

A Knowledge Plane for the Internet

David D. Clark*, Craig Partridge♦, J. Christopher Ramming† and John T. Wroclawski*

*M.I.T Lab for Computer Science

200 Technology Square
Cambridge, MA 02139

{ddc,jtw}@lcs.mit.edu

♦BBN Technologies

10 Moulton St
Cambridge, MA 02138

craig@bbn.com

†SRI International

333 Ravenswood Avenue
Menlo Park, CA 94205 USA

chrisramming@yahoo.com

ABSTRACT
We propose a new objective for network research: to build a
fundamentally different sort of network that can assemble itself
given high level instructions, reassemble itself as requirements
change, automatically discover when something goes wrong, and
automatically fix a detected problem or explain why it cannot do so.
We further argue that to achieve this goal, it is not sufficient to
improve incrementally on the techniques and algorithms we know
today. Instead, we propose a new construct, the Knowledge Plane, a
pervasive system within the network that builds and maintains high-
level models of what the network is supposed to do, in order to
provide services and advice to other elements of the network. The
knowledge plane is novel in its reliance on the tools of AI and
cognitive systems. We argue that cognitive techniques, rather than
traditional algorithmic approaches, are best suited to meeting the
uncertainties and complexity of our objective.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – network communications. C.2.3
[Computer-Communication Networks]: Network Operations –
network management, network monitoring. C.2.6 [Computer-
Communication Networks]: Internetworking.

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Cognition; network applications; network configuration; knowledge
plane.

1. INTRODUCTION
The Internet of today is a wonderful success. But success should not
blind us to the Internet’s limitations. Its emphasis on generality and
heterogeneity, the 'narrow-hourglass' combination of a simple,

transparent network with rich end-system functionality, and the
deeply embedded assumption of a decentralized, multi-
administrative structure are critical strengths, but lead to frustrated
users when something fails, and high management overhead with
much manual configuration, diagnosis and design.
Both user and operator frustrations arise from the same fundamental
design principle of the Internet—the simple and transparent core
with intelligence at the edges [1,2]. The network carries data
without knowing what that data is, or what its purpose is. If some
combination of events is keeping data from getting through, the
edge may recognize that there is a problem, but the core cannot tell
that something is wrong, because the core has no idea what should
be happening. The edge understands applications, and what their
expected behavior is; the core only deals with packets. Similarly, a
network operator interacts with the core in very low-level terms such
as per-router configuration of routes and policies. There is no way
for the operator to express, or the network to model, what the high
level goal of the operator is, and how the low-level decisions relate
to that high level goal.
As we design a new sort of network, we must not lose the features of
the Internet that have made it a success—its openness to new
applications, the adaptability of its protocols, and the essential
plasticity basic to its nature. Yet we must devise a technique that
marries these virtues to a new goal: the ability of the network to
know what it is being asked to do, so that it can more and more take
care of itself, rather than depending on people to attend to it. If the
network had a high-level view of its design goals and the constraints
on acceptable configurations, then it could make many low-level
decisions on its own. It could communicate with the network
designer in terms of how well it met the goals, rather than by
displaying a mass of router configuration tables. And it could deal
with changes in the high level requirements by reconfiguring itself.
We argue that traditional, algorithmic approaches to adaptivity are
unlikely to provide the required sophistication of behavior. The
approach we take must offer the ability to abstract and isolate high
level goals from low level actions, to integrate and act on imperfect
and conflicting information, and to learn from past actions to
improve future performance. These properties are precisely those
required to function effectively in the Internet's environment of
diverse and competing objectives, decentralized control, complexity,
and dynamic change.
This paper proposes an approach to network design based on tools
from AI and cognitive systems. Specifically, we propose a construct,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008…$5.00.

3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192439661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a distributed cognitive system that permeates the network, that we
call the knowledge plane.
The rest of this paper is organized as follows. Section 2 describes
the concept of the knowledge plane. It contrasts this concept with
alternatives, and argues for the cognitive approach. Section 3 is a
discussion of what this construct might do for us—examples of how
it can make networking better. Section 4 discusses some important
design constraints and considerations for a knowledge plane
architecture. Section 5 outlines the key challenges in our path.

