,1
13
,1
84

1.0
0

24
50

1.0
0

59
00

0.
74

90
00

1.0
0

43
50

1.0
0

16
00

1.0
0

20
00

1.0
0

13
00

1.0
0

20
50

0.
98

20
00

4
36
51
.35

7
48
,9
0,
14
1,
20
0

0.
94

49
00

0.
96

10
50
0

0.
66

14
00

0
0.
84

62
50

0.
98

49
50

0.
98

35
00

1.0
0

40
50

0.
98

43
00

0.
82

43
00

5
37
14
.9
97

40
,7
3,
11
1,
15
6,
20
8

0.
80

69
00

0.
80

14
30
0

0.
54

11
60

0
0.
62

75
00

0.
90

58
50

0.
96

63
50

0.
98

56
50

0.
90

71
50

0.
84

62
00



Mathematical Problems in Engineering 11

Ta
bl
e
2:
C
on

tin
ue
d.

Im
ag
e

𝑛

Be
tw
ee
n-
cla

ss
va
ria

nc
e

Th
re
sh
ol
ds

PS
O

D
PS

O
FO

D
PS

O
A
BC

A
BC

/b
es
t/1

A
BC

/b
es
t/2

IA
BC

/b
es
t/1

IA
BC

/r
an
d/
1

CA
BC

(a
.k
.a.

V
TR

)
SR

N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

SR
N
FC

m
ax

W
at
er
fa
ll

2
14
44

.4
33

81
,1
43

1.0
0

10
50

1.0
0

31
00

1.0
0

40
00

1.0
0

10
00

1.0
0

40
0

1.0
0

60
0

1.0
0

50
0

1.0
0

70
0

1.0
0

70
0

3
15
97
.0
70

68
,1
08
,1
67

1.0
0

48
50

1.0
0

76
00

0.
84

98
00

1.0
0

26
50

1.0
0

10
00

1.0
0

13
00

1.0
0

12
00

1.0
0

19
50

0.
92

17
50

4
16
69
.2
14

59
,9
1,
12
6,
18
1

0.
92

67
50

0.
90

13
90
0

0.
56

14
20
0

1.0
0

53
50

0.
90

41
00

1.0
0

27
00

1.0
0

23
50

1.0
0

37
50

0.
94

66
00

5
17
08
.52

1
53
,8
0,
10
6,
13
8,
19
0
0.
60

68
00

0.
64

14
00

0
0.
58

13
10
0

0.
46

71
50

0.
96

33
00

0.
94

59
00

1.0
0

44
50

0.
76

65
50

0.
56

66
00

Br
id
ge

2
33
83
.8
21

54
,1
35

1.0
0

14
00

1.0
0

25
00

1.0
0

50
00

1.0
0

90
0

0.
98

45
0

1.0
0

45
0

1.0
0

45
0

1.0
0

70
0

0.
98

70
0

3
35
67
.5
97

49
,1
08
,1
69

1.0
0

36
50

0.
98

63
00

0.
70

93
00

1.0
0

21
50

0.
98

90
0

1.0
0

15
50

1.0
0

90
0

1.0
0

18
00

1.0
0

16
50

4
36
60
.33

5
34
,7
3,
117

,1
74

0.
96

54
50

0.
92

13
10
0

0.
64

14
00

0
0.
80

70
00

0.
92

48
00

1.0
0

42
00

1.0
0

34
00

0.
90

47
50

0.
70

37
00

5
37
10
.2
64

26
,5
9,
90
,1
28
,1
79

0.
70

60
00

0.
66

14
90
0

0.
68

14
10
0

0.
94

69
50

0.
94

35
50

0.
96

50
00

0.
96

37
50

0.
78

73
50

0.
22

69
50



12 Mathematical Problems in Engineering

Ta
bl
e
3:
Th

ea
ve
ra
ge

of
su
cc
es
sfu

lr
at
es

(S
R a

vg
)a

nd
av
er
ag
eo

fm
ax
im

um
nu

m
be
ro

ff
un

ct
io
n
ca
lls

(N
FC

m
ax
)o

ft
he

ni
ne

m
et
ho

ds
.

