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Effective maintenance strategies are of utmost significance for system engineering due to their direct linkage with financial aspects
and safety of the plants’ operation. At a point where the state of a system, for instance, level of its deterioration, can be constantly
observed, a strategy based on condition-based maintenance (CBM) may be affected; wherein upkeep of the system is done
progressively on the premise of monitored state of the system. In this article, a multicomponent framework is considered that
is continuously kept under observation. In order to decide an optimal deterioration stage for the said system, Genetic Algorithm
(GA) technique has been utilized that figures out when its preventive maintenance should be carried out. The system is configured
into a multiobjective problem that is aimed at optimizing the two desired objectives, namely, profitability and accessibility. For the
sake of reality, a prognostic model portraying the advancements of deteriorating system has been employed that will be based on
utilization of continuous event simulation techniques. In this regard, Monte Carlo (MC) simulation has been shortlisted as it can
take into account a wide range of probable options that can help in reducing uncertainty. The inherent benefits proffered by the said
simulation technique are fully utilized to display various elements of a deteriorating system working under stressed environment.
The proposed synergic model (GA and MC) is considered to be more effective due to the employment of “drop-by-drop approach”
that permits successful drive of the related search process with regard to the best optimal solutions.

1. Introduction and Literature Review

Optimization of maintenance activity is considered to be
an interesting subject for scientists and researchers, as can
be observed by the abundantly available related conference
papers and journals, and also to the industry, for its notable
fallbacks to the activities associated with safety and financial
aspects.

Distinctive ways and approaches are available to deal
with the issue of maintenance. Generally, maintenance is
carried out on a restorative premise or planned occasionally
based on experience of the professionals. When state can
be observed, constantly for the functional systems through

testing or investigations for the reserved safety frameworks, a
CBM policy can be enforced, which helps in deciding when
the maintenance of system should be carried out. Benefits
of CBM strategy exist in the likelihood of maintaining the
framework just when required, thus, sparing assets as well as
the system’s accessibility at the very basic level. This strategy
indicates remarkable possibilities in frameworks like atomic
power plants, costal establishments, and aviation setups,
which work under severe conditions which can harm their
coherence and usefulness while being consistently observed
due to the safety repercussions.

During design stage, the need of building up a productive
CBM policy is twofold. Firstly, one needs to build up an
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appropriate perceptive model for the system, depicting its
future development of deterioration level in the light of
observed factors; secondly, one must have the capacity to
assess diverse maintenance procedures in an optimization
plan aimed at optimizing two main objectives, namely,
profitability and accessibility.

Accessibility is a measure of predefined operable and
committed state of a framework, its subsystems, or compo-
nents at the beginning of an operation, when the time of
operation is quite obscure, that is, arbitrary or random. In
other words, accessibility is the extent of time a framework is
in a working condition. It is also referred to as “capable rate”
of an operation. Numerically, it is equal to 100% minus the
time when a system is inaccessible.

Numerous researchers and scientists have concentrated
on the issue of developing thorough models for degrading
systems. In this regard, Markov’s chain and Markov’s model
have been mostly used for accomplishing the logical out-
comes [1-7]. However, in the abovementioned cases, models
are generally based on simple hypotheses. Most of the models
available in literature presume that the level of system’s deteri-
oration can be ascertained by means of repeated examination
only [2, 4, 5, 7]; Kopnov [6] considered a situation where
the system is consistently observed. Lately, Lam and Yeh
[3] considered both cases. An additional hypothesis is to
believe that repairs/replacement of the spare parts always
reestablish the system to a “perfect” condition, which may
not be exceptionally practical. As of late, Kopnov [6] has
considered an issue of limited recuperation. Whenever more
practical issues related to dynamic conduct of the system
should be taken into account, simple investigative models
cannot realistically depict the system, which ultimately forced
the researchers to adopt the simulation techniques like the
Monte Carlo simulation [5, 7-9].

As far as optimization of maintenance system is con-
cerned, the issue fundamentally sums up to decide the level of
the observed deteriorated condition of the system after which
maintenance should be carried out. Traditional optimization
techniques, for example nonlinear programming, dynamic
programming, gradient methods, mixed integer, and integer
programming, regularly involve the utilization of improved
models, giving clear assertions regarding optimization of cost
functions and, perhaps, their derivatives. As already empha-
sized, the unpredictable performance of the contemporary
manufacturing plants and other industrial setups can barely
be managed using simpler optimization models as it is likely
that the objective functions and their dependent variables
are fixed into complex and more complicated computer
codes. Thus, a serious impediment exists related to the
abovementioned optimization methods in today’s dynamic
environment.