2. A Proposal: the Knowledge Plane
The discussion above hints at a solution in which the network has a
high-level view of what its purpose is—the goals of its designers, of
the applications running on it, and of its users. In an application-
specific network, one approach might be to utilize and embed such
domain-specific knowledge in the core design of the network, as
was done in the telephone network. But this defeats a fundamental
objective of the Internet – its ability to host a broad and changing
array of applications. Rather than pleasing no one by adding “just a
little” application knowledge to the Internet’s simple and transparent
data transport plane, a better alternative is to devise a separate
construct that creates, reconciles and maintains the many aspects of
a high-level view, and then provides services and advice as needed
to other elements of the network. This is the knowledge plane, or
KP.
Understanding the precise best path towards this goal is a matter of
significant research, and this paper neither can nor does propose a
complete technical description of the knowledge plane. As a start,
however, we sketch certain attributes potentially central to the
success of a knowledge plane, and consider how this perspective
differs from today’s practice. These include:
Edge involvement: The end-to-end principle suggests that much
valuable information about network performance originates not in
the network, but in the devices and applications that use it. This is
an inevitable and desirable consequence of the Internet’s general-
purpose data plane. It implies, however, that much of the
“knowledge” in the knowledge plane may be produced, managed,
and consumed at or beyond the “traditional” edge of the network.
The reach of the knowledge plane is broader than that of traditional
network management.
Global perspective: Most management systems are regional — each
operator manages the part he owns. But truly useful problem
identification may depend on correlation of observations from
different parts of the network. Not only must data from the edges be
combined with data from “inside” the network, but data from
different parts of the network may be needed to fully comprehend a
sequence of events. The knowledge plane would, ideally, be able to
extend its perspective to the entire global network as required.
Compositional structure: If the reach of the KP is global, at the same
time it must be designed to take account of what we may loosely call
“compositional” considerations. A most basic example is that the
KPs of two unconnected networks should be capable of merging
their perspective and activities if the networks become connected.
A corollary of the composition problem is the need to operate in the
presence of imperfect and conflicting information: some regions will
desire to keep date private. Mutual distrust among some network
operators and service providers, and indeed, among any parties that
jockey for economic advantage, leads directly to today’s need for
highly skilled human reasoning to deduce and model network

behavior. The KP faces a similar problem: it cannot assume a
homogeneous network of shared objectives and shared information.
Unified approach: One might speculate that the various problems we
aim to address could most easily be solved by distinct mechanisms,
working bottom up, perhaps loosely tied together at the top. In
contrast, the KP as we conceive it is a single, unified system, with
common standards and a common framework for “knowledge”. This
unified approach is needed because real world knowledge is not
strictly partitioned by task. We suggest that the knowledge plane
should be structured similarly, based on the knowledge, not the task.
We believe that while point solutions may be easier to develop, an
integrated approach will be substantially more effective in the long
run.
Cognitive framework: The knowledge plane needs to make
judgments in the presence of partial or conflicting information; to
recognize and mediate conflicts in policies and goals; to respond to
problems and attacks in better-than-human time frames; to perform
optimizations in high-dimensional environments that are too
complicated to be addressed by humans or analytical solutions; and
to automate functions that today must be carried out by rare and
highly skilled network technicians. We therefore expect cognitive
techniques to serve as the foundation of the knowledge plane:
representation, learning, and reasoning that allow the knowledge
plane to be “aware” of the network and its actions in the network.
We turn now to further discussion of three ideas key to our position:
the necessity of a new construct, the desirability of a unified
knowledge plane, and the value of cognitive tools.

