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Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial
differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can
be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be
Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved
to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in
a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is
concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of
partial differential equations.

1. Introduction

Continuous caster is a machine by which the molten steel is
solidified to slabs by spraying on it the cooling water. Because
the production situation of secondary cooling zone is very
bad, the set point of water volume in secondary cooling plays
an important role in the continuous casting [1]. Undercooling
of the strand in continuous cast secondary cooling can result
in a liquid pool that is too long. However, overcooling can
lead to the formation of cracks. The quality of steel billet
depends on the behaviour of the surface temperature [2].
Optimal control problem of partial differential equations is
encountered [3–5] in many applications ranging from engi-
neering to science. The mathematical model arises in many
engineering and physical processes such as heat conduction
[2], fluid mechanics [6], and material sciences [7]. Many
researchers considered a similar optimal control problem of
partial differential equations [8, 9]:

min
𝑢∈𝑈

𝐽 = ∫

𝑇

0

[𝑦 (0, 𝑡) − 𝑦aim (𝑡)]
2

𝑑𝑡

+ 𝛼∫

𝑇

0

[𝑢 (𝑡) − 𝑢
∗

(𝑡)]
2

𝑑𝑡

s.t. 𝑦
𝑡
− 𝑘 (𝑥) 𝑦

𝑥𝑥
= 0, (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇] ,

𝑦 (𝑥, 0) = 𝜙 (𝑥) , 𝑥 ∈ (0, 𝑙) ,

𝑘 (0) 𝑦
𝑥
(0, 𝑡) = 𝑢 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑘 (𝑙) 𝑦
𝑥
(𝑙, 𝑡) = 0, 𝑡 ∈ (0, 𝑇] ,

(1)

where 𝑦 is temperature (K). 𝑦(0, 𝑡) is the surface temperature
(K). 𝑦aim is the objective temperature. 𝑘(𝑥) is a coefficient.
𝑢(𝑡) is a controlled variable. 𝑢∗(𝑡) is a guess for the controlled
variable by a priori knowledge.𝑈 = 𝐿

2

(𝜕Ω),Ω ∈ (0, 𝑙)×(0, 𝑡).
Li [10] applied conjugate gradient algorithm to estimate

boundary condition. Lee et al. [11] proposed a repulsive
particle swarm optimization algorithm to solve this problem.
Farag et al. [12] used a modified partial quadratic interpo-
lation method to solve parabolic optimal control problem.
Based on the adjoint problem approach, Kaya and Erdem [13]
studied an inverse parabolic problem. Based on the gradient
of cost function that is Lipschitz continuous, Hasanov [14]
proved existence of a quasisolution of the inverse problem
and proposed a monotone iteration scheme. Hasanov [15]
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used the gradient method and proved the convergence of this
method. However, the step size in their gradient algorithm is
a constant. Step size largely infects the convergent speed of
this gradient algorithm. Hasanov and Pektaş [16] considered
an inverse source problem. They used a conjugate gradient
algorithm to solve this problem, and the good results were
obtained.

In this paper, a class of optimal control problems of partial
differential equations is abstracted from optimization prob-
lem for set-point values in secondary cooling zone process. In
our optimal control of partial differential equations problem,
the gradient of cost function is proved Lipschitz continuous.
We present an improved conjugate gradient algorithm to
solve this problem and prove convergence of this algorithm.
The simulation experiment shows that this algorithm can
effectively solve the optimization problem for set-point values
in secondary cooling zone, and the quality of billet is ensured.

2. Continuous Casting Operation Model of
Secondary Cooling Zone

Continuous casting makes a liquid metal by a special set of
cooling devices into a certain section in the shape of a casting
process. As shown in Figure 1, 𝑥, 𝑦, and 𝑧 are the thickness
direction of steel billet, the width direction of steel billet, and
the length direction of steel billet.

2.1. Continuous Casting Heat Transfer Model

2.1.1. Assumptions. Based on the following key assumptions
[17], continuous casting heat transfer model can be obtained.

(1) One-dimensional heat transfer is considered, so heat
transfer can be ignored in the length and the width
direction of billet.

(2) Steel billet at the same cooling zone cools uniformity.
(3) The meniscus surface is assumed to be flat.
(4) In mushy zone, we use the equivalent specific heat

instead of specific heat.
(5) The convection heat transfer process in the liquid

phase and two-phase zone is equal to conduction heat
transfer process.

2.1.2. The Differential Equation. Based on the above assump-
tions, we can get continuous casting heat transfer model for
one-dimensional model.

𝜕𝑦

𝜕𝑡
= 𝑘 (𝑥)

𝜕
2

𝑦

𝜕𝑥2
, (2)

where 𝑦 is temperature (K). 𝑡 is times (s). 𝑥 is slab thickness
direction (m) and 𝑘(𝑥) is a coefficient depending on physical
parameters of the steel, which is calculated by

𝑘 (𝑥) =
𝜆

𝜌𝐶
𝑒

, (3)

where 𝜌 is steel density (kg/m3),𝐶
𝑒
is specific heat (J/(kg ⋅k)),

and 𝜆 is thermal conductivity (W/m ⋅ K).

x

y

z

O

Cast speed
direction

Figure 1: Schematic representation of steel slab.