The researchers are confronted with the daunting chal-
lenge of accomplishing several objectives at the same time
while trying to optimize a design feature of any engineered
framework, such as higher revenues, high dependability,
low costs, and low risk of accidents, which may offset each
other. Moreover, a few strict requirements pertaining to
weight/volume of the system are also required to be fulfilled.
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In order to optimize a multiobjective system, the opti-
mization search methods focused on an individual objective
function, being a factored merger of desired objectives while
inflicting necessary constraints on the system at the same
time, are generally used [10-13]. This methodology certainly
leads to unpredictable definition of the levels of constraints
and weighted factors that have been used to optimize the
system.

A more useful method is to consider every single objec-
tive independently and to identify a set of solutions that
is relatively better. Every element of this set is considered
to be better or equivalent to the other elements of the
set, barring few odds, as far as desired objectives are con-
cerned. Therefore, a set of solutions obtained as a result of
multiobjective methodology, described above, gives a range
of “satisfactory” solutions between which trade-off can be
reached.

In our research, a methodology has been proposed
that couples the Genetic Algorithms (GAs) [14-29] with a
continuous event simulation technique so as to display a
more sensible prognostic model portraying the deteriorating
system and thereby seeking an optimal deterioration level
after which preventive maintenance must be carried out
while optimizing various objectives at the same time. In this
regard, Monte Carlo (MC) simulation technique has been
shortlisted as it takes into account a wide range of probable
options that can help in reducing uncertainty [11, 30-33].
Basically, we consider “mean accessibility” and “total profit,”
which resulted from the operating system over a specified
time, as our “main objectives.” A more common poten-
tial solution consists of encoded chromosomes of Genetic
Algorithms (GA) population, comprising a set of variables,
one of each type, so as to decide the optimal deterioration
level after which preventive maintenance is necessitated. All
the potential solutions obtained as a result of GA search
will be evaluated using proposed model of MC simulation
in order to accomplish the objectives of profitability and
accessibility. This coupled approach has already been used by
few researchers for both single [12, 31] as well as multiobjec-
tive [33] issues. Although different algorithms for Multiple
Objective Genetic Algorithm (MOGA) and MC simulation
are available, however, for the sake of simplicity and clarity,
in-built algorithms offered by MATLAB have been utilized
for carrying out the requisite calculations.

The paper is organized in different sections. Section 2
describes problem statement, whereas in Section 3 Markov’s
model for deteriorating system has been defined. Keeping
in view various probabilities, effects of maintenance on
a particular component in the form of either increased
deterioration level or improved condition of the same
are highlighted in the said model, in case a maintenance
activity is performed or otherwise. Moreover, Monte Car-
lo (MC) simulation model of the system is also described
in the same section. In Section 4, the basics of GA search
methodology are briefly presented, while encompassing the
subject of multiobjective optimization in further details. The
reasons for using this coupled approach (i.e., GA and MC)
and the proposed model are stated in Section 5 along with
its Pseudocode 1. Simulated results for the proposed model
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Technique GA (n, iterations) {
Iteration n = 0;
Generate initial population “P(rn)
Technique MC (N, iterations) {
Initialize N = 0;
While (not done)
{

»,
>

X(P(n)) = rand(0, 1);

Compute F*(X);
Compute C(X);
Accept “C”

Else if archive is full, replace “C”;

C+=C(X)
Else,
Reject “C”;
N=N+1;
}
}
Evaluate new population “P(n)”;
While (not done)
{

Parents(n) = Select parents(P(n));

Evaluate(Off — springs(n));

n=n+1l;

}

Set random value “X” for each component of population “P(r)
Calculate corresponding values of fitness function estimates “F*”;
If (F* > F), then; % “F” is the previous values of fitness function estimates in the archive;

Compute value of chromosome “C” corresponding to random value “X”;

Add “C” in population “P(n)” till the archive contains desired number of “X ,” chromosomes;

Carry out Roulette Wheel selection of parents;
Procreate off-springs through crossover and mutation of parents;
Off — springs(n) = Procreate(Parents(n));

Calculate fitness and generate new population based on the concept of elitism;

P(n+ 1) = Select survivors(P(n), Off — springs(n));

»,
>

PSEUDOCODE 1

are presented in Section 6 and conclusion is finally made in
Section 7 of the article.