2.1 Why a New Construct?
Most discussions of network architecture recognize two
architectural divisions, or planes: a data plane, over which content is
forwarded, and a control or management plane, which is used to
direct, measure, and repair the data plane. By talking of a
“knowledge plane” we are saying a fundamentally new construct is
required, rather than fitting knowledge into an existing plane
(presumably the management plane). Why do we believe a new
construct is required?
If we look at the two existing planes, we find two radically different
structures. The data plane (in almost any notable data transport
architecture) uses some form of layering to hide complexity and to
enable extensibility, interoperability and scalability. In contrast the
control and management system is invariably designed to cut across
the layering, giving visibility and access to all the aspects of the
network, which must be monitored and managed. And, indeed,
because the management plane is all-seeing, it tends to scale poorly
and to be hard to change.
The knowledge plane clearly sits in a different place. Since it
doesn’t move data directly, it is not the data plane. And unlike the
management plane it tends to break down boundaries to provide a
unified view, rather than partition the world into managed enclaves.
It is functionally unlike the management plane as well – it is hard to
envision the KP managing accounting records (reading them
occasionally, perhaps, but collecting, storing and processing them,
no).

2.2 Why a Unified Approach?
Consider the example of a user trying to install a new application
and discovering that it does not work. One reason might be that the
ISP of the user has blocked that class of traffic. For the KP to give

4

the most effective feedback to each party, it needs access to the
configuration constraints set by the ISP, so it can determine the rules
behind the blocking and tell the user what this implies. So it is
necessary that the information about network configuration and
about user-observed problems be in the same framework.
A related example concerns overlay network such as CDNs. It is
easy to imagine that one component of the KP is topology and
performance information that a CDN could use to position its
delivery nodes “close” to users. This information could come from a
diversity of sources such as “network weather” services, user-
reported experience, and ISPs, and would include not just traffic
measurements, but information about administrative traffic
restrictions and local firewall restrictions (perhaps the “users” can’t
receive certain types of content). The interested parties (users,
CDNs) benefit from having this information integrated and
presented in a consolidated form.
There are some cases where the KP may be able to resolve a
problem on its own. If it discovers that the reason for a problem is a
low-level decision that is not material to the high-level goals of the
operators, it might change the decision. But to determine if a change
is appropriate, KP needs access to the reasoning behind the setting.
So the knowledge about planning needs to be in the same context as
the repair problem.
When a component of the network makes a low-level observation
about a possible anomaly, it has no idea what the relevance actually
is. This observation might trigger a repair, a reconfiguration, a
notification to a network operator in a distant part of the network, a
security alert, or something else quite different. So observations on
network conditions cannot be thought of as being a part of one
problem space, but instead as being a part of the KP.
We recognize that point solutions to specific problems may get part
of the way more rapidly that the general solution postulated here.
But the core of our hypothesis is that to get to the final goal: a
network that can configure itself, that can explain itself, that can
repair itself, and does not confound the user with mysteries, the
approach based on the combination of point solutions will not
succeed.

2.3 Why a Cognitive System?
Our objectives for the Knowledge Plane require it to meet a number
of significant challenges:

• It must function usefully in the presence of incomplete,
inconsistent, and possibly misleading or malicious information.
System failures, information filtering for privacy or competitive
reasons, and finite network resources are just some of the
forces conspiring to create this requirement.

• It must perform appropriately in the presence of conflicting or
inconsistent higher-level goals among the Internet’s different
stakeholders. This is a manifestation of the tussle dilemma
discussed in [12].

• It must operate effectively in the face of generality, including
the introduction of new technologies and applications not
conceived of at the time of its design, and in the face of a
highly dynamic environment, including both short-term and
long-term changes in the structure and complexity of the
underlying network.

We hypothesize that these challenges cannot be met by analytical
solutions, because analytical solutions generally require complete