2.1.3. Boundary Conditions. Steel billet goes through the
crystallizer, secondary cooling zone, and air cooling zone.The
different cooling sections have different cooling characteris-
tics, so the boundary conditions are shown as

𝑘 (0) 𝑦
𝑥
(0, 𝑡) = 𝑢 (𝑡) , (4)

where 𝑢(𝑡) is heat flux in continuous casting process which is
calculated by

𝑢 (𝑡) = ℎ [𝑦 (0, 𝑡) − 𝑇
𝑤
] , (5)

where ℎ is the equivalent heat transfer coefficient in sec-
ondary cooling zone W/(m2 ⋅ K). 𝑦(0, 𝑡) is the steel billet
surface temperature (K) and 𝑇

𝑤
is cooling water temperature

(K):

ℎ = ℎ𝑥(
𝑄water
𝑆
𝑊
𝑆
𝐿

)

𝑟𝑤

(
𝑄water
𝑆
𝑊
𝑆
𝐿

)

𝑟𝑎

+ ℎ𝑟, (6)

where ℎ𝑥 and ℎ𝑟 are constants. 𝑆
𝑊
is the width of steel billet.

𝑆
𝐿
is the length of steel billet.𝑄water is the spray cooling water

volume. 𝑄air is the spray cooling air volume. The boundary
condition at 𝑥 = 𝑙 can be written as

𝑘 (𝑙) 𝑦
𝑥
(𝑙, 𝑡) = 0. (7)

2.2. Optimal Control Model of Continuous Cast Secondary
Cooling Zone. Based on continuous casting heat transfer
model, we have optimal control model of continuous cast
secondary cooling zone:

min
𝑢∈𝑈

𝐽 = ∫

𝑇

0

[𝑦 (0, 𝑡) − 𝑦aim (𝑡)]
2

𝑑𝑡

+ 𝛼∫

𝑇

0

[𝑢 (𝑡) − 𝑢
∗

(𝑡)]
2

𝑑𝑡

s.t. 𝑦
𝑡
−

𝜆

𝜌𝐶
𝑒

𝑦
𝑥𝑥
= 0, (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇] ,

𝑦 (𝑥, 0) = 𝑦
0
, 𝑥 ∈ (0, 𝑙) ,

𝑘 (0) 𝑦
𝑥
(0, 𝑡) = ℎ [𝑦 (0, 𝑡) − 𝑇

𝑤
] , 𝑡 ∈ (0, 𝑇] ,

𝑘 (𝑙) 𝑦
𝑥
(𝑙, 𝑡) = 0, 𝑡 ∈ (0, 𝑇] ,

(8)
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where 𝑦 is steel slab temperature (K). 𝑦(0, 𝑡) is the surface
temperature of steel slabs (K). 𝑦aim is the objective temper-
ature of steel slabs (K), which depends on continuous casting
technology. 𝑡 is times (s). 𝑥 is slab thickness direction (m). 𝛼
is a positive number. 𝑦

0
is initial casting temperature, which

is usually a constant; 𝑈 = 𝐿
2

(𝜕Ω), Ω ∈ (0, 𝑙) × (0, 𝑡). Other
parameters have already been defined in continuous casting
transfer model.

Many researchers [18, 19] use 𝑦(0, 𝑡), the surface temper-
ature of steel billet to evaluate the quality of billet. We hope
that the surface temperature 𝑦(0, 𝑡) is close to the objective
temperature 𝑦aim by controlling the boundary condition 𝑢(𝑡).
In the actual production of continuous casting, the controlled
variable cannot be too large, so we also give a penalty for the
controlled variable.

According to (3) and (5), 𝑘(𝑥) and 𝑢(𝑡) in (1) are assigned,
so optimal control problem in continuous casting secondary
cooling zone transfers to a general optimal control problem in
(1). Because of this, we only consider a general optimal control
problem in later sections.

3. Adjoint Problem and Lipschitz Continuity
of the Gradient of the Cost Function

3.1. Adjoint Problem. Based on the first optimization and
then discrete method, we can get the adjoint equation firstly
and then derive the optimality conditions, using numerical
methods to solve this problem. The gradient of the cost
function with respect to the control variable can be efficiently
calculated by the adjoint problem. Now we give the strong
version of the Lagrange function, and then we transfer all
constraints into cost function by separate multipliers 𝑝(𝑥, 𝑡),
𝑝(0, 𝑡), 𝑝(𝑙, 𝑡), and 𝑝(𝑥, 0) and perform partial integrations
with respect to space and time, so the Lagrange function can
be obtained:
𝐿 (𝑦, 𝑝, 𝑥, 𝑡)