Th
en

um
be
ro

f
th
re
sh
ol
ds
(
𝑛
)

PS
O

D
PS

O
FO

D
PS

O
A
BC

A
BC

/b
es
t/1

A
BC

/b
es
t/2

IA
BC

/b
es
t/1

IA
BC

/r
an
d/
1

CA
BC

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

SR
av
g

N
FC

m
ax

2
1

12
29
.16

1
31
50

0.
99

48
58
.33

1
12
37
.5
0

0.
98

47
5.
00

1
70
8.
33

1
52
9.1

6
1

91
2.
50

0.
97

11
20
.8
3

3
1

26
58
.33

0.
99

62
75

0.
88

86
08
.33

0.
99

25
08
.33

0.
99

93
7.5

0
1

13
75
.0
0

1
95
8.
33

0.
99

18
41
.6
6

0.
93

16
45
.8
3

4
0.
93

48
62
.5

0.
90

12
28
3.
33

0.
50

13
75
0.
00

0.
93

50
20
.8
3

0.
91

33
20
.8
3

0.
98

30
33
.33

0.
99

27
20
.8
3

0.
95

39
66

.6
6

0.
86

46
45
.8
3

5
0.
73

67
45
.8
3

0.
59

14
21
6.
67

0.
44

13
19
1.6

7
0.
77

70
04
.16

0.
94

39
79
.16

0.
96

53
25
.0
0

0.
98

40
37
.5
0

0.
83

62
83
.33

0.
61

63
87
.5
0

Av
er
ag
es

of
th
ee

nt
ire

ex
pe
rim

en
ts

0.
91

38
73
.9
5

0.
87

89
81
.2
5

0.
70

10
10
2.
08

0.
92

39
42
.7
0

0.
96

21
78
.12

0.
98

26
10
.4
1

0.
99

20
61
.4
5

0.
94

32
51
.0
4

0.
84

34
50
.0
0



Mathematical Problems in Engineering 13

Ta
bl
e
4:
Th

es
uc
ce
ss
fu
lp

er
fo
rm

an
ce

(S
P)

an
d
ra
nk

so
ft
he

ni
ne

m
et
ho

ds
.