information, precise problem formulations, and a relatively static
operating environment. Instead, we suggest that “cognitive”
techniques will be needed. The key benefit of these techniques is
their potential to perform effectively, and to evaluate and improve
their own performance, in the presence of complex, inconsistent,
dynamic, and evolving environments. We discuss two defining
characteristics of a cognitive knowledge plane.
First, the KP must eventually “close the loop” on the network as
does an ordinary control system. As we gain experience and trust,
the knowledge plane will first enable a recognize-explain cycle, then
a recognize-explain-suggest cycle, and ultimately a recognize-act
cycle for many management tasks. Because the knowledge plane
must be more general and flexible than standard control systems, we
look elsewhere for additional inspiration. Architectures inspired by
theories of human cognition [18] have achieved some successes and
hint at one approach. In the knowledge plane context, a cognitive
architecture would of course be distributed and decentralized, and
the partitioning would be effected in part to support divergent
interests of network stakeholders.
Second, the KP must be able to learn and reason. Learning is the
principled accumulation of knowledge, and can take place through
many means: by trial and error, by instruction, by generalization, by
analogy, through problem solving and mental search, and more.
Some learning approaches require human involvement, and some do
not. In a static problem environment, one simple enough to admit of
analytic solution, learning is irrelevant. But IP networks, by design
and intent, are constantly evolving in many dimensions, and are
infinite in potential configurations. To the extent possible, when
new situations are recognized or new actions performed and
evaluated, the knowledge plane should improve: its knowledge base
should grow in useful ways. The first and most immediate challenge
of learning is to model the behavior, dependencies, and
requirements of applications through the obscuring veil of our
existing transparent data plane.
Reasoning involves the composition of existing knowledge to draw
new inferences and beliefs. Reasoning processes can translate
declarative knowledge (whether handcrafted or learned) into
interpretations of observations and decisions about actions. If we
wish the network of the future to support high-level goals and
constraints, we will need reasoning methods that can operate on
these abstractions.
In the long run, an interesting and important function of reasoning in
the knowledge plane will be to support mediation between users and
operators whose goals may conflict with each other and/or with
fixed design constraints. The inevitability of such conflicts suggests
that we must develop new techniques for representing and reasoning
about constraints and policies. Initially, these representations will
need to be inferred from low-level configurations and actions, but
the ultimate goal is to express goals and policies at a high level and
use those to generate low-level configurations.
Even in the short run we can bring to bear a great deal of existing
research on the design and construction of a knowledge plane.
Experience with cognitive architectures [18], recent work in multi-
agent systems [22], and the emerging field of algorithmic game
theory may prove directly useful. However, the networking context
also raises many challenges that will stretch the current state of
cognitive systems and redirect research in new and intriguing ways
[19,20].

5

3. What is the Knowledge Plane Good For?
At a high level, we proposed a unified goal for the KP: build a new
generation of network by allowing it to have a view of what it
supposed to be, and what it is supposed to be doing. To achieve this
goal, there are more specific problem domains to be supported. Here
we discuss in more detail some of them.
Fault diagnosis and mitigation: Today, when some part of the
Internet fails, it is almost impossible for the end user to tell what has
happened, to figure out who should be notified, or what to do to
correct the fault. If we take the Internet of today as the starting point,
it is appealing to imagine a command that a user can run to demand
an explanation when something seems to be broken. This is the
WHY(problem-x) command: why is x broken? So, for instance, the
user might ask, “Why can’t I get to www.acm.org?”
However, the WHY formulation is not bold enough. An over-bold
alternative would be that if the KP is smart enough, the network
should never fail. In this case, there is no need for WHY. But this
ambition is fundamentally flawed. In some cases, only a human
knows enough to determine if what is happening is actually a fault.
When Dave unplugs his laptop and puts it in his briefcase, there may
be some applications that suddenly stop working, but this is not a
fault. It is what Dave intended, and if some semi-smart KP wakes up
each time he disconnects his laptop and asks if he wants to
reconnect it, this is a nightmare, not a success. So there will be times
when only a person can give the KP guidance. Instead of
WHY(problem-x), this is FIX(problem-x). The user is saying that
something is broken, and make it right.
Is this enough guidance that the KP can correct what is wrong? In
fact, the interesting examples are when the “problem” is caused by
conflicting specifications or constraints that come from different
people. One may say FIX(this game I just installed that does not
work), and the reason it is failing is that the ISP has blocked that
game. One may say FIX(lousy bandwidth) but the problem is that
one has exceeded one’s usage quota and the ISP is rate-limiting.
These are cases where the KP may not be able to resolve the matter.
What we might strive for, however, is a KP that can either resolve a
problem or say why not. So one answer to FIX(problem-x) may be
CANNOT(reason-y). And if the system does fix something, it may
want to tell a person that this happened, in case there is a further
action that only a person can take.
This example suggests that the interaction between the user and the
KP is bi-directional and expressive. And of course, the KP may
communicate with many entities about a problem. The demand from
a user FIX(broken-game) might trigger a message back to the user
that the game is blocked, but might also trigger a message to the ISP
that it has an unhappy user.
A further extension of this story is that the KP can provide an
assistant for user and managers, an agent that watches what the
people do, and learns over time what is normal and what is not. So a
KP agent on Dave’s laptop might learn that Dave unplugs it all the
time, while an agent on Dave’s desktop machine might realize that
he never disconnects it, and risk bothering Dave to ask if he meant
to do that. In this way, the problem of fault diagnosis and mitigation
has a learning component.
Once the FIX(problem-x) function has been implemented in the KP,
programs as well as people can use it. As the user’s agent learns, it
should more and more often give this signal on its own. And other
programs, such as application code, may detect and signal that