= 𝛼∫

𝑇

0

[𝑢 (𝑡) − 𝑢
∗

(𝑡)]
2

𝑑𝑡

− ∫

𝑙

0

∫

𝑇

0

𝑝
𝑡
𝑦𝑑𝑡 𝑑𝑥

− ∫

𝑇

0

∫

𝑙

0

𝑘 (𝑥) 𝑝
𝑥𝑥
(𝑥, 𝑡) 𝑦 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

[𝑘 (𝑙) 𝑦
𝑥
(𝑙, 𝑡) 𝑝 (𝑙, 𝑡)] 𝑑𝑡

+ ∫

𝑇

0

[𝑘 (0) 𝑦
𝑥
(0, 𝑡) 𝑝 (0, 𝑡) + (𝑦 (0, 𝑡) − 𝑦aim)

2

] 𝑑𝑡

+ ∫

𝑙

0

𝑦 (𝑥, 𝑇) 𝑝 (𝑥, 𝑇) 𝑑𝑡

− ∫

𝑙

0

𝜙 (𝑥) 𝑝 (𝑥, 0) 𝑑𝑥

− ∫

𝑇

0

𝑢 (𝑡) 𝑝 (0, 𝑡) 𝑑𝑡.

(9)

Thevibration of the function𝐿(𝑦, 𝑝, 𝑥, 𝑡) can be expressed
as
𝐿 (𝑦 + 𝛿𝑦, 𝑝, 𝑥, 𝑡)

= 𝛼∫

𝑇

0

[𝑢 (𝑡) − 𝑢
∗

(𝑡)]
2

𝑑𝑡

+ ∫

𝑙

0

[𝑦 (𝑥, 𝑇) + 𝛿𝑦 (𝑥, 𝑇)] 𝑝 (𝑥, 𝑇) 𝑑𝑡

− ∫

𝑙

0

∫

𝑇

0

𝑝
𝑡
[𝑦 (𝑥, 𝑡) + 𝛿𝑦 (𝑥, 𝑡)] 𝑑𝑡 𝑑𝑥

− ∫

𝑇

0

∫

𝑙

0

𝑘 (𝑥) 𝑝
𝑥𝑥
(𝑥, 𝑡) [𝑦 (𝑥, 𝑡) + 𝛿𝑦 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

𝑘 (0) 𝑝
𝑥
(0, 𝑡) [𝑦 (0, 𝑡) + 𝛿𝑦 (0, 𝑡)] 𝑑𝑡

+ ∫

𝑇

0

[𝑦 (0, 𝑡) + 𝛿𝑦 (0, 𝑡) − 𝑦aim]
2

𝑑𝑡

+ ∫

𝑇

0

𝑘 (𝑙) 𝑝
𝑥
(𝑙, 𝑡) [𝑦 (𝑙, 𝑡) + 𝛿𝑦 (𝑙, 𝑡)] 𝑑𝑡

− ∫

𝑙

0

𝜙 (𝑥) 𝑝 (𝑥, 0) 𝑑𝑥

− ∫

𝑇

0

𝑢 (𝑡) 𝑝 (0, 𝑡) 𝑑𝑡.

(10)

According to (9) and (10), the following equation can be
obtained:

Δ𝐿 = 𝐿 (𝑦 + 𝛿𝑦, 𝑝, 𝑥, 𝑡) − 𝐿 (𝑦, 𝑝, 𝑥, 𝑡)

= ∫

𝑙

0

𝑝 (𝑥, 𝑇) 𝛿𝑦 (𝑥, 𝑇) 𝑑𝑥

− ∫

𝑙

0

∫

𝑇

0

𝑝
𝑡
𝛿𝑦 (𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

− ∫

𝑇

0

∫

𝑇

𝑙

𝑘 (𝑥) 𝑝
𝑥𝑥
𝛿𝑦 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

𝑘 (0) 𝑝
𝑥
(0, 𝑡) 𝛿𝑦 (0, 𝑡) 𝑑𝑡

+ ∫

𝑇

0

[𝑦 (0, 𝑡) − 𝑦aim (𝑡)] 𝛿𝑦 (0, 𝑡) 𝑑𝑡

+ ∫

𝑇

0

𝑘 (𝑙) 𝑝
𝑥
(𝑙, 𝑡) 𝛿𝑦 (𝑙, 𝑡) 𝑑𝑡.

(11)

According to (11), the following dual-equation can be
obtained:

𝑝
𝑡
= −𝑘 (𝑥) 𝑝

𝑥𝑥
, (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇] ,

𝑝 (𝑥, 𝑇) = 0, 𝑥 ∈ (0, 𝑙) ,

−𝑘 (0) 𝑝
𝑥
(0, 𝑡) = [𝑦 (0, 𝑡) − 𝑦aim (𝑡)] , 𝑡 ∈ (0, 𝑇] ,

𝑘 (𝑙) 𝑝
𝑥
(𝑙, 𝑡) = 0, 𝑡 ∈ (0, 𝑇] .