Im
ag
e

𝑛
PS

O
D
PS

O
FO

D
PS

O
A
BC

A
BC

/b
es
t/1

A
BC

/b
es
t/2

IA
BC

/b
es
t/1

IA
BC

/r
an
d/
1

CA
BC

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk

St
ar
fis
h

2
13
50

7
32
00

8
42
00

9
11
50

6
52
0.
83

2
65
0

3
45

0
1

10
00

5
85
1.0

6
4

3
20
50

7
56
00

8
93
47
.8
3

9
19
00

6
85
0

2
95
0

3
80

0
1

12
50

5
10
00

4
4

45
50

5
11
32
6.
53

8
24
50
0

9
65
00

7
20

00
1

33
50

3
22
00

2
39
00

4
55
72
.9
2

6
5

10
34
7.2

2
6

26
78
5.
71

8
49
61
5.
38

9
10
98
4.
85

7
58
52
.2
7

2
83
33
.33

3
46

00
1

96
05
.2
6

5
87
50

4

Sn
ow

2
11
50

6
35
00

8
67
00

9
15
00

7
70
0

2
95
0

3
55
0

1
110

0
5

10
20
.4
1

4
3

21
50

6.
5

88
00

9
70
21
.2
8

8
21
50

6.
5

75
0

1.5
90
0

3
75
0

1.5
11
50

4
12
23
.4
0

5
4

42
34
.6
9

6
12
24
4.
90

8
22
05
8.
82

9
35
00

4
15
50

1
21
50

2
22
50

3
40

50
5

42
50

7
5

12
24
1.3

8
7

24
83
3.
33

8
12
41
66
.7
0

9
73
46

.9
4

5
27
00

2
39
00

3
25
50

1
65
50

4
76
08
.7
0

6

Fo
x

2
55
0

6
22
00

8
31
00

9
65
0

7
30

0
1

40
0

3
35
0

2
50
0

5
45
0

4
3

12
00

4
45
00

8
72
44

.8
9

9
20
50

7
70

0
1

110
0

3
85
0

2
17
50

5
18
42
.11

6
4

26
04
.17

5
95
34
.8
8

8
13
83
3.
33

9
31
50

7
14
20
.4
6

2
19
50

3
13
50

1
24
00

4
29
87
.8
1

6
5

36
22
.4
5

4
61
50
00

8
92
04

.5
5

9
56
12
.2
5

5
24
50

2
33
00

3
22

00
1

65
30
.6
1

6
70
62
.5
0

7

H
um

an

2
13
50

7
33
00

8
42
00

9
10
50

6
35
0

1
65
0

3
55
0

2
75
0

4
98
9.5

8
5

3
26
50

7
47
00

8
10
10
6.
38

9
22
50

6
75
0

1
10
00

3
80
0

2
110

0
5

10
32
.6
1

4
4

42
85
.7
1

3
12
44

4.
44

7
37
50
0

9
63
26
.53

4
76
53
.0
6

5
40

00
2

38
00

1
94
59
.4
6

6
13
30
3.
57

8
5

10
07
1.4

3
5

29
79
1.6

7
8

60
83
3.
33

9
11
13
6.
36

6
42

85
.7
1

1
51
00

4
46

00
2

48
36
.9
6

3
17
00

0
7

Bu
rr
o

2
14
00

4.
5

31
00

8
59
18
.37

9
17
50

6
46

8.
75

1
110

0
3

85
0

2
14
00

4.
5

18
36
.74

7
3

31
50

7
64

00
8

89
79
.5
9

9
21
00

6
85
0

1
12
00

4
10
50

2
14
00

5
11
50

3
4

39
58
.33

7
14
77
2.
73

8
44

117
.6
5

9
38
50

6
19
44

.4
4

2
22
91
.6
7

3
17
00

1
26
50

4
29
59
.18

5
5

10
90
9.0

9
4

18
84
6.
15

7
18
93
9.3

9
8

17
04
5.
45

6
78
33
.33

3
76
21
.9
5

2
76

08
.7
0

1
15
52
0.
83

5
34
75
0

9

M
ou

nt
ai
n

2
17
50

7
28
00

8
54
00

9
110

0
6

36
4.
58

1
65
0

5
45
0

2
60

0
4

58
5.
11

3
3

21
50

6
63
00

8
96
87
.5
0

9
24
00

7
10
00

2
12
50

3
80

0
1

19
50

5
18
00

4
4

58
67
.35

7
14
37
5

8
38
05
5.
56

9
46

00
5

31
25

4
26
50

2
20

00
1

28
00

3
47
87
.2
3

6
5

10
28
5.
71

7
22
42
4.
24

8
52
50
0

9
65
00

5
19
89

.8
0

1
32
00

3
20
50

2
43
00

4
89
58
.33

6

G
irl

2
13
50

6
32
00

8
49
00

9
14
00

7
50

0
1.5

70
0

3
50

0
1.5

90
0

5
76
5.
31

4
3

19
00

5
63
00

8
11
36
3.
64

9
22
50

6
80

0
1.5

12
00

3
80

0
1.5

16
50

4
23
68
.4
2

7
4

72
39
.5
8

7
15
31
9.
15

8
28
65
3.
85

9
40

50
5

25
00

3
23
50

2
19
00

1
26
00

4
49
46

.8
1

6
5

10
06
7.5

7
6

18
58
9.7

4
8

22
42
4.
24

9
89
63
.4
2

5
29

08
.16

1
69
00

3
47
00

2
88
69
.0
5

4
13
54
1.6

7
7

Sc
en
er
y

2
11
50

4
41
00

8
69
00

9
21
50

6
75
0

1
10
50

3
80
0

2
15
50

5
39
58
.33

7
3

35
00

4
82
00

8
115

47
.6
2

9
40

81
.6
3

5
13
77
.5
5

1
31
50

3
14
50

2
51
56
.2
5

7
44

02
.17

6
4

51
53
.0
6

7
11
66

6.
67

8
25
83
3.
33

9
30
50

6
18
36
.74

3
18
00

2
13
00

1
21
00

4
22
44

.9
0

5
5

83
33
.33

4
24
82
7.5
9

8
62
72
7.2

7
9

93
75

5
72
44

.9
0

2
76
04
.17

3
48

46
.9
4

1
12
85
7.1
4

7
12
58
6.
21

6

Pe
ng

ui
n

2
12
00

7
31
00

8
34
00

9
80
0

6
35
0

1.5
45
0

3
35
0

1.5
55
0

5
50
0

4
3

22
00

7
47
00

8
60

86
.9
6

9
18
50

6
71
4.
29

1
90
0

3
80
0

2
110

0
5

10
71
.4
3

4
4

79
62
.9
6

4
24
19
3.
55

8
62
72
7.2

7
9

12
05
3.
57

7
71
42
.8
6

2
66

07
.14

1
72
15
.9
1

3
91
25

5
97
36
.8
4

6
5

88
41
.4
6

7
22
32
1.4

3
8

66
00

0
9

70
00

6
22
91
.6
7

2
32
00

3
21
50

1
32
50

4
38
29
.7
9

5



14 Mathematical Problems in Engineering

Ta
bl
e
4:
C
on

tin
ue
d.