something is wrong. The KP will have to decide how much
credence to give these signals, depending on where they come from.
Behind the scenes, the FIX command will trigger a range of
activities in the KP. The FIX command would start with a local
component that runs on the user’s machine, and then exchanges
information with the KP to figure out what is wrong. The
diagnostics can check out functions at all levels, from packet
forwarding to application function. There are several current
research projects that this application could build on [13,14].
Once the end node has performed what diagnosis it can, the next
stage is for the tool to add assertions to the shared knowledge plane
about what it has discovered, and ask the KP for relevant
information. This contribution to the knowledge plane allows all the
users on the network collectively to build a global view of network
and service status. This data can be combined with information
derived from measurement efforts now going on across the Internet
that attempt to build an overall model of network status [9,15]. Such
aggregation is important if the failure is one that affects lot of users.
Automatic (re)configuration: The dynamic routing of the original
Internet did not take into account administrative and policy
constraints, so routing today is more and more defined by static
policy tables. This means that devices such as routers are
increasingly manually configured and managed. Static tables and
manual configuration make the network brittle to failure, hard to
change, and even harder to reason about globally. Imagine, as part
of the KP, a configuration manager for a region of the Internet,
which would accept high-level assertions about how the components
of a network are supposed to arrange themselves, and guide the
actual detailed configuration accordingly. Examples include
controlling the deployment of a consumer network in the home, an
ad hoc network in support of a rapid deployment force, or a network
for a small business. Successful accomplishment of this project
could lead to substantial reductions in manpower needed to
configure and operate networks.
 The KP configuration manager should have enough understanding
of low-level structure to detect if the network is properly configured
according to the high-level constraints, to detect if a better
configuration alternative is available, and to detect if the system
appears to be corrupted. The reasoning must go in both directions.
That is, the manager must be able to derive low-level settings given
high-level goals, priorities and constraints, and it must be able to
look at existing low-level settings and describe the resulting
behavior in the high-level terms.
Again, the interesting problem (once we get the basic idea to work)
is when the system encounters conflicting assertions made by
different parties. The network manager might say
ROUTING_PREFERENCE(low-cost links), and an end-user’s
machine might say FIX(low bandwidth). Again, the KP may be able
to resolve some of these problems, and might learn over time when
it is safe for it to act on its own, and when it must kick the problem
back to the relevant humans in meaningful terms. (This example, by
the way, illustrates why the KP must be seen as a unified system, not
as separate systems for fault management and for configuration.)
The configuration task is not something that happens once at the
turn-up of the network. It should be something that is happening
constantly, looking at changing network conditions, application
demands, and changing constraints. It is also a task that can run
“recursively”. A global network is not built top down. It is built
bottom up, region by region. Each region will first configure itself

