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This paper investigates the parametric instability of a panel (beam) under high speed air flows and axial excitations. The idea is to
affect out-of-plane vibrations and aerodynamic loads by in-plane excitations.The periodic axial excitation introduces time-varying
items into the panel system.The numerical method based on Floquet theory and the perturbation method are utilized to solve the
Mathieu-Hill equations.The system stability with respect to air/panel density ratio, dynamic pressure ratio, and excitation frequency
are explored. The results indicate that panel flutter can be suppressed by the axial excitations with proper parameter combinations.

1. Introduction

Panel (beam) flutter usually occurs when high speed objects
move in the atmosphere, such as flight wings [1] and ballute
[2]. This phenomenon is a self-excited oscillation due to the
coupling of aerodynamic load and out-of-plane vibration.
Since flutter can cause system instability andmaterial fatigue,
many scholars have carried out theoretical and experimental
analyses on this topic. Nelson and Cunningham [3] inves-
tigated flutter of flat panels exposed to a supersonic flow.
Their model is based on small-deflection plate theory and
linearized flow theory, and the stability boundary is deter-
mined after decoupling the system equations by Galerkin’s
method. Olson [4] applied finite element method to the two-
dimensional panel flutter. A simply supported panel was
calculated and an extremely accuracy approximation could
be obtained using only a few elements. Parks [5] utilized
Lyapunov technique to solve a two-dimensional panel flutter
problem and used piston theory to calculate aerodynamic
load. The results gave a valuable sufficient stability criterion.
Dugundji [6] examined characteristics of panel flutter at
high supersonic Mach numbers and clarified the effects of
damping, edge conditions, traveling, and standingwaves.The
panel, Dugundji considered, is a flat rectangular one, simply
supported on all four edges, and undergoes two-dimensional
midplane compressive forces.

Dowell [7, 8] explored plate flutter in nonlinear area by
employing Von Karman’s large deflection plate theory. Zhou
et al. [9] built a nonlinear model for the panel flutter via finite
element method, including linear embedded piezoelectric
layers.The optimal control approach for the linearizedmodel
was presented. Gee [10] discussed the continuation method,
as an alternate numerical method that complements direct
numerical integration, for the nonlinear panel flutter. Tizzi
[11] researched the influence of nonlinear forces on flutter
beam. In most cases, the internal force in panel or beam
results from either external constant loads or geometric
nonlinearities. Therefore, their models are time-invariant
system.

Panel is usually excited by in-plane loads resulting from
the vibrations generated and/or transmitted through the
attached structures and dynamics components when expe-
riencing aerodynamic loads. If the in-plane load is time
dependent, the system becomes time-varying. The topic
of dynamic stability of time-varying systems attracts many
attentions. Iwatsubo et al. [12] surveyed parametric instability
of columns under periodic axial loads for different boundary
conditions.They used Hsu’s results [13] to determine stability
conditions and discussed the damping effect on combination
resonances. Sinha [14] and Sahu and Datta [15, 16] studied
the similar problem for Timoshenko beam and curved panel,
respectively, and both models are classified as Mathieu-Hill
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Figure 1: Simply supported panel (beam) subjected to an air flow
and an axial excitation.

equations. Furthermore, the stability of the nonlinear elastic
plate subjected to a periodic in-plane load was analyzed by
Ganapathi et al. [17]. They solved nonlinear governing equa-
tions by using theNewmark integration scheme coupled with
a modified Newton-Raphson iteration procedure. In addi-
tion, many papers have been published for dynamic stability
analyses of shells under periodic loads [18–24]. Furthermore,
Hagedorn andKoval [25] considered the effect of longitudinal
vibrations and the space distributed internal force. The
combination resonance was analyzed for Bernoulli-Euler and
Timoshenko beams under the spatiotemporal force. Yang
et al. [26] developed a vibration suppression scheme for
an axially moving string under a spatiotemporally varying
tension. Lyapunov method was employed to design robust
boundary control laws, but the effect of parameters of the
spatiotemporally varying tension on system stability has not
been fully analyzed.

Nevertheless, the published investigations on the para-
metric stability of the flutter panel (beam) with the periodi-
cally time-varying system stiffness due to axial excitations are
scarce. This paper is to explore the coactions of time-varying
axial excitations and aerodynamic loads on panel (beam) and
conduct parameter studies. The stability analysis is executed
first by Floquet theory numerically and then byHsu’s method
analytically for approximations.