Im
ag
e

𝑛
PS

O
D
PS

O
FO

D
PS

O
A
BC

A
BC

/b
es
t/1

A
BC

/b
es
t/2

IA
BC

/b
es
t/1

IA
BC

/r
an
d/
1

CA
BC

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk
SP

Ra
nk

SP
Ra

nk

Pi
lla
r

2
10
50

4
37
00

8
47
00

9
14
00

6
61
2.
25

2
85
0

3
55
0

1
12
00

5
15
42
.5
5

7
3

24
50

6
59
00

8
12
16
2.
16

9
43
50

7
16
00

2
20
00

3
13
00

1
20
50

5
20
40

.8
2

4
4

52
12
.7
7

5
10
93
7.5

0
8

21
21
2.
12

9
74
40

.4
8

7
50
51
.0
2

4
35
71
.4
3

1
40
50

2
43
87
.76

3
52
43
.9
0

6
5

86
25

6
17
87
5

8
21
48
1.4

8
9

12
09
6.
77

7
65
00

2
66
14
.5
8

3
57
65

.3
1

1
79
44

.4
4

5
73
80
.9
5

4

W
at
er
fa
ll

2
10
50

7
31
00

8
40

00
9

10
00

6
40

0
1

60
0

3
50
0

2
70
0

4.
5

70
0

4.
5

3
48
50

7
76
00

8
11
66

6.
67

9
26
50

6
10
00

1
13
00

3
12
00

2
19
50

5
19
02
.17

4
4

73
36
.9
6

7
15
44

4.
44

8
25
35
7.1
4

9
53
50

5
45
55
.5
6

4
27
00

2
23
50

1
37
50

3
70
21
.2
8

6
5

11
33
3.
33

5
21
87
5

8
22
58
6.
21

9
15
54
3.
48

7
34

37
.5
0

1
62
76
.6
0

3
44

50
2

86
18
.4
2

4
117

85
.7
1

6

Br
id
ge

2
14
00

7
25
00

8
50
00

9
90
0

6
45
9.1

8
3

45
0

1.5
45

0
1.5

70
0

4
71
4.
29

5
3

36
50

7
64

28
.5
7

8
13
28
5.
71

9
21
50

6
91
8.
37

2
15
50

3
90

0
1

18
00

5
16
50

4
4

56
77
.0
8

6
14
23
9.1

3
8

21
87
5

9
87
50

7
52
17.
39

3
42
00

2
34

00
1

52
77
.7
8

4
52
85
.7
1

5
5

85
71
.4
3

5
22
57
5.
76

8
20
73
5.
29

7
73
93
.6
2

4
37
76
.6
0

1
52
08
.33

3
39
06
.2
5

2
94
23
.0
8

6
31
59
0.
91

9
Av

er
ag
er

an
k
(lo

w
er

is
be
tte

r)
5.
85

7.9
8

8.
91
67

5.
99

1.8
5

2.
80
2

1.5
3

4.
62
5

5.
45



Mathematical Problems in Engineering 15

500 600 700 800 900 1000 1100 1200

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

SR

The number of thresholds = 2

PSO

FODPSO
ABC
ABC/best/1

ABC/best/2
IABC/best/1
IABC/rand/1
CABC

IABC/rand/1ABC/best/2IABC/best/1

ABC

PSO

NFCmax

DPSO

Figure 3: The successful rate (SR) and maximum number of
function calls (NFCmax) of the nine methods with the number of
thresholds = 2.
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Figure 4: The successful rate (SR) and maximum number of
function calls (NFCmax) of the nine methods with the number of
thresholds = 3.

exploration and exploitation. The performance of the algo-
rithms was tested with 12 standard test images and compared
with the ABC, PSO, DPSO, and FOPSO methods. The rank-
ing was performed by Friedman ranks. The segmentation
results obtained from various test images showed that the
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Figure 5: The successful rate (SR) and maximum number of
function calls (NFCmax) of the nine methods with the number of
thresholds = 4.

1000 2000 3000 4000 5000 6000 7000 8000

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

SR

The number of thresholds = 5

IABC/best/1 ABC/best/2

ABC/best/1

IABC/rand/1

ABC
PSO

CABC

PSO
DPSO
FODPSO
ABC
ABC/best/1

ABC/best/2
IABC/best/1
IABC/rand/1
CABC

NFCmax

Figure 6: The successful rate (SR) and maximum number of
function calls (NFCmax) of the nine different methods with the
number of thresholds = 5.

IABC/best/1 algorithm widely outperformed the other algo-
rithms in terms of successful performance, computation effi-
ciency, and stability. Another advantage of theABCalgorithm
is that it has fewer control parameters than those of PSO.The
experiments confirmed that IABC/best/1 is a simple, general,
and high performance algorithm. Future research is to be
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carried out to test the feasibility of IABC/best/1 algorithm
for various types of image processing applications such as
remote sensing applications, automatic target recognition,
and complex document analysis.
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