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Over the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an
analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To
solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where
a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and
predicted errors. After the selection of calibration subset, the partial least squares regression is applied to build calibration model.
The performance of the proposed method is demonstrated through a near-infrared spectroscopy dataset of pharmaceutical tablets.
Compared with other local strategies with different similarity criterions, it has been shown that the proposed local errors regression
can result in a significant improvement in terms of both prediction ability and calculation speed.

1. Introduction

Near-infrared (NIR) spectroscopy plays an important role in
the analysis of complex samples or chemical process due to its
simplicity, rapidity, and nondestructive measurements [1–4].
As a result, multivariate calibrationmethods that relate prop-
erty (𝑌) and spectra (𝑋) have been extensively used in the
quantitative analysis of NIR spectroscopy.Many authors have
stated that the choice of the appropriate calibration method
is one of the key factors that influence the performance in
prediction of the property 𝑌 of query samples [5].

The multivariate calibration methods, such as multiple
linear regression (MLR), principal component regression
(PCR) [6], and partial least squares (PLS) [7] regression,
have been adopted for the first time [2, 8]. However, these
methods are based on statistical linear models which are
not always met in real-life situations and therefore are not
able to efficiently model the nonlinear relationship between
𝑌 and 𝑋. To solve this problem, different authors have
demonstrated that nonlinear algorithms such as Artificial

NeuralNetwork (ANN) [9] and Least Squares Support Vector
Machines (LS-SVM) [10] can produce better results than
traditional linear methods especially used together with large
NIR spectral libraries [11].

The approach presented in this paper is local method,
which has been widely used in near-infrared spectroscopy
analysis because of its advantages in terms of the simplicity
of the model constructed and the ability to cope with
nonlinearities [12–14].The essential idea of local method is to
develop specific calibration subsets spectrally similar to each
query sample whose properties are to be predicted and build
a calibration model on the selected relevant samples for the
query sample.

The key issue in local learning is how the similarity
criterion should be constructed. In general, the most com-
monly used similarity checks in NIR spectroscopy are the
Euclidean distance (ED) [15], theMahalanobis distance (MD)
[16], and spectral angle mapper (SAM) [17] distance on the
spectral space or principal component space [18]. Moreover,
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the computation of the principal components-Mahalanobis
(PC-M) [19] distance has become the standard procedure
for NIR distance measurements. However, the samples are
usually multivariate and influenced by several compositional
attributes, which are expressed as highly overlapped and non-
specific NIR absorption or reflectance [20]. For this reason,
the samples that are very close in 𝑋 space are frequently not
close (or similar) in terms of 𝑌 space. Therefore, traditional
similarity criterion uses only𝑋 information to select relevant
samples, which may result in a waste of 𝑌 information and
inaccurate sample selection [21]. In order to overcome such
problem, some supervised or semisupervised methods have
been developed, which take account of information of both
𝑋 and 𝑌. Recently, another reliable similarity estimation
called supervised locality preserving projection (SLPP) [22]
has been successfully used in local approach to enhance the
similarity measurement accuracy [21, 23].

As a simple linear approximation technique, localmethod
could address the nonlinearity through the locally linear
models. Therefore, the selection step of local method is
aimed at finding some samples whose 𝑋 and 𝑌 meet linear
relationship. Unfortunately, similarity criterion mentioned
above can only represent the closeness but not the true linear
relationship between samples in spectra and property spaces.

The objective of the work described in this paper is to
develop a high-performance local method formodelling NIR
spectral data. The local errors regression utilizing SLPP and
similar errors strategy in finding the optimized calibration
subset for each query sample is described. The main contri-
bution of this paper is to take into account the prediction
errors from global method during the selection step of local
method. This step ensures that the relationships between 𝑋
and 𝑌 are highly linear in both calibration subset and query
sample. After such a selection, PLSwithout cross-validation is
adopted for local modelling as it can accelerate the prediction
speed and reduce the computational complexity. With phar-
maceutical tablets datasets of NIR spectra, the effectiveness
and accuracy of the proposed method are investigated and
compared.

2. Methodology

The local errors regression consisted of two steps: the first
step is the selection of relevant samples and the second step
is to build a calibration model for each query sample. In
this section, the details of the proposed method and other
algorithms for comparison are described.