2. Problem Formulation

Let us review a framework comprising “N,,” nodes (macro-
components) in series, each accomplishing its specific task
(Figure 1). Every “i,th” node consists of “N,(i,)” parallel
branches, wherein each branch of the node contains a series
of “N,(i,,i,)” components, i, = 1,2,...,N, and i, =
1,2,...,Ny(i,). If “N,” types of components are present in
the system, then total components in the system can be given
by following expression:

N,, Np (i)
N, =Y Y N, (ii,)- 1)
i,=1 i,=1

It is assumed that same maintenance policy will be
adopted for the components of similar type and the per-
formance of components will deteriorate with the passage

of time. Other assumptions made for the system are as
follows:

(i) The level of degradation for each component is con-
tinuously updated.

(ii) Each component has its probability of failure as a
function of its deterioration level.

(iii) Each component is subjected to CBM, where the
deterioration falls beyond a given level.

The issue in this regard is to determine an optimal deteri-
oration level beyond which the maintenance is necessitated.
The issue is configured as an optimization search based on
multiple objective, with the aim to maximize the profitability,
“G,” and the mean accessibility, “A,” of the system during a
given time “T),.” The mean accessibility, “A,” of the system
with regard to the deteriorating components will be discussed
further in Section 3. As far as the profitability, “G,” is
concerned, it can be expressed by following equation:

G=P-(M+0QO), (2)
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FIGURE 1: A framework of N, = 3 nodes, comprising N, = 3
component types (A, B, and C).

T,
where P, = S Io M A(t)dt is the overall profit of plant, “A(t)”
is the accessibility of plant at time “¢,” and “S” are the service
charges for service of the plant paid by customer per unit
time.

N, Tm i .

M=y M, Jo P,,(t)dt are the aggregate maintenance
charges for all elements of the system, i = 1,..., N ; “M;” are
the maintenance charges for an element “i” and “P, (t)” is the
probability of “ith” element being maintained at a time “¢.”

C =Cy JOT M ND(t)dt is the compensation paid to the
customer due to nondelivery “ND(#)” of consented services
when the system is nonfunctional; “Cy,” is the monetary
penalty imposed and ND(t) = 1 — A(t), with “A(¢)” being
the accessibility of plant at time “t.”

In order to evaluate system’s performance, different math-
ematical and analytical methods exist. For better comprehen-
sion and drawing necessary conclusion with regard to their
suitability and effectiveness, few of these will be considered
in the following sections.

3. Markov’s Model and MC Simulation for
Deteriorating System

3.1. Markov’s Model. Markov’s process is a numerical method
that transforms a system from one state to another, within a
limited number of feasible states. Markov was of the view that
future state of the system is not dependent on its past states
when its present state is clearly established.

In order to understand Markov’s Model correctly, we need
to first get clarity about the Markov’s Chain. If Y, ,, = m
shows a stochastic/probabilistic procedure that is supposed
to remain at a state “wn” for the time “x + 17, then

P(Yyyy=m|Y,=nY,_, =n,....Y, =n,Y,
=n,,Y, =np) 3)

P(Yx+l:m|Yx:n):P

mm:*

for the states m,n,n,,...,n, and all x > 0. This kind of
probabilistic procedure is termed as Markov’s chain. The
value “P,,.” indicates the probability of stochastic procedure

to transform the system from state “n” to “m.” As per Ross’s
theory, all the probabilities are greater than or equal to “0”
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and that the stochastic procedure must transform to the other
states; thus

an 20’
® (4)
YP, =1, n=012,...
m=0

Representing the “x+ y” probabilities of system transition
by P(X,,, =m|Y, = n) = P,” and computing the same by
Chapman-Kolmogorov’s equation, we get

[oe)
Py =Y PiPl (5)
k=0

forall x, y > 0. In (5), the term rka,fm” shows probability of
system’s transformation from state “n” to “m” during “x + y”
transitions following a path that will take the system to state
“k” after “xth” transition.