(12)
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Now we obtained adjoint problem in our optimal control
problem.

3.2. Lipschitz Continuity of the Gradient of the Cost Function.
We can consider the variation of the cost function:

Δ𝐽 (𝑢) = 𝐽 (𝑢 + Δ𝑢) − 𝐽 (𝑢)

= ∫

𝑇

0

[𝑦 (0, 𝑡) − 𝑦aim (𝑡)] Δ𝑦 (0, 𝑡) 𝑑𝑡

+∫

𝑇

0

[Δ𝑦 (0, 𝑡)]
2

𝑑𝑡

+ ∫

𝑇

0

[𝑢 (𝑡) − 𝑢
∗

(𝑡)] Δ𝑢 (𝑡) 𝑑𝑡 + ∫

𝑇

0

[Δ𝑢 (𝑡)]
2

𝑑𝑡.

(13)

In order to prove that the gradient of the cost function
is Lipschitz continuous, we give two other partial differential
equations. According to (8), if we let Δ𝑦 = 𝑦(𝑥, 𝑡; 𝑢 +

Δ𝑢) − 𝑦(𝑥, 𝑡; 𝑢), we obtain the following partial differential
equation:

Δ𝑦
𝑡
= 𝑘 (𝑥) Δ𝑦

𝑥𝑥
, (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇] ,

Δ𝑦 (𝑥, 0) = 0, 𝑥 ∈ (0, 𝑙) ,

−𝑘 (0) Δ𝑦
𝑥
(0, 𝑡) = Δ𝑢 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑘 (𝑙) Δ𝑦
𝑥
(𝑙, 𝑡) = 0, 𝑡 ∈ (0, 𝑇] .

(14)

According to (12), the following partial differential equa-
tion can be obtained in a similar way:

Δ𝑝
𝑡
= −𝑘 (𝑥) Δ𝑝

𝑥𝑥
, (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇] ,

Δ𝑝 (𝑥, 0) = 0, 𝑥 ∈ (0, 𝑙) ,

−𝑘 (0) Δ𝑝
𝑥
(0, 𝑡) = Δ𝑦 (0, 𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑘 (𝑙) Δ𝑝
𝑥
(𝑙, 𝑡) = 0, 𝑡 ∈ (0, 𝑇] .

(15)

Lemma 1. For all Δ𝑢, the following identity holds:

∫

𝑇

0

[𝑦 (0, 𝑡; 𝑢) − 𝑦aim (𝑡)] Δ𝑦 (0, 𝑡) 𝑑𝑡

= ∫

𝑇

0

𝑝 (0, 𝑡) Δ𝑢 (𝑡) 𝑑𝑡.

(16)

Proof. It is easy to know that the following identity holds:

∫

𝑇

0

∫

𝑙

0

[𝑘 (𝑥) 𝑝
𝑥
(𝑥, 𝑡) Δ𝑦 (𝑥, 𝑡)]

𝑥
𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

𝑘 (𝑙) 𝑝
𝑥
(𝑙, 𝑡) Δ𝑦 (𝑙, 𝑡) 𝑑𝑡

− ∫

𝑇

0

𝑘 (0) 𝑝
𝑥
(0, 𝑡) Δ𝑦 (0, 𝑡) 𝑑𝑡.

(17)

Thus boundary conditions of (12) show

∫

𝑇

0

[𝑦 (0, 𝑡; 𝑢) − 𝑦aim (𝑡)] Δ𝑦 (0, 𝑡) 𝑑𝑡

= −∫

𝑇

0

𝑘 (0) 𝑝
𝑥
(0, 𝑡) Δ𝑦 (0, 𝑡) 𝑑𝑡.

(18)

The following equations can be obtained:

∫

𝑇

0

[𝑦 (0, 𝑡; 𝑢) − 𝑦aim (𝑡)] Δ𝑦 (0, 𝑡) 𝑑𝑡

= ∫

𝑇

0

∫

𝑙

0

[𝑘 (𝑥) 𝑝
𝑥
(𝑥, 𝑡) Δ𝑦 (𝑥, 𝑡)]

𝑥
𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

𝑘 (𝑙) 𝑝
𝑥
(𝑙, 𝑡) Δ𝑦 (𝑙, 𝑡) 𝑑𝑡

= ∫

𝑇

0

∫

𝑙

0

𝑘 (𝑥) 𝑝
𝑥𝑥
(𝑥, 𝑡) Δ𝑦 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

𝑙

0

𝑘 (𝑥) 𝑝
𝑥
(𝑥, 𝑡) Δ𝑦

𝑥
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

∫

𝑙

0

𝑝 (𝑥, 𝑡) Δ𝑦 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

𝑘 (0) 𝑝 (0, 𝑡) Δ𝑦
𝑥
(0, 𝑡) 𝑑𝑡

= ∫

𝑇

0

𝑝 (0, 𝑡) Δ𝑢 𝑑𝑡.

(19)

Lemma 1 can be proved.