2.1. Calibration Subset Selection. The main goal of this step
is to discover which samples in calibration set “resemble” the
query samples to be predicted. In the proposed method, the
search process of calibration subset is carried out by using
similarity of prediction errors which indicates how linear
the spectra and property are to the samples for prediction.
In this context, the parameter of error ranges need to
be determined to ensure that there are sufficient selected
samples to obtain reliable models. It should be noted that
there might not be enough samples that are linear with the

query sample to give an acceptable prediction. In this case, the
definition of similarity, considering that information of both
𝑋 and 𝑌 has been adopted to construct calibration subset.
Although the proposed similarity criterion should be better
than traditional method, it cannot be used directly to select
the relevant samples for query samples as query samples
only contain the spectra information. In this paper, an SLPP
technique has been employed to find the nearest sample,
whose properties are approximate and interchangeable with
query sample.

Since the spectra𝑋 and property𝑌 have different dimen-
sions, it is not appropriate to find the nearest sample by the
linear combination of EDs in spectral space and property
space. Thus, the SLPP is used in this study, which not only
selects most similar sample considering both spectra and
property information but also reduces the computational
load.

The rationale behind this approach is based on the
assumption that the samples that are most close in the
property space are very similar in terms of spectra space.
Given a set of𝑁-dimensional calibration spectral data 𝑋𝐶 =
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containing𝑁 spectral data response of𝑚 samples; 𝑌
𝐶
is 𝑛 × 𝑙

matrix; and 𝑚 × 𝑙 matrix �̂�
𝑃 is the predicted properties of

prediction set with global PLS regression, 𝑙 being the number
of components. Let spectra set 𝑋

(𝑛+𝑚)×𝑁
= {𝑋
𝐶
∪ 𝑋
𝑃
}. The

algorithmic procedure for the calibration subset selection is
stated as follows:

(1) Constructing a neighborhood graph as follows:
K Nearest Neighbors. The 𝑖th and the 𝑗th samples are
connected by an edge if the 𝑖th sample is among 𝐾
nearest neighbors of the 𝑗th sample or the 𝑗th sample
is among𝐾 nearest neighbors of the 𝑖th sample. Here
the distance between the samples is calculated in the
property space.

(2) Computing the Weights.𝑊 is a sparse symmetric (𝑛 +
𝑚) × (𝑛 +𝑚)matrix with𝑊

𝑖𝑗
having the weight of the

edge joining the 𝑖th and the 𝑗th samples, and𝑊
𝑖𝑗
= 0

if there is no such edge, and𝑊
𝑖𝑗
= 1 if and only if the

𝑖th and the 𝑗th samples are connected by an edge.
(3) Finding the Basis Vectors of the Subspace. This

step aims at finding a transformation matrix 𝐴
𝑁×𝑑

to project spectra set 𝑋 to a low-dimensional set
𝑍
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Suppose that there exists a linear transformation 𝑍 =
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𝑇, where 𝑎 is the basis vector. The basis vector 𝑎

is computed by solving the following minimization
problem:
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It is observed that the minimization problem can
be calculated by solving the following generalized
eigenvalue problem:

𝑋
𝑇
𝐿𝑋𝑎
𝑇
= 𝜆𝑋
𝑇
𝐷𝑋𝑎
𝑇
, (2)

where 𝐷 is a diagonal matrix whose entries are
column sums of𝑊 and𝐷

𝑖𝑖
= ∑
𝑗
𝑊
𝑗𝑖
; 𝐿 = 𝐷−𝑊 is the

Laplacian matrix. Let the column vectors 𝑎𝑇
1
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𝑑

be the solutions to (2) which are ordered according to
their eigenvalues,𝜆
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matrix and low-dimensional matrix can be calculated
as follows: 𝐴 = [𝑎
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Finally, for each query sample, the most similar sample will
be selected according to the ED in the low-dimensional space
𝑍
𝐶
.

2.2. Partial Least Squares Regression. The PLS regression has
been extensively employed to obtain a quantitative model
for prediction of analytes based on spectral data. In this
paper, the PLS is used in the procedure of local selection
and the establishment of regression model. In addition, the
critical step is the determination of the number of factors for
achieving the best prediction. Generally, the optimum PLS
factors can be determined byminimizing the prediction error
of cross-validation groups. However, the cross-validation
is time-consuming and does not consider the information
from the query sample. For these reasons it would not be a
desirable choice to localmethod. In this paper, the selection of
calibration subset is based on the prediction error with global
PLS, which are expressed as highly linear between samples
in subset. Consequently, the PLS factor would have little
effect on the performance of calibrationmodels. Here the PLS
factor fixed at a constant value by minimizing the root mean
squared error of prediction (RMSEP) of validation dataset
and the experimental verification is presented in Section 4.1.