In general, Markov’s process can be termed as an adjunct
to the Markov’s chain. If E = {0, 1,2, 3,...} denotes the state
space and (Y (t) | t > 0) represents a Markov’s process, then
as per Markov’s chain definition, (Y(t) | ¢ > 0) is called a
“continuous-time Markov’s chain,” wherein states n,,,n,m € E
and0 <z, <z, <<z, <t"<t"+t Mathematically, the
same can be expressed as follows:

Pt +t)=P(Y(t"+t)=m|Y (") =nY (z,)
= nx’Y(Zx—l) = nx—l’Y(Zx—Z) = nx—Z'“Y(Zl) (6)
=m)=PY [ +t)=m|Y (") =n),
where “P,,,(t",t" + t)” is the transition probability which

indicates that if a system were at state “n” at time “¢*,” then it
will move to the next state “m” at time “t* + ¢.”

Markov’s process is considered to have Markovian prop-
erty which affirms that the future state of a system will be
independent of its past state “Y(z;) = ny,” provided present
state “Y(t*) = n” of the system is known. Therefore, (6) can

be elucidated as follows:
P,,t)=P(Y(t"+t)=m|Y(t")=n). (7)

The abovementioned Markov process is known as
“continuous-time homogeneous Markovs process,” where
“P,,.(t)” is the probability of transition of Markov’s process
that depends on the length of time interval “t” rather than
the actual time “t*.”

In case (6) cannot be elucidated as (7), it shows that the
transition probability depends on the actual time interval
“(t*,t" + t)” as well as the starting time “t.” As per the defini-
tions of stationary and homogeneous transition probabilities
[34], these are always modified with respect to time, which is
termed as “continuous-time inhomogeneous Markov process.”

Chapman-Kolmogorov equation of “continuous Markov
process” is, therefore, the solution of transition probabilities
within a particular time interval. The said equation is as
follows:

P, +t)=P(Y(t"+t)=m|Y(0)=n)

= ank (t*)Pkm (t))

keE

(8)
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FIGURE 2: Deterioration process of an element in a given time.

for n,m,k € E. Equation (8) illustrates that the system will
move to condition “m” during a time period “t* + ¢” starting
from condition “n” on a path that would take the system
towards condition “k” at time “¢t*.” A feasible interpretation of
the time progression of a component is depicted in Figure 2.

Finally, the system’s accessibility “A(t)” at a given time “¢”
along with its probability of being under repair “P,,(t)” can
be expressed using the following equations:

k k+1
At)=) Y P,,
n=0m=1
)
y y+1
Py@®= )Y Y Py
n=k+1m=k+2

Using the abovementioned Markov Model, objective
function as well as the mean system accessibility “A(t)” over
a given time “t” can be computed. However, a systematic
approach to evaluate the system accessibility is possible only if
simplified hypotheses are made. Therefore, a more pragmatic
approach towards modeling of the process is essentially
required. In order to deal with such situations, Monte Carlo
(MC) simulation provides a better bailout solution.

3.2. MC Simulation. In the field of reliability sciences, sim-
ulation can be termed as a good substitute to the analytical
techniques. Prediction of component’s accessibility within a
given timeframe by MC simulation is the implementation
of the said concept. It is pertinent to highlight that the
simulation results acquired by MC simulation conform to the
ones achieved with Markov’s process that is considered to be
a more traditional technique.

MC simulation can be described in many ways; however,
one thing that is common in all the definitions is that it carries
out random sampling to reach a solution. The algorithms
of MC simulation depend on “pseudorandom numbers” to
generate a feasible outcome of the process. All realizations
are expected to have different probabilities, and by repeating
the process using different “pseudorandom numbers” as input,
accurate data regarding modeled processes is obtained. Based
on the acquired data, a statistical analysis can then be

performed so as to answer various questions with regard to
the process.

After several MC simulation runs, we achieve numerous
independent interpretations of the abovementioned pseudo-
random variables whose group averages provide estimates
of the system accessibility “A(t)” as well as the probability
of component “i” being under maintenance “P,,(¢),” where
i =1,...,N.. Using the said data, an estimate of the desired
objective functions, that is, mean accessibility “A” and net
profit “G” of the system, can be estimated accordingly.