2. System Description and Model

Theconfiguration considered herein is an isotropic thin panel
(beam) with constant thickness and cross section. As shown
in Figure 1, the panel is simply supported at both ends and
a periodic axial excitation acts on the right end. The panel’s
upper surface is exposed to a supersonic flow, while the
air beneath the lower surface is assumed not to affect the
panel dynamics. Another assumption made here is the axial
strain from the lateral displacement is very small so that it
can be ignored. The system model is based on the coupled
effects from the out-of-plane (lateral) displacement of the
panel, aerodynamic loads, and time-varying in-plane (axial)
excitation forces.

The total kinetic energy of the penal due to lateral
displacements is

𝑇 =
1

2
𝜌𝐴∫

𝐿

0

𝑤̇ (𝑥, 𝑡)
2
𝑑𝑥, (1)

where 𝑤(𝑥, 𝑡) is the lateral displacement of the panel mea-
sured in the ground fixed coordinate frame, 𝜌 the panel

density, 𝐴 the panel cross-sectional area, and “⋅” the differ-
entiation with respect to time 𝑡.

The total potential energy of the panel due to lateral
displacements is

𝑉 =
1

2
𝐸
∗
𝐼 ∫

𝐿

0

𝑤
󸀠󸀠
(𝑥, 𝑡)
2
𝑑𝑥 +

1

2
𝑃 (𝑡) ∫

𝐿

0

𝑤
󸀠
(𝑥, 𝑡)
2
𝑑𝑥, (2)

where 𝐸∗ = 𝐸/(1 − ]2) for panel and 𝐸
∗
= 𝐸 for beam

with Young’s modulus 𝐸 and Poisson’s ratio ]; the moment
of inertia is given by 𝐼 = 𝑏ℎ

3
/12 with panel width 𝑏 and

panel thickness ℎ; 𝑃(𝑡) is the periodic axial excitation with
the frequency 𝜔 and “󸀠” indicates differentiation with respect
to axial position 𝑥.

For material viscous damping, a Rayleigh dissipation
function is defined as

𝑅 =
1

2
𝜉𝐸
∗
𝐼 ∫

𝐿

0

𝑤̇
󸀠󸀠
(𝑥, 𝑡)
2
𝑑𝑥. (3)

Here, 𝜉 is the material viscous loss factor of the panel.
The aerodynamic load is expressed by using the classic

quasisteady first-order piston theory [4, 6, 7, 9, 11]:

𝑝 (𝑥, 𝑡) =
2𝑞
0

𝛽
[
𝜕𝑤 (𝑥, 𝑡)

𝜕𝑥
+

(Ma2 − 2)
(Ma2 − 1)

1

𝑈
0

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑡
] , (4)

where 𝑞
0

= 𝜌
0
𝑈
2

0
/2 is the dynamic pressure, 𝜌

0
is the

undisturbed air flow density, 𝑈
0
is the flow speed at infinity,

Ma is Mach number, and 𝛽 = (Ma2 − 1)1/2.
The flow goes against the lateral vibrations of the panel,

so the nonconservative virtual work from aerodynamic load
is negative and its expression is

𝛿𝑊nc = −∫
𝐿

0

𝑝 (𝑥, 𝑡) 𝑏𝛿𝑤 (𝑥, 𝑡) 𝑑𝑥. (5)

For a simply supported panel, the modal expansion of
𝑤(𝑥, 𝑡) can be assumed in the form

𝑤 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝜂
𝑛 (𝑡) sin(

𝑛𝜋𝑥

𝐿
) , 𝑛 = 1, 2, 3, . . . , (6)

where 𝑛 is the positive integer and 𝜂
𝑛
(𝑡) the generalized

coordinate. After substituting (6) into all energy expressions,
the system equations-of-motion are obtained via Lagrange’s
Equations

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
+
𝜕𝑉

𝜕𝑞
+
𝜕𝐷

𝜕𝑞̇
= 𝑄nc (7)

with the generalized force 𝑄nc = 𝜕𝛿𝑊nc/𝜕𝛿𝑞 and generalized
coordinates vector

𝑞 (𝑡) = [𝜂1 (𝑡) 𝜂
2 (𝑡) 𝜂

3 (𝑡) ⋅ ⋅ ⋅]
𝑇

. (8)

Finally, the system equations-of-motion are given as

M𝑞̈ (𝑡) + (C𝑑 + C𝑎) 𝑞̇ (𝑡) + [K𝑒 + K𝑎 + K𝑃 (𝑡)] 𝑞 (𝑡)

= 0,

(9)
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where the elements of coefficient matrices are

M
𝑚𝑛

= 𝜌𝐴∫
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𝐿
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𝐿
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𝐿
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(10)

The stiffness matrix K𝑃(𝑡) resulting from the periodic
axial excitation introduces a periodically time-varying item
into the system, so (9) is identified as a set of coupled
Mathieu-Hill equations. Subsequently, the system equations-
of-motion are transformed into the nondimensional (N.D.)
form

M
∗∗

𝑞 (𝜏) + (C𝑑 + C𝑎)
∗

𝑞 (𝜏)

+ [K𝑒 + K𝑎 + K𝑃 (𝜏)] 𝑞 (𝜏) = 0
(11)

with the dimensionless parameters and coordinates:

𝑥 =
𝑥

𝐿
,

𝑞 =
𝑞 (𝑡)

ℎ
,

Ω =
𝜋
2
ℎ

𝐿2
√
𝐸
∗

12𝜌
,

𝜏 = 𝑡Ω,

𝜇 =
𝜌
0

𝜌
,

𝜉 = 𝜉Ω,

𝑃cr =
𝐸
∗
𝐼𝜋
2

𝐿2
,

𝑓 (𝜏) =
𝑃 (𝑡)

𝑃cr
,

𝜎 =
𝑞
0

𝐸∗
,

𝛼 =
ℎ

𝐿
,

𝜔 =
𝜔

Ω
,

∗

( ) =
𝑑 ( )

𝑑𝜏
.

(12)

The elements of the N.D. coefficient matrices in (11) are

M
𝑚𝑛

=
{

{

{

1 if 𝑚 = 𝑛

0 if 𝑚 ̸= 𝑛,

C𝑑
𝑚𝑛

=
{

{

{

𝜉𝑛
4 if 𝑚 = 𝑛

0 if 𝑚 ̸= 𝑛,

C𝑎
𝑚𝑛

=

{{{

{{{

{

2√6𝜇𝜎 (Ma2 − 2)

𝜋2𝛼2 (Ma2 − 1)3/2
if 𝑚 = 𝑛

0 if 𝑚 ̸= 𝑛,

K𝑒
𝑚𝑛

=
{

{

{

𝑛
4 if 𝑚 = 𝑛

0 if 𝑚 ̸= 𝑛,

K𝑎
𝑚𝑛

=

{{{

{{{

{

0 if 𝑚 = 𝑛

48𝜎𝑚𝑛 [1 − (−1)
𝑚+𝑛

]

√Ma2 − 1 (𝑚2 − 𝑛2) 𝜋4𝛼3
if 𝑚 ̸= 𝑛,

K𝑃
𝑚𝑛
(𝜏) =

{

{

{

𝑛
2
𝑓 (𝜏) if 𝑚 = 𝑛

0 if 𝑚 ̸= 𝑛.

(13)

Here,M,C𝑑,C𝑎, andK𝑒 are constant symmetricmatrices;
K𝑎 is a constant skew-symmetric matrix; K𝑃 is a symmetric
time-varying matrix with a period of 2𝜋/𝜔.

3. Mathematical Methods for Stability Analysis

Due to the periodic axial excitations, (11) becomes a period-
ically linear time-varying system. Floquet theory is able to
assess the stability of this type of systems through evaluating
the eigenvalues of the Floquet transition matrix (FTM)
numerically [24, 27–32]. The FTM method can obtain all
unstable behaviors of a system but at the cost of intensively
numerical computations, so the perturbation method orig-
inally developed by Hsu [13, 33] is modified in this paper to
approximate the system stability boundary in an efficient way.
The results from the perturbation (analytical) method will be
compared with those from the FTM (numerical) method.

To implement Hsu’s perturbation method, the time-
invariant part of the system stiffness matrix, K𝑒 + K𝑎, needs
to be diagonalized by its left and right eigenvectors [34]. The
resulting equations-of-motion are

∗∗

𝑞 (𝜏) + C̃
∗

𝑞 (𝜏) + [K̃ + K̃𝑃 (𝜏)] 𝑞 (𝜏) = 0 (14)
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with

C̃ = X𝑇
𝐿
(C𝑑 + C𝑎)X

𝑅

K̃ = X𝑇
𝐿
(K𝑒 + K𝑎)X

𝑅

K̃𝑃 (𝜏) = X𝑇
𝐿
K𝑃 (𝜏)X𝑅,

(15a)

(K𝑒 + K𝑎)X
𝑅
= 𝜆X
𝑅

(K𝑒 + K𝑎)
𝑇

X
𝐿
= 𝜆X
𝐿

X𝑇
𝐿
X
𝑅
= I,

(15b)

where 𝜆 is the eigenvalues of K𝑒 + K𝑎 and X
𝐿
and X

𝑅
are the

corresponding left and right eigenvectors, respectively, and
orthonormal to each other. I is the identity matrix.

The damping matrix and the time-varying stiffness
matrix resulting from the axial excitation are assumed to be
small quantities relative to the time-invariant system stiffness
for better predictability through Hsu’s method. The standard
form in Hsu’s method is obtained by separating the regular
and perturbed items in (14) and then expanding the periodic
time-varying stiffness matrix into Fourier series,

∗∗

𝑞 (𝜏) + K̃ 𝑞 (𝜏) = −C̃
∗

𝑞 (𝜏) − K̃𝑃 (𝜏) 𝑞 (𝜏) , (16)

where

K̃𝑃 (𝜏) = K̃𝑐 cos (𝜔𝜏) + K̃𝑠 sin (𝜔𝜏) . (17)

With (16), the stability criteria given in [13, 33] can be applied
by setting epsilon to one.

4. Stability Boundaries for the Panel
under Flow

For the simple demonstrations of the model and the solving
process developed above, only the first two modes are
considered so that the closed-form stability solutions can be
obtained.The axial excitation force considered here is a single
frequency cosine function:

∗∗

𝑞 (𝜏) + [

𝜔
2

1
0

0 𝜔
2

2

] 𝑞 (𝜏)

= − [

𝑐
11

𝑐
12

𝑐
21

𝑐
22

]
∗

𝑞 (𝜏) − [

𝑘
11

𝑘
12

𝑘
21

𝑘
22

] cos (𝜔𝜏) 𝑞 (𝜏) ,

𝑓 (𝜏) = 𝐹 cos (𝜔𝜏) ,

(18)

where

𝜔
1
= √

17

2
−
15

2
√1 −

𝜎
2

𝜎2
𝑐

,

𝜔
2
= √

17

2
+
15

2
√1 −

𝜎
2

𝜎2
𝑐

,

(19a)

𝑐
11
= 𝜉(

17

2
−
15

2

𝜎
𝑐

√𝜎2
𝑐
− 𝜎2

)

+

2√6 (Ma2 − 2)√𝜇𝜎

𝜋2𝛼2 (Ma2 − 1)3/2
,

𝑐
22
= 𝜉(

17

2
+
15

2

𝜎
𝑐

√𝜎2
𝑐
− 𝜎2

)

+

2√6 (Ma2 − 2)√𝜇𝜎

𝜋2𝛼2 (Ma2 − 1)3/2
,

𝑐
12
=

15𝜉𝜎

2√𝜎2
𝑐
− 𝜎2

,

𝑐
21
= −𝑐
12
,

(19b)

𝑘
11
= 𝐹(

5

2
−

3𝜎
𝑐

2√𝜎2
𝑐
− 𝜎2

),

𝑘
22
= 𝐹(

5

2
+

3𝜎
𝑐

2√𝜎2
𝑐
− 𝜎2

),

𝑘
12
= 𝐹

3𝜎

2√𝜎2
𝑐
− 𝜎2

,

𝑘
21
= −𝑘
12
,

(19c)

𝜎
𝑐
=

15

128
𝜋
4
𝛼
3√Ma2 − 1. (19d)

The material viscous loss factor is set to zero for the eigen-
analyses in this paper. The stability boundaries can be
obtained via solving the following equations:

1st principle resonance: 𝜔 = 2𝜔
1
+ Δ𝜔

Δ𝜔 = ±√
𝑘
2

11

4𝜔
2

1

− 𝑐
2

11

2nd principle resonance: 𝜔 = 2𝜔
2
+ Δ𝜔

Δ𝜔 = ±√
𝑘
2

22

4𝜔
2

2

− 𝑐
2

22

Combination resonance: 𝜔 = 𝜔
2
− 𝜔
1
+ Δ𝜔

Δ𝜔 = ±√
𝑘
2

12

4𝜔
1
𝜔
2

− 𝑐
11
𝑐
22
.

(20)
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Figure 2: N.D. natural frequency variations with respect to dynamic
pressure ratio: Ma = 2, 𝛼 = 0.005, and 𝜎

𝑐
= 2.47 × 10−6.
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Figure 3: Stability plot for the flutter panel with respect to axial
excitation frequency and dynamic pressure ratio: Ma = 2, 𝛼 = 0.005,
𝜎
𝑐
= 2.47 × 10−6, 𝜇 = 4.39 × 10−5, and 𝐹 = 0.5.

5. Numerical Results

The N.D. natural frequencies due to materials and aero-
dynamic loads are plotted in Figure 2 with respect to
the dynamic pressure ratio, 𝜎. Once the dynamic pressure
ratio exceeds the critical value that equals 𝜎

𝑐
, two natural

frequencies merge together, which means they are conjugate
pairs and the system instability occurs.

The system stability with respect to the axial excitation
frequency and the dynamic pressure ratio is shown in Fig-
ure 3. In this paper, the gray regions in stability plots indicate
the instabilities computed by the numerical FTMmethod and
the black dash lines are the stability boundaries calculated
from the analytical perturbation method. The black solid
lines in Figure 3 represent the N.D. natural frequencies. With
the same observations as in Figure 2, the system flutters for
the entire axial excitation frequency range calculated here
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Figure 4: Stability plot for the flutter panel with respect to axial
excitation frequency and air/panel density ratio: Ma = 2, 𝛼 = 0.005,
𝜎
𝑐
= 2.47 × 10−6, 𝜎 = 1.27 × 10−6, and 𝐹 = 0.5.

when the dynamic pressure ratio passes its critical value. The
principle resonances and combination resonance given by the
perturbation method successfully match those by the FTM
method with a lot of computation savings.

The system stability with respect to the axial excitation
frequency and the air/panel density ratio is shown in Figure 4.
Since 𝜎 < 𝜎

𝑐
, the combination resonance and principal

resonances are clearly separated. Again, the results from both
the FTM method and the perturbation method match each
other very well.

It can be observed in Figures 3 and 4 that the principal
resonance of the second mode causes instabilities for all
dynamic pressure ratio and air/panel density ratio values
explored here. However, it could be stabilized by different
axial excitation frequencies. The instabilities around the
first principal resonance and combination resonance can be
suppressed for some dynamic pressure ratio and air/panel
density ratio values. Their axial excitation frequency stability
boundaries are calculated by solving (20) for Δ𝜔 = 0 and the
results are plotted in Figure 5. The system stability depends
on both resonances in each area divided by those boundaries.
The panel system is only stable when both resonances are
stable, shown in the white area in Figure 5.

6. Summary and Conclusions

This paper investigates the parametric stability of the panel
(beam) under both aerodynamic loads and axial excitations.
The dimensionless equation-of-motion is derived, including
material viscous damping, axial excitation, and aerodynamic
load. The eigen-analyses based on the first two modes are
taken as examples to explore the stability properties of the
flutter panel system with an axial single frequency cosine
excitation. Both numerical FTM method and analytical per-
turbation method solve the problem and their results match
each other very well.
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Figure 5: Stability plot for the flutter panel with respect to air/panel
density ratio and dynamic pressure ratio: Ma = 2, 𝛼 = 0.005, 𝜎

𝑐
=

2.47 × 10−6, and 𝐹 = 0.5.

The panel may flutter under high-speed air flows when
its out-of-plane dynamics couples with the aerodynamic
loads. The parameter study was conducted for the system
instability zones with respect to axial excitation frequency,
air/panel density ratio, and air/panel dynamic pressure ratio.
Different from the static axial force, this paper introduces a
periodic axial excitation that brings the system into the time-
varying domain.The axial excitation force could increase the
panel stiffness locally to overcome aerodynamic loads when
interacting with the out-of-plane vibrations.The study results
in this paper indicate that the system is stable under the
combinations of the proper excitation frequency and certain
air/panel density ratio and dynamic pressure ratio.

The perturbation method developed in this paper saves
lots of computations, which can help understand the flutter
phenomenon of the panel with axial excitations more effi-
ciently.
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