The performance of the final calibrationmodels was eval-
uated in terms of the RMSEP, Residual Predictive Deviation
(RPD), and correlation coefficient (𝑅2) in prediction set. It
should be noted that RPD is the ratio between the standard
deviation of the reference data and RMSEP of prediction.

2.3. Other Algorithms. In order to compare the predictive
performance of our local errors method with other local
approaches, the following similarity criterions were used: ED,
angle distance, PC-M distance, and supervised or semisuper-
vised methods. A brief description of these criterions is given
as follows.

2.3.1. Euclidean Distance. The ED between query sample 𝑥
𝑞

and calibration sample 𝑥
𝑖
is given by

𝑑
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(3)

where 𝑇 is the transpose operation, 𝑥𝑞 ∈ 𝑋𝑃, and 𝑥𝑖 ∈ 𝑋𝐶.

2.3.2. Angle Distance. In this method, the Cosine is used to
evaluate the similarity between query data 𝑥
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2.3.3. Mahalanobis Distance in the Principal Component. The
PC-M distance is obtained through computing the Maha-
lanobis distance (MD) between samples in spectral principal
component space. In this case, the appropriate number
of principal components is determined by minimizing the
root mean square of the compositional differences between
property 𝑌 and predicted value �̂� of samples in calibration
set. The Mahalanobis distance between query sample 𝑥

𝑞
and

calibration sample 𝑥
𝑖
is defined as
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where 𝑉 is the covariance matrix in spectral principal
component space of calibration set and 𝑥

PC
𝑞

and 𝑥
PC
𝑖

are
spectra of query sample and calibration sample in spectral
principal component space. For details, see [20].

2.3.4. Supervised or Semisupervised Methods

(1) Euclidean Distance Based on Both Spectra and Property.
In this method, both spectra 𝑋 and property 𝑌 are used to
evaluate the similarity between query data 𝑥

𝑞
and 𝑥

𝑖
in the

calibration dataset, and the similarity value 𝑑
𝑋𝑌

is defined:
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where 𝛾 is a weight parameter to balance the importance of
spectra𝑋 and property𝑌, 0 ≤ 𝛾 ≤ 1, and 𝑑

𝑋𝑌
is the Euclidean

distance between 𝑥𝑞 and 𝑥𝑖.

(2) Euclidean Distance in the Low-Dimensional Space. Here,
the similaritymeasurement considers both𝑋 and𝑌 informa-
tion and utilizes SLPP technique to select relevant samples.
For details, see [21].

In summary, the detailed implementation of local errors
regression is described as follows.

Step 1. Compute the predicted properties of prediction set �̂�
𝑃

and predicted properties of calibration set �̂�
𝐶
with global PLS

regression.

Step 2. For each query sample, select the most relevant
sample from calibration set with SLPP.

Step 3. Predefine parameters such as PLS factors and error
ranges by minimizing the RMSEP of validation dataset. Here
PLS factors are set to 2, 3, 4, or 5 and error range is specified as
1.5. A much detailed description will be given in Section 4.1.

Step 4. For each query sample 𝑦
𝑞

𝑖
, calibration subset is

selected based on predicted error similarity criteria, and the
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Table 1: Descriptive statistics for the calibration set, validation set,
and prediction set.

Sample sets Number Range Mean Standard
deviations

Calibration 460 154.3∼237.7 188.4 15.8
Validation 40 168.2∼219.5 194.8 12.4
Prediction 155 151.6∼239.1 192.9 22.0

𝑗th sample in calibration set is selected if |(�̂�𝑐
𝑗
− 𝑦
𝑐

𝑗
) − (�̂�

𝑞

𝑖
−

𝑦
𝑞

𝑖
)| < 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑛𝑔𝑒, where𝑦𝑐

𝑗
is the property of the 𝑗th sample

in calibration set.

Step 5. Build PLS calibration model on the selected relevant
samples and predict each query sample.

It should be noted that the number of nearest neighbors
𝐾 and dimension of transformation matrix 𝑑 had little effect
on the selection of the most similar sample for each query
sample.Therefore, in Step 2, parameters𝐾 and 𝑑 are set as 50
and 20, respectively. Such a selection is based on the authors’
experience without further discussion.