Lemma 2. There exists a constant 𝑐 > 0, so that the following
equation can be obtained:

∫

𝑇

0

󵄨󵄨󵄨󵄨Δ𝑦 (0, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 ≤ 𝑐∫

𝑇

0

|Δ𝑢 (𝑡)|
2

𝑑𝑡. (20)

Proof. If we multiply both sides of (14) by Δ𝑦(𝑥, 𝑡) and
integrate on time and space, the following equation can be
obtained:

∫

𝑇

0

∫

𝑙

0

[Δ𝑦
𝑡
− (𝑘 (𝑥) Δ𝑦

𝑥
)
𝑥
] Δ𝑦 𝑑𝑥 𝑑𝑡 = 0. (21)

It is easy to know that the following identity holds:

∫

𝑇

0

∫

𝑙

0

Δ𝑦
𝑡
Δ𝑦𝑑𝑥𝑑𝑡 =

1

2
∫

𝑇

0

∫

𝑙

0

[(Δ𝑦)
2

] 𝑑𝑥 𝑑𝑡

=
1

2
∫

𝑙

0

Δ𝑦 (𝑥, 𝑇)
2

𝑑𝑥.

(22)
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According to the boundary conditions of (14), the follow-
ing equation can be derived:

∫

𝑙

0

∫

𝑇

0

(𝑘 (𝑥) Δ𝑦
𝑥
)
𝑥
Δ𝑦𝑑𝑡 𝑑𝑥

= ∫

𝑙

0

∫

𝑇

0

(𝑘 (𝑥) Δ𝑦
𝑥
Δ𝑦)
𝑥
𝑑𝑡 𝑑𝑥

− ∫

𝑙

0

∫

𝑇

0

𝑘 (𝑥) (Δ𝑦
𝑥
)
2

𝑑𝑡 𝑑𝑥

= −∫

𝑙

0

𝑘 (0) Δ𝑦
𝑥
(0, 𝑡) Δ𝑦 (0, 𝑡) 𝑑𝑡

− ∫

𝑙

0

∫

𝑇

0

𝑘 (𝑥) (Δ𝑦
𝑥
)
2

𝑑𝑡 𝑑𝑥

= ∫

𝑇

0

Δ𝑦 (0, 𝑡) Δ𝑢 (𝑡) 𝑑𝑡

− ∫

𝑙

0

∫

𝑇

0

𝑘 (𝑥) (Δ𝑦
𝑥
)
2

𝑑𝑡 𝑑𝑥.

(23)

Taking (22) and (23) into (21), we have the following
equations:

∫

𝑇

0

[Δ𝑦 (𝑥, 𝑇)]
2

+ ∫

𝑙

0

∫

𝑇

0

𝑘 (𝑥) (Δ𝑦
𝑥
)
2

𝑑𝑡 𝑑𝑥

= ∫

𝑇

0

Δ𝑦 (0, 𝑡) Δ𝑢 (𝑡) 𝑑𝑡.

(24)

We use the 𝜀-inequality

𝛼𝛽 ≤ 𝜀
𝛼
2

2
+
𝛽
2

2𝜀
, ∀𝛼, 𝛽 ∈ 𝑅, ∀𝜀 > 0. (25)

On the right-hand side of (24), then we have

∫

𝑇

0

Δ𝑢Δ𝑦 (0, 𝑡) 𝑑𝑡 ≤
1

2𝜀
∫

𝑇

0

|Δ𝑢|
2

𝑑𝑡

+
𝜀

2
∫

𝑇

0

󵄨󵄨󵄨󵄨Δ𝑦 (0, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡.

(26)

According to (24) and (26), the following equation can be
derived:

∫

𝑙

0

∫

𝑇

0

𝑘 (𝑥) (Δ𝑦
𝑥
)
2

𝑑𝑡 𝑑𝑥 + ∫

𝑙

0

[Δ𝑦 (𝑥, 𝑇)]
2

𝑑𝑡

≤
1

2𝜀
∫

𝑇

0

|Δ𝑢|
2

𝑑𝑡 +
𝜀

2
∫

𝑇

0

󵄨󵄨󵄨󵄨Δ𝑦 (0, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡.

(27)

From literature [14], the following equation can be
obtained:

2𝑙
2

∫

𝑙

0

∫

𝑇

0

(Δ𝑦)
2

𝑑𝑡 𝑑𝑥 + 2𝑙 ∫

𝑇

0

[Δ𝑦 (0, 𝑡)]
2

𝑑𝑡

≤
1

2𝜀
∫

𝑇

0

(Δ𝑢)
2

𝑑𝑡 +
𝜀

2
∫

𝑇

0

[Δ𝑦 (0, 𝑡)]
2

𝑑𝑡.

(28)

So the following equation can be obtained:

∫

𝑇

0

󵄨󵄨󵄨󵄨Δ𝑦 (0, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 ≤ 𝑐∫

𝑇

0

|Δ𝑢 (𝑡)|
2

𝑑𝑡. (29)

We can know that there is a constant 𝑐 which makes (20)
established. Lemma 2 can be proved.

Lemma 3. Consider

∫

𝑇

0

󵄨󵄨󵄨󵄨Δ𝑦 (0, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 = ∫

𝑇

0

Δ𝑝 (0, 𝑡) Δ𝑢 (𝑡) 𝑑𝑡. (30)

Proof. According to (15), the weak solution of this partial
differential equation is the following equation:

∫

𝑇

0

∫

𝑙

0

(Δ𝑝Δ𝑦)
𝑡
𝑑𝑥 𝑑𝑡 − ∫

𝑇

0

∫

𝑙

0

Δ𝑝Δ𝑦
𝑡
𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

𝑘 (𝑥) Δ𝑦Δ𝑝
󵄨󵄨󵄨󵄨
𝑥=𝑙

𝑥=0
𝑑𝑡

− ∫

𝑇

0

∫

𝑙

0

𝑘 (𝑥) Δ𝑝
𝑥
Δ𝑦
𝑥
𝑑𝑥 𝑑𝑡 = 0.

(31)

According to the boundary conditions of (14) and (15),
the following equation can be obtained:

∫

𝑇

0

𝑘 (𝑙) Δ𝑦 (𝑙, 𝑡) Δ𝑝
𝑥
(𝑙, 𝑥) 𝑑𝑡

− ∫

𝑇

0

𝑘 (0) Δ𝑦 (0, 𝑡) Δ𝑝
𝑥
(0, 𝑥) 𝑑𝑡

− ∫

𝑇

0

𝑘 (𝑙) Δ𝑦
𝑥
(𝑙, 𝑡) Δ𝑝 (𝑙, 𝑥) 𝑑𝑡

+ ∫

𝑇

0

𝑘 (0) Δ𝑦
𝑥
(0, 𝑡) Δ𝑝 (0, 𝑥) 𝑑𝑡

= ∫

𝑇

0

[Δ𝑦 (0, 𝑡)]
2

= ∫

𝑇

0

Δ𝑝 (0, 𝑡) Δ𝑢 (𝑡) 𝑑𝑡.

(32)

Lemma 3 can be proved.

Theorem 4. If the gradient of cost function is Lipschitz
continuous, there is a constant𝐿 tomake the following equation
hold:

󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠

(𝑢 + Δ𝑢) − 𝐽
󸀠

(𝑢)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐿 ‖Δ𝑢‖ . (33)

Proof. Taking into account Lemmas 1, 2, and 3, we can obtain
the following equation:

(𝐽
󸀠

(𝑢 + Δ𝑢) − 𝐽
󸀠

(𝑢) , Δ𝑢)

= ∫

𝑇

0

Δ𝑝 (0, 𝑡) Δ𝑢 𝑑𝑡

= ∫

𝑇

0

[Δ𝑦 (0, 𝑡)]
2

≤ 𝐿∫

𝑇

0

[Δ𝑢 (𝑡)]
2

𝑑𝑡.

(34)
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4. Conjugate Gradient Algorithm
Solves Optimal Control of Parabolic
Partial Differential Equations and
Its Convergent Analysis

4.1. Conjugate Gradient Algorithm. After we prove that the
gradient of cost function is Lipschitz continuous, we can
use the conjugate gradient algorithm to solve this PDE opti-
mization problem. If we choose the reasonable parameters in
conjugate gradient algorithm, we can prove the convergence
of conjugate gradient algorithm.

As shown in Figure 2, 𝑘 is iteration number. 𝑑
𝑘
is iteration

direction. 𝑔
𝑘
is gradient of cost function. 𝛼 is step size. 𝑢𝑘 is

controlled quantity. 𝐽(𝑢) is cost function. 𝛽
𝑘
is a parameter in

conjugate gradient algorithm, and eps is a small constant.
Becausewe use FR conjugatemethod to solve this optimal

problem, 𝑑
𝑘
and 𝛽

𝑘
can be calculated by the following

equations:

𝑑
𝑘
= −𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1
,

𝛽
𝑘
=

𝑔
𝑇

𝑘
𝑔
𝑘

𝑔𝑇
𝑘−1
𝑔
𝑘−1

.

(35)

Step size largely infects the convergent speed of conjugate
gradient algorithm. If we choose Wolfe line search rules, we
have the following formula [20]:

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) + 𝜎
1
𝛼 (𝑘) 𝑔

𝑇

𝑘
𝑑
𝑘
,

󵄨󵄨󵄨󵄨∇𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)
󵄨󵄨󵄨󵄨 ≥ 𝜎2

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨
,

0 < 𝜎
1
< 𝜎
2
<
1

2
.

(36)

4.2. Convergence Analysis of Conjugate Gradient Algorithm

Theorem 5. If 𝑑
𝑘
, 𝛽
𝑘
, and 𝛼

𝑘
are calculated by (35) and (36),

the following equation holds:

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (37)

Proof. According to (36), the following equations can be
obtained:

−

𝑘

∑

𝑖=0

𝜎
𝑖

2
≤
𝑔
𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −2 +

𝑘

∑

𝑖=0

𝜎
𝑖

2
,

∀𝑘 = 0, 1, . . . ,∞,

(38)

−

𝑘

∑

𝑖=0

𝜎
𝑖

2
< −

∞

∑

𝑖=0

𝜎
𝑖

2
=

1

1 − 𝜎
2

< 2. (39)

According to (38) and (39), the following equation can be
obtained:

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘
𝑑
𝑘−1

󵄨󵄨󵄨󵄨󵄨
≤ −𝜎
2
𝑔
𝑇

𝑘−1
𝑑
𝑘−1

<
𝜎
2

1 − 𝜎
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩 . (40)

Set k = 1

Yes

Yes

k = 1?

No

No

Calculate the gradient
of cost function gk
dk = −gk + 𝛽kdk−1

dk = −gk

k = k + 1
Determine step size by
wolf line search rules

uk+1 = uk − 𝛼kdk

End

J(uk+1) − J(uk) ≤ eps?| |

Figure 2: Conjugate gradient algorithm process.

According to the recursion formula of 𝑑
𝑘
, the following

equation can be represented:

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

− 2𝛽
𝑘−1
𝑔
𝑇

𝑘
𝑑
𝑘−1

+ 𝛽
2

𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

−
2𝜎
2

1 − 𝜎
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

+ 𝛽
2

𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

=
1 + 𝜎
2

1 − 𝜎
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

+ 𝛽
2

𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

≤
1 + 𝜎
2

1 − 𝜎
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
4

𝑘

∑

𝑖=1

1

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2
+

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔0
󵄩󵄩󵄩󵄩
2
.

(41)

If this algorithm is not convergent, (37) does not hold and
there exists a constant 𝜀

0
> 0, so that the following identity

holds:

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜀0,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ 𝜏
1
(𝑘 + 1) . (42)
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According to (39), we can obtain the following equations:

cos 𝜃
𝑘
=

𝑔
𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩

≥ (2 −

𝑘

∑

𝑖=0

𝜎
𝑗

2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

≥
1 − 2𝜎

2

1 − 𝜎
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

,

∞

∑

𝑘=0

cos2𝜃
𝑘
≥ (

1 − 2𝜎
2

1 − 𝜎
2

)

2 ∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
≥ 𝜏
2

∞

∑

𝑘=0

1

𝑘 + 1
.

(43)

Since𝑔(𝑥) is the gradient of cost function, we have proven
that 𝑔(𝑥) is Lipschitz continuous. There exists a constant, so
that the following inequality holds:

𝜎
2
𝑔
𝑇

𝑘
𝑑
𝑘
≤ 𝑔
𝑇

𝑘+1
𝑑
𝑘
= 𝑔
𝑇

𝑘
+ (𝑔
𝑘+1

− 𝑔
𝑘
)
𝑇

𝑑
𝑘

≤ 𝑔
𝑇

𝑘
𝑑
𝑘
+ 𝛼
𝑘
𝐿
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

.

(44)

Then we can obtain the following equations:

𝛼
𝑘
≥ −

1 − 𝜎
2

𝐿
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘
,

𝑓
𝑘+1

≤ 𝑓
𝑘
− 𝜎
1

1 − 𝜎
2

𝐿

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2 cos2𝜃

𝑘
.

(45)

The sequence 𝑓
𝑘
is monotonic decline and has lower

bound, so ∑∞
𝑘=0

‖𝑔
𝑘
‖
2cos2𝜃

𝑘
is convergent. Since ‖𝑔

𝑘
‖ ≥ 𝜀

0
,

∑
∞

𝑘=0
cos2𝜃
𝑘
is convergent and we can conclude that cos2𝜃

𝑘

is convergent and not convergent at the same time. Thus the
assumption ‖𝑔

𝑘
‖ is invalid and we can prove that (37) holds,

so this conjugate gradient algorithm is convergent.

4.3. AnOptimal Choice of the Stopping in the Conjugate Gradi-
ent Algorithm. It is important to understand the behavior of
the cost function value depending on the iteration number.
For given smooth objective temperature 𝑦aim, an optimal
control problem is solved by conjugate gradient algorithm:

𝑦aim = 1173.16 + 100 sin( 𝜋
10
𝑡) (K) ,

𝑘 =
7250 × 540

50
, eps = 1 × 10−1,

𝑢 (𝑥, 0) = 1173.16K, 𝐿 = 0.25m,

𝑇 = 20 s, 𝑢
∗

= 0, 𝛼 = 1 × 10
−7

.

(46)

As shown in Figure 3, the behaviour of cost function value
as a function of the iteration number consists of three phases:
the initial phase of rapid decrease but very short duration, the
second phase of slow decrease, and the third phase of almost
constant behaviour.

When dealing with optimal control problems, the stop-
ping parameter plays an important role in conjugate gradient
algorithm. However, it is difficult to choose a good stopping
parameter eps. If stopping parameter eps is too large, the
result cannot converge to optimal solution. The iteration
number is too large because stopping parameter is too small.
As shown in Table 1, the best value of stopping parameter is
achieved at eps = 0.1.
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C
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n
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103

102

Figure 3: Surface temperature error of billet.

Table 1: Determination of an optimal value stopping parameter.

eps Iteration number Cost function value
1 42 394.80
0.1 115 258.15
0.01 170 258.15

Table 2: Physical parameters of steel grade.

Items Parameters
Specific heat 540 (J/(kg⋅k))
Density 7250 (kg/m3)
Thermal conductivity 30 (W/m⋅K)

5. Simulation Experiment

To test the effectiveness of the method in this paper, the
simulation experiments are done in actual plant data. The
experiment result proves the effectiveness of the method in
this paper. Physical parameters of steel grade are given in
Table 2.

Example 1. Experimental parameters are shown as

𝑦aim = {
1173.16 (K) , 𝑡 < 10 (s) ,
1273.16 (K) , 𝑡 ≥ 10 (s) ,

𝑘 =
7250 × 540

50
, eps = 1 × 10−1,

𝑢 (𝑥, 0) = 1173.16K, 𝐿 = 0.25m,

𝑇 = 20 s, 𝑢
∗

= 0, 𝛼 = 1 × 10
−7

.

(47)

In this example, the objective temperature changes from
1173.16 (K) to 1273.16 (K), when time is equal to 10 seconds.
Figure 4 shows that the actual temperature can follow the
objective temperature very well, so the quality of billet can
be ensured. From Figure 5, we can know that the maximum
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Figure 4: Surface temperature of billet.
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Figure 5: Surface temperature error of billet.

error is about 50 (K). The temperature error is very small
in most of the time. Based on technological requirements
in continuous casting process, the behaviour of the surface
temperature ensures that the billet has a good quality.
Figure 6 shows the controlled variable. Because of penalty
of controlled variable, the controlled variable cannot be very
large. When the controlled variable is less than zero, this
process is a heating process. When the controlled variable is
larger than zero, this process is a cooling process.

Example 2. Experimental parameters are shown as

𝑦aim = 1173.16 + 100 sin( 𝜋
10
𝑡) (K)

𝑘 =
7250 × 540

50
, eps = 1 × 10−1,

𝑢 (𝑥, 0) = 1173.16K, 𝐿 = 0.25m,

𝑇 = 20 s, 𝑢
∗

= 0, 𝛼 = 1 × 10
−7

.

(48)
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Figure 6: Controlled variable.
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Figure 7: Surface temperature of billet.

In this example, the objective temperature is a sinusoidal
curve which is continuous function. Figure 7 shows that the
actual temperature can follow the objective temperature very
well, so the quality of billet can be ensured. From Figure 8,
we can know that the maximum error is about 8 (K). Because
the objective temperature is a sinusoidal curve, themaximum
error becomes smaller than Example 1.The temperature error
is very small in most of the time. Based on technological
requirements in continuous casting process, the behaviour
of the surface temperature ensures that the billet has a good
quality. Figure 9 shows the controlled variable. Because of a
penalty of controlled variable, the controlled variable cannot
be very large.

Example 3. Experimental parameters are shown as

𝑦aim = 1673.16 (K) ,

𝑘 =
7250 × 540

50
, eps = 1 × 10−1,



Advances in Mathematical Physics 9

0 5 10 15 20

0

1

2

Time (s)

Er
ro

r (
K)

−7

−6

−5

−4

−3

−2

−1

Figure 8: Surface temperature error of billet.

0 5 10 15 20

0

1

2

3

4

Time (s)

−5

−4

−3

−2

−1

C
on

tro
lle

d 
va

ria
bl

e (
W

/m
2
)

×104

Figure 9: Controlled variable.

𝑢 (𝑥, 0) = 1173.16K, 𝐿 = 0.25m,

𝑇 = 20 s, 𝑢
∗

= 0, 𝛼 = 1 × 10
−7

.

(49)

In this example, the objective temperature is 1673.16 (K),
but the initial temperature of billet is 1844.16 (K). Figure 10
shows that the actual temperature can follow the objective
temperature verywell.While the billet quality can be ensured,
the surface temperature of billet can approach the objective
temperature rapidly. From Figure 11, we can know that the
maximum error is about 160 (K). Due to the penalties of
control variable, the actual temperature cannot step to the
objective temperature. Figure 12 shows the controlled vari-
able. Because of penalty of controlled variable, the controlled
variable cannot be very large.
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Figure 10: Surface temperature of billet.
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6. Conclusions

In order to solve optimization problem for set-point values
in secondary cooling process, this paper applies first opti-
mization and then discrete method to this optimal problem.
We prove that the gradient of cost function is Lipschitz
continuous. Base on this, we propose an improved conjugate
algorithm to solve this problem and prove that this algorithm
is convergent.
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