In order to model the dynamics of maintenance, the pro-
cess strictly depends on the quantity of available maintenance
professionals. If none of the professionals is available, due
to their commitment on some other components, the faulty
equipment has to be kept on hold before its repair can be
commenced; that is, in MC simulation, a stochastic transition
of a component is allowed towards an operational state only
when the quantity of components being repaired simultane-
ously is less than the quantity of unoccupied maintenance
professionals.

4. Optimizing the Solution through GA

Genetic Algorithm (GA) was first validated as an optimiza-
tion technique by Holland in 1975 [15]. It is a search method
evolved to imitate the processes of natural evolution. GA
is different from other optimization methods owing to its
global searching capability accomplished by a population
of solutions as opposed to a single solution. Each of the
proposed solutions is depicted by a vector “Y,” comprising
variables that are independent of one another, further coded
into chromosomes, consisting of different genes, each rep-
resenting an element of the said vector. Generally, binary
coding technique is utilized for the said purpose.

At the start of search process in GA, a randomized
initial population of chromosomes, comprising “X,,” fea-
sible solutions, is generated. Next, the evaluation of the
said chromosomes in terms of their fitness is carried out.
This generated initial population is further evolved during
successive iterations. Evaluation of objective function is
carried out each time as a fresh solution “Y” is suggested as
a result of optimization process. Consequently, individuals’
ranking in the present population is updated, keeping in
view the values of their individual fitness. The same is then
utilized during selection process, giving the best individuals
a greater chance of selection as parents. Moreover, ranking
of the individuals is also utilized during substitution process
in order to decide that whether the parents or the offspring
should carry forward to the next population or otherwise.
A genetic algorithm is termed as a “steady-state genetic
algorithm” based on abovementioned processes [35].

Multiobjective optimization issue occurs when we have
to take into account various objective functions f,(Y), n =
1,2,..., corresponding to each point “Y” in the complete
search space, followed by establishment of a point “Y™*”
that generates the best possible trade-oft between different
objective functions. Let us take into account “N” number of
distinct objective functions f,(Y), n = 1,..., N where “Y”
exhibits a vector of variables that are independent of each



6
f
Ranks 1
2 \
5 \ °
\ n
4
[ ]
L
2~ \ *
2=
0
° 8 4 * o
&5 u [
n &
v 3 [ ]
5 &
s 4 *
|
A *
A *
A
h
Values for objective
“— —_—

function (f;)

FIGURE 3: Population ranking for maximization of functions f; and

for

other, classifying a proposed generalized solution. Solution
“Z” is said to be “dominated” by solution “Y,” if “Y” displays
improved performance for all the objective functions [10],
that is, if

f,Y)> f,(Z2) forn=1,2,...,N. (10)

A solution is said to be “nondominated” if none of the
cost functions can have improved values without reducing
the values of some other objectives. In order to deal with var-
ious objective functions simultaneously while following the
genetic approach, single-fitness process being used for single-
objective GA problems should be generalized by allocating
“N” fitness to solutions “Y.”

Once the population of chromosomes [X] is created as
desired, ranking of the same is carried out as per Pareto
domination criteria by going through the N-dimensional
search space of different fitness f,(Y), n = 1,2,...,N.
Ranking of the chromosomes for N = 2 is shown in Figure 3.
“Nondominated” solutions, in the present population, are
determined. The same are then allocated rank “1,” being the
best ones. After that, these are separated from the other
chromosomes. Then again, a fresh set of “nondominated”
solutions is selected, which are allocated rank “2.” The said
procedure continues till the time each individual in the
population is ranked.

The selection and substitution process of Multiple Objec-
tive Genetic Algorithms (MOGA) depends on the abovemen-
tioned ranking. Each chromosome that belongs to the same
rank should be regarded as equal to the others of the same
group; that is, its probability of selection as a parent and
surviving the substitution is equal to any other member of
the same group.
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While carrying out an optimization search, the informa-
tion about vectors updated during previous histories, depict-
ing the Pareto efficiency, is noted and upgraded, which consist
of “nondominated” chromosomes and their consequent “N”
fitness. On completion of each iteration, evaluation of “non-
dominated” solutions in the present population is carried out
with regard to those already recorded, taking their fitness into
account. In this regard, the following rules are applied:

(i) If the existing members in the archive are dominated
by a new individual, the same are deleted and the new
one is made part of the archive.

(ii) If any member of the archive dominates the new
individual, it is not added.

(iii) If the new solution is neither dominated nor it domi-
nates any other member of the archive, then

(a) the new individual is added in the archive, in
case the same is not full.

(b) in case the archive already has the desired
number of solutions, the new individual is
exchanged with the one having maximum sim-
ilarity, present within the record.

Record of “nondominated” solutions is also manipulated
by initiating a selection process of elitist parents that is
considered to be more effective. Either every individual in
the archive is chosen as a parent during different iterations
at least once or, in case of a larger archive, the quantity
of individuals is earmarked by an already defined ratio of
the population “X;,” generally 25%, that is, X,,/4. This
elitism process assures a better implementation of genetic
algorithm, resulting into “nondominated” individuals, thus
ensuring an effective development of population towards
Pareto efficiency, while maintaining the diversity in genetics
simultaneously. On completion of the search process, the
outcome of optimization consists of an archive that provides
the desired Pareto efficiency region.

5. Proposed Model: MC Embedded in GA

5.1. Reason for Using the Coupled Approach. The quest for
the optimum maintenance levels necessitates a choice to
be made amongst a large number of feasible substitutes.
Obviously, running a complete MC simulation for each
alternate solution using precise data for the sake of complet-
ing only a rudimentary search process is quite unfeasible.
Alternatively, when the search process for optimized solution
is led by GA, a MC simulation is required to be performed
for each individual of the population being considered
during consecutive iterations, which is also not practicable.
A feasible solution in this regard arises from the fact that,
in GA approach, better chromosomes appear more number
of times during consecutive iterations whereas the others are
immediately removed. This leads us to consider a coupled
approach, encompassing MC as well as GA and thus ensuring
better optimized solution to the problem in much lesser
time.
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FIGURE 4: Proposed model: MC embedded in GA.

5.2. Proposed Model. Based on the abovementioned concept,
MC simulation is conducted for each of the suggested
chromosomes for a specified number of times, for example,
200 iterations, thus giving a crude approximation of the
objective functions. At the time of GA evolution, an update
of record of the best chromosome solutions, acquired during
preceding MC iterations, along with their corresponding
approximations of the objective functions is carried out.
When a chromosome is suggested for the second time,
the freshly calculated objective function approximation can
be stored with those already available in the archive. This
repetition can result in the “best” chromosomes through
natural selection procedure while accumulating the outcomes
of few last iterations over and over again, thus acquiring
arithmetically important results at the end [12]. The said
approach is known as “drop-by-drop approach” due to its
resemblance with the process of filling a container with liquid.
This technique abstains from working on the “bad solutions”
that are imitated for less repetitions. The proposed model is
illustrated in Figure 4.

5.3. Pseudocode. Pseudocode for the proposed model,
embedding MC simulation in GA, is illustrated as under.
The same will be utilized for further development of
MATLAB code for the suggested approach. Interaction of
MC simulation and GA is quite evident in the pseudocode.
This interaction is expected to provide better results for CBM
optimization problem in less time as compared to other
combinatorial algorithms, as shown in Pseudocode 1.

TABLE 1: Arbitrary data of the described framework.

Serial Data Value
(0] Overall profit of the plant, P, 500
2 Monetary penalty for downtime, C, 100
(3) Operation time, T, 1000

6. Simulated Results

6.1. Description of the Framework. The framework taken
into account consists of N,, = 3 nodes. All these nodes
are in series. Every single node is made up of N,(i,) =
3, i, = 1,2,3, branches of single components in parallel
(N(ipsip) = 1; ipi, = 1,2,3). Components that belong
to the similar node are supposed to be of the same type
(thus, N, = N,) and therefore will be subjected to the
identical maintenance strategy. Pictorial description of the
abovementioned framework is shown in Figure 5.

Data that has been used for optimization of the said
framework is tabulated in Table 1.

6.2. Case Study. In this case study, multiobjective genetic
algorithm has been used for optimizing the system mean
accessibility, “A,” and the profitability, “G,” over a given time
“T'y;.” During this process, following assumptions are made
with regard to the failure probabilities of the components in
the framework that are resulting into different deterioration
stages:
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TABLE 2: Parameters set for GA.

Serial Data Value

) Number of chromosomes (population size) 200

(2) Number of generations (stopping criteria) 200

(3) Selection procedure Roulette wheel
(4) Replacement strategy Children-parents
(5) Probability of mutation 1%

(6) Probability of crossover 100%

7) Generations considered without elitist selection 100

(8) Parents’ fraction picked with elitist selection 25%

FIGURE 5: Pictorial description of framework considered in Sec-
tion 6.1.

(i) The probabilities are not dependent on the load
shared by the components.

(ii) The number of maintenance professionals is enough
to maintain the faulty components of the framework
simultaneously.

These conditions facilitate the application of analytical
modeling as well as the validation of suggested coupled
approach (GA + MC) on the described framework which
is essential for their comparison. The design variables for
optimization, that is, the thresholds, “klth”, after which the
preventive maintenance should be carried out for all com-
ponent types, that is, I = 1,2, 3, are assumed to be selected
within the array (1,64). Parameters and rules set for the
multiobjective genetic algorithm technique are mentioned in
Table 2.

According to the assumptions, the search space, required
to be optimized, consisted of a large number of alternatives,
that is, 64°. The same were considered and the objective func-
tions were assessed by utilizing Markov’s model explained in
Section 3. The results obtained after this analytical modeling
of the framework are shown in Figure 6 (for the purpose of
clarity, only corresponding objective functions’ values with
the multiples of 6 are shown). The processing time required
for the said simulation on a Dell Inspiron N5110 Core-i5 was
approximately 3 hours.

The results obtained by adopting the coupled approach
(GA + MC) are depicted in Figure 7. Processing time elapsed
for the procedure on the same machine was approximately
1.5 min. The objective functions’ values corresponding to the
nondominated solutions are illustrated in this figure.

It can be clearly seen that the optimal solutions lie on
the boundary of Pareto domination front. The same can
be observed by making a comparison of Figures 6 and 7.
The difference of processing times taken by the analytical
modeling as compared to the suggested approach highlights
the effectiveness of the later for taking the search towards
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FIGURE 6: Graphical representation of objective functions’ values
evaluated by Markov’s model.
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FIGURE 7: Graphical representation of objective functions’” values
evaluated by coupled approach.

the area of interest within the search space more rapidly.
Objective functions’ values for the nondominated solutions
achieved as a result of adopting the suggested coupled
approach are enumerated in Table 3.

7. Conclusion

The recognition of effective strategies, for repair/maintenance
of plants/engineering systems, is of significant importance
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TABLE 3: Numerical values of objective functions for nondominated
solutions.

Serial Accessibility, A Profitability, G
0 0.6206 1.4 x 10*
) 0.6385 1.3 x10*
(3) 0.6426 1.2 x 10*
(4) 0.6545 1.0 x 10*
5) 0.6613 0.7 x 10*
(6) 0.6705 0.6 x 10*

from financial as well as safety point of view. Particularly,
the benefits of carrying out condition-based maintenance
have become more critical nowadays. Actually, the related
phenomenon behind deterioration processes is very com-
plex, particularly, when higher-risk frameworks, for instance,
atomic power plants and offshore establishments, are con-
cerned. In such cases, comprehensive simulation of the plant
performance is very much essential, which can only be
carried out analytically under simplified hypothesis.

This research framework is focused on the issue of finding
an optimal condition-based maintenance strategy based on
threshold levels of components deterioration beyond which
maintenance is necessitated.

In order to deal with the issue, the problem is configured
as a multiple objective search, to be dealt by a synergic
approach, encompassing both GA and MC framework. The
optimized level of deterioration for each element is explored
while keeping in view the mean accessibility and net profit
of the system. A population of chromosomes is considered
by GA, each encoding an optimum level of deterioration for
every specified element. For any particular chromosome, MC
simulation approximates the two desired objective functions.

For validation of the proposed framework, in-built algo-
rithms available in MATLAB for Multiple Objective Genetic
Algorithms (MOGA) and MC simulation have been used.
The approach has been implemented on a simple system. The
obtained results have been compared with the ones acquired
through analytical modeling of the system. These results
show remarkable time saving with the proposed algorithm.
In the next phase, we will consider the problems associated
with stress-dependent deterioration processes of the system
components as well as the limited quantity of maintenance
professionals present on site. Keeping in view the achieved
results, the proposed model has proved to be successful in
contributing towards computational resources for searching
the optimal solutions.
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