3. Materials and Experiment

The dataset was obtained from the web of http://software
.eigenvector.com/Data/tablets/index.html. The spectra were
recorded by Instrument I of Foss NIR Systems 6500 Spec-
trometer. It contains 655 transmittance NIR spectra of phar-
maceutical tablets, measured between 600 and 1898 nm with
a 2 nm sampling step. The initial dataset was split into a
calibration set of 460 samples and prediction set of 155
samples and validation set of 40 samples. Table 1 showed
the statistical results of pharmaceutical tablets. All sets have
similar averages and standard deviations which indicate that
all the datasets can be used to represent the main variability
of pharmaceutical tablets. A microcomputer (Lenovo) with
an Intel Core 2 processor was used for all the calculations. All
the algorithmswere implemented usingMATLAB 2012b.The
raw NIR spectra of pharmaceutical tablets were presented in
Figure 1.

4. Results and Discussion

4.1. Parameter Setting. The determination of the PLS factors
and error ranges is an essential step in this study, which
decides the accuracy of the model. Here these parameters
were determined with the validation set so that the RMSEP
was minimized. Therefore, the variation of the RMSEP of
the validation set with PLS factors and error ranges is
investigated. Figure 2 shows the RMSEP obtained with PLS
factors from 2 to 12 and a step of 1. For each query sample,
the calibration subset is selected based on error ranges = 1, 1.5,
2, and 2.5, respectively. Different from the above narrative in
Section 2.1, for each query sample, the most relevant sample
is used instead of the real sample whose reference property
is available in validation set. Moreover, when there are no
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Figure 1: NIR original spectra for pharmaceutical tablets.

Table 2: Size of calibration subset for each query sample with local
errors strategy in prediction set.

Number of samples in
calibration subset

Number of
query samples Percentage

[13, 50] 122 78.7%
[51, 100] 7 4.5%
[101, 150] 9 5.8%
[151, 200] 11 7.1%
[201, 210] 6 3.9%

enough samples with close similarity to the query sample, we
assume that the predicted value is equal to the real reference
property. The purpose of this assumption is to reflect the
accurate relationship between the prediction performance
and PLS factors with a fixed range.

As shown in Figure 2, the smaller error range is employed,
the smaller RMSEP can be achieved. Furthermore, when the
PLS factors are 2 to 5, the RMSEPs change gradually with a
little fluctuation. Other big PLS factors (i.e., greater than 7)
are usually not necessary, and they do not lead to essential
improvement of the final result.The probability of insufficient
selected samples with the PLS factors and error ranges for
the validation set is shown in Figure 3. It can be seen that
the probability of insufficient selected samples for each query
sample decreases along with error range, especially when the
PLS factor is set as 2, 3, 4, and 5. In this study, considering both
minimized RMSEP and the adequate size of the calibration
subset, the error range is set as 1.5 and the PLS factors is set
as 2, 3, 4, and 5, respectively. This means that the PLS factor
will be set as 3, 4, and 5 in turn if there is no enough samples
close to the query sample with PLS factor = 2.

4.2. Size of Calibration Subset. The final results of the local
errors strategy for each query sample in prediction set are
summarized in Table 2. It can be seen that each number of
selected samples in calibration subset is smaller than 210,
which is less than the half size of calibration set. Moreover,
78.7% sizes of calibration subsets are between 13 and 50.That
means that the computational complexity of the prediction
model can be reduced a lot compared with global method.
It is noted that here the minimum size of the subset is set
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Figure 2: Variation of RMSEP with the PLS factors for validation set. RMSEP = root mean squared error of prediction. PLS = partial least
squares.
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Figure 3:The probability of insufficient selected samples with the PLS factors and error ranges for the validation set. × = insufficient selected
samples for building calibration model. PLS = partial least squares.
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Figure 4: Predicted versus reference values of prediction set for the local errors regression and global method.

Table 3: Performance comparisons among local errors regression, global method, other local methods with different similarity criterions.

Method Similarity criterion RMSEP 𝑅
2 RPD Size of subset Parameters Time consumption (s)

Global — 4.30 0.96 5.11 460 — 4.4

Other local methods

ED 4.18 0.96 5.26 150 — 175.4
Cosine 4.25 0.96 5.17 150 — 179.1
PC-M 4.21 0.96 5.22 50 PC factors = 10 53.5

𝑋 + 𝑌 + ED 4.24 0.96 5.18 100 𝛾 = 0.8 123.1
𝑋 + 𝑌 + SLPP 4.27 0.96 5.15 200 𝛾 = 0.8, 𝑑 = 20 233.9

Local errors regression Errors + ED 3.21 0.98 6.85 13∼205 𝑑 = 20 9.5
ED: Euclidean distance; PC-M: Principal components-Mahalanobis distance;𝑋 +𝑌+ ED: Euclidean distance considering both spectra𝑋 and property𝑌;𝑋+
𝑌 + SLPP: Euclidean distance in the low-dimensional space obtained with supervised locality preserving projection method; errors + ED: Euclidean distance
between predicted errors; RMSEP: root mean squared error of prediction; 𝑅2: correlation coefficient in prediction set; RPD: residual prediction deviation; PC
factors: Principal component factors; symbol 𝛾: a trade-off parameter to balance the importance of spectra𝑋 and property 𝑌; 𝑑: dimension of transformation
matrix; and s: second.

to 13 so as to avoid insufficient selected samples for building
calibration model. When the number of selected samples is
not reaching 13, the calibration subset has been made up of
50 samples which are the spectral similarity to query sample.

4.3. Comparison. Figure 4 is the scatter plot that shows a
correlation between reference values and NIR prediction
values in the prediction set using global PLS method and
proposed method. According to the scatter plots, the pre-
dicted values associated with local errors regression best
match the reference ones. It can thus be concluded that the
proposed method maintains good precision compared with
global PLS method. Furthermore, the method proposed here
was compared with other local methods.

The performance of local errors regression, global PLS,
and other local methods with different similarity criterions
was listed in Table 3. In each local-PLSmodel, two parameters
have to be optimized: size of calibration subset and PLS
factors. In this study, the number of calibration subset
samples included was evaluated at 30, 50, 100, 150, 200, and
250 samples and checked so as to find which value for this
parameter is better. The optimum number of PLS factors
was identified by minimizing the prediction error of cross-
validation groups. Best prediction results from local-PLS
approaches with different similarity criterions are listed in the
table. On the contrary, the PLS factors used in the proposed
method, as discussed in the previous section, was fixed at
either 2 or 3 or 4 or 5.
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In terms of RMSEP, with the same spectra data the
prediction performance of the local methods is better than
that of global method, showing lower RMSEP values. More-
over, the RMSEP obtained with the proposed method is
the lowest compared to the best values obtained with other
local methods. Furthermore, Table 3 also shows that the
difference of 𝑅2 with different methods is not significant
and all the values of 𝑅2 are approximated to 1. The RPD
is proportional to the RMSEP and with a similar variation
tendency. Another important issue is the prediction speed.
In this context all the local methods were slower than global
method, showing higher time consumption. As shown in
Table 3, global method requires around 4.4 s to calculate all
the samples in prediction set and local methods are much
more time-consuming, from 53.5 s to 233.9 s depending on
subset size. The reason is that the local methods will select
different calibration subset and perform new calibration
models specifically to different query samples. Thus, in the
proposed method, instead of cross-validation, the fixed PLS
factor strategy is adopted, which resulted in a noticeable
improvement of calculation speed, showing a lower time
consumption about 9.5 s.

5. Conclusion

In this paper, a new local method for nonlinear spectra is
proposed. The main contributions include a new similarity
measurement utilizing ED of predicted errors, a selection
method extended from SLPP aiming to search the most rele-
vant sample for each query sample and fixed PLS factors pre-
diction model without cross-validation. Also, a comparison
has been carried out in this study, to compare the predictive
performance of the proposed method, global PLS, and other
local strategies with different similarity criterions such as ED,
Cosine, PC-M, 𝑋 + 𝑌 + ED, and 𝑋 + 𝑌 + SLPP by using the
pharmaceutical tablets dataset. The prediction results have
demonstrated that the proposed method could bring higher
calibration performances and lower time consumption.
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M. Demattê, and T. Scholten, “Distance and similarity-search
metrics for use with soil vis-NIR spectra,” Geoderma, vol. 199,
pp. 43–53, 2013.

[20] L. Ramirez-Lopez, T. Behrens, K. Schmidt, A. Stevens, J. A. M.
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