6

using its locally specified goals and constraints. But when two
regions then connect, there may be further constraints that one
imposes on the other. So a provider network might say to a
subscriber network: NO_MULTICAST. This might cause the
subscriber network to change some of its internal organization,
disable some end-user applications, and so on.
Support for overlay networks: If the KP has enough information to
configure the network itself, that information can also be useful to
applications that are configuring themselves. For example, we are
increasingly seeing the development of application-specific overlay
networks on the Internet. Each overlay network uses edge-based
mechanisms to evaluate the performance of different possible paths
through the Internet, and seeks to build a set of transport paths that
effectively route application packets through what appears to be the
part of the Internet best suited to the application’s needs. Currently,
application networks must probe the Internet, because there is no
mechanism for them to learn about the capabilities of the network
core. The KP would be in a position to aggregate application- and
network-derived knowledge about network performance, offer
applications better information about the network than they could
learn by probing, and access to control points whose behavior could
be modified to help better meet the applications’ needs. The KP
thus enables per-application control over traffic without the need to
build per-application infrastructure throughout the network.
 Knowledge-enhanced intrusion detection: There are a number of
projects (and a number of products) that perform some sort of
analysis to detect network intrusions. In general they look for
patterns in data observed somewhere in the network. The current
generation of these tools trigger both false positives and false
negatives. It has been hypothesized that a next generation of tools
for intrusion detection will require that observations from several
points in the network will have to be correlated, in order to get a
more robust and useful signal. The development of the knowledge
plane provides a basis to implement this data gathering and
correlation.

4. Knowledge Plane Architecture
Previous sections of this paper have outlined the goals we set for a
knowledge plane. In this section, we consider aspects of its system
structure. Our discussion is speculative: any successful KP
architecture will be shaped by a number of requirements and
constraints, not all of which are apparent today. At its highest level
the architecture of the KP will be shaped heavily by two broad
forces: its distributed, compositional structure, and its multi-scale,
potentially global knowledge perspective.
Our ultimate objective is that networked systems should organize
themselves, under the constraints and guidance of external inputs, to
meet the goals of their stakeholders. Even in the near term, the KP
must respect and build on the fact that networks have internal
structure and dynamics -- large networks are composed by
interconnecting smaller ones, participants come and go, and
relationships between the owners, operators and users of different
networks may change even when the physical structure does not.
This implies that the knowledge plane serving a network is not a
globally engineered entity, but is instead an autonomously created
structure that is recursively, dynamically, and continuously
composing and decomposing itself from smaller sub-planes. This
requirement argues that the KP:

• Is distributed - KP functionality for different regions of the
network is physically and logically decentralized.

• Is bottom up - simple entities (e.g. web servers) can compose
into larger, more complex entities (e.g. a web farm) as needed,
and decompose themselves from the system as appropriate.
This is a recursive process, that may proceed on many levels.

• Is constraint driven - the basic principle is that the system can,
and may, adopt (or not) any behavior that is not specifically
constrained.

• Moves from simple to complex. Speaking generally, the act of
composing a set of networks to form a larger one places more
requirements or constraints on the behavior of each network. A
trivial example would be that a standalone IP network can use
a wide range of addresses, but connecting it to a larger network
constrains the range of options in this regard.

Our first objective for the KP system architecture is that it support
this distributed, compositional perspective, providing the necessary
enabling abstractions and capabilities.
In contrast with the distributed organization of the KP, we have
argued in previous sections of this paper that KP may often benefit
from taking a global perspective - integrating observations and
conclusions from many points in the network. Key implications of
this are that:

• Data and knowledge integration is a central function of the KP.
The KP must be able to collect, filter, reduce, and route
observations, assertions, and conclusions from different parts
of the network to points where they are useful.

• The KP must operate successfully in the presence of imperfect
information. Because this global perspective is both physically
large and spans multiple administrative entities, the cognitive
algorithms of the KP must be prepared to operate in the
presence of limited and uncertain inputs.

• The KP must reason about information tradeoffs. Sometimes, a
global perspective may be critical. Other times, it may be
unimportant, or merely somewhat useful. The KP must be
prepared to reason about the tradeoffs involved in using data of
differing scope. For instance, diagnosing a web server failure
may, or more likely, may not require polling for user
experience from locations far away. A KP may need to employ
introspective meta-reasoning to act most effectively in these
circumstances.

Our second objective for the KP system architecture is that to the
extent possible it develop, utilize, and reason about information at
whatever scope is appropriate for the problem it is addressing.

4.1 Functional and Structural Requirements
The above objectives, together with the core goals of the knowledge
plane, lead us to several top-level functional and structural
architectural requirements. We discuss four of these below.

4.1.1 Core Foundation
The heart of the knowledge plane is its ability to integrate behavioral
models and reasoning processes into a distributed, networked
environment. The first component of this ability is support for the
creation, storage, propagation and discovery of a variety of
information, likely including observations, which describe current
conditions; assertions, which capture high-level goals, intentions
and constraints on network operations; and explanations, which are

7

an example of how knowledge itself is embodied—explanations
take observations and assertions and map them to conclusions.
To learn about and alter its environment, the knowledge plane must
access, and manage, what the cognitive community calls sensors and
actuators. Sensors are entities that produce observations. Actuators
are entities that change behavior (e.g., change routing tables or bring
links up or down). So, for instance, a knowledge application that
sought to operate a network according to certain policies might use
sensors to collect observations on the network, use assertions to
determine if the network’s behavior complies with policy, and, if
necessary, use actuators to change the network’s behavior.
The most central aspect of the knowledge plane is its support for
cognitive computations. This is a challenging problem because the
dynamic and distributed KP environment is not well matched to the
classical knowledge level algorithms and agent architectures that
underpin much of current AI. Most AI algorithms are not designed
to work in a highly distributed context, and direct experience in
building a large distributed data management system with embedded
cognitive abilities is limited.1 What is needed are robust, tractable
and on-line algorithms for environments that are highly dynamic,
partially observable, stochastic and error prone. The field of Multi-
Agent Systems [22] has had some initial success in solving these
problems, although those addressed to date typically lack the
dynamicity required for the knowledge plane. Thus refinement of
this portion of the knowledge plane architecture, its infrastructure
support for a range of appropriate cognitive algorithms, is likely to
progress in conjunction with further research in cognitive systems
themselves.

4.1.2 Cross-Domain and Multi-Domain Reasoning
Where does the KP “run”? The composed, regional structure of the
KP might suggest that a specific server would support the part of the
KP that “reasons about” a region, for example an Internet AS. One
possibility is that the administrator of the AS would run the KP that
oversaw that AS. At a more abstract level, one might state this
structuring strategy as “each region is responsible for reasoning
about itself.”
This is a bad idea, for several reasons. If the AS is down, this could
render the relevant KP information unreachable at exactly the wrong
time. The administrator of an AS might wish to limit the conclusions
that the KP reached about it, perhaps to remove knowledge that
seems unflattering, while others may choose to reach those
conclusions anyway. These examples show that reasoning about an
AS occurs independently of the AS; a fact that should be reflected in
the system structure. Different parts of the KP might independently
reason about an AS, and compare answers, to detect that part of the
KP is corrupted. This shows that there should be no specific
physical relationship between a region of the network and the KPs
reasoning engines related to that region.
A more radical possibility is that multiple entities compete to
provide information about a given AS. Each entity collects its own
data and sells its observations. The KP could seek information from

1One early and related attempt, the DARPA-sponsored Automated
Network Management (ANM) project, sought to build a network-wide
MIB collector combined with AI tools [7]. The ANM experience was that
collecting data was relatively easy, but getting the data to the right place
was hard – it was easy to overwhelm links with management traffic if
information was circulated too aggressively.

whichever entity or entities it believes provides the most accurate
and timely (or most cost effective) information. This ``knowledge
marketplace'' creates a host of architectural challenges, ranging from
how to reason about information from multiple providers (even if
three different companies tell you the same thing about an AS, it
may turn out that they're all reselling data from one Internet weather
service: if you really want a second opinion, how do you find the
second weather service?) to how to design KP protocols to
discourage different knowledge companies from subtly “enhancing”
the KP protocols or data in ways that make it harder for users to
concurrently use the servers of other knowledge providers?
This discussion demonstrates the potential richness of information
flow in the KP. Messages need to flow to more than one location so
that redundant reasoning can occur – and how a message flows may
depend on who asks it. Different parts of the KP may reach different
conclusions, and reconciling these is as important as is dealing with
incomplete input data.

4.1.3 Data and Knowledge Routing
We have argued that the KP will benefit from gaining a global
perspective on the network it serves. It is useful to consider how this
perspective might come about. In a very small network, it might
theoretically be possible to collect all relevant information, and
flood that information to each node in the network (more precisely,
in the distributed KP).
This idea is clearly impractical in larger networks. First, the sheer
volume of information is technically daunting, requiring a highly
scalable solution. Beyond this, forces such as competition and
privacy come into play. In a network of any size, it is necessary to
limit and optimize the collection and routing of information. More
sophistication is needed.
We suggest that the KP architecture should implement a framework
for knowledge management and routing characterized by two
attributes. It is knowledge-driven - the routing system itself
incorporates information about what knowledge is most useful in
different circumstances, and uses scalable distributed techniques to
filter observations and “attract'' the most relevant observations
towards potential customers. It understands tradeoffs - it may
incorporate the concept of quality - reasoning about producing
better or less good answers with correspondingly more or less effort,
time, bandwidth, etc., rather than just producing “an” answer.

4.1.4 Reasoning about Trust and Robustness
The KP's combination of compositional structure and global
perspective creates challenges to achieving a robust and trustworthy
design. Because a functioning KP is formed at any time from the
composition of the participating networks, the architecture must
reflect the fact that parts of the KP may be corrupted or broken, that
some participants may lie or export deliberately flawed reasoning,
and that system actions must be based on inputs that may be partial,
outdated or wrong.
This suggests that the KP may need to build, maintain, and reason
about trust relationships among its components and participants.
Portions of the KP that misbehave may be deemed untrustworthy by
other portions, and this information may be propagated among
portions that have decided to trust each other. In this way, a web of
trust can grow that identifies KP elements that seem to be
trustworthy and shuns elements that are not. This introspection
would likely require the development of trust models, and the use of

8

scalable techniques (such as the so-called "small world" models
[10]) to search a web of trust.

5. Creating a Knowledge Plane
5.1 Possible Building Blocks
There is substantial basic research that may be relevant to creating
the KP. Examples include epidemic algorithms [5] for distributing
data, Bayesian networks for learning [4], rank aggregation to enable
a web of trust [6], constraint satisfaction algorithms [21], and
policy-based management techniques [23,24]. All of these
techniques have been developed in other networking contexts and
seem likely to be relevant here.

5.2 Challenges
If we are to create a successful knowledge plane, we must grapple
with and solve a number of challenging problems. Because one of
the goals of the knowledge plane is to give applications the ability to
learn and reason about their environment, many of these problems
sit at the boundaries of networking and artificial intelligence.2 This
section sketches some of the key themes that run through these
problems.
How do we represent and utilize knowledge? We want the
knowledge plane to support reasoning (figure out why John can’t
reach www.example.edu) and learning (the last time
www.example.edu was unreachable, there was a DNS problem, so
let’s check DNS performance). The current state of the art in
reasoning and learning tells us that we need to build abstract models
of the entities we seek to understand, and then use information to
reason about, and potentially update, those models. Current research
into schemes for representation, such as the DAML Project3, may
give us some insight into how to represent information about which
we can reason. However, we must also work out how to extract and
process all the valuable information that presumably is not in
DAML (or whatever form we pick) but in SNMP MIBs, system
logs, and other disparate places. How do we construct, represent,
and distribute the models that drive the reasoning?
How do we achieve scalable utility? The knowledge plane is a
building block for a network that is more reliable and more robust.
Properly implemented, it should continue to improve the network,
even as the network gets bigger and the knowledge plane itself gets
bigger. As we add more knowledge and new applications to the
knowledge plane, it should become more valuable and useful
overall. Those are hard goals: as the volume of data increases, or
the number of elements in a system grows, we all too commonly
find bottlenecks and algorithms that do not scale. For example, if a
network failure triggers a flood of messages into the KP, how are
these aggregated and controlled so that parts of the KP are not
driven into overload? We will likely find ourselves challenged to
abstract data and impose compartments or hierarchy on portions of
the knowledge plane to allow it to scale – how do we ensure that the
abstraction and compartmentalization adds rather than subtracts
value?

2 For a general overview of knowledge representation issues, the reader

may wish to read [16].
3 The DARPA Agent Markup Language is a set of extensions to

Extensible Markup Language (XML) and the Resource Description
Framework to support ontologies (statements of relationships between
objects) for web objects. See www.daml.org.

How do we route knowledge? Suppose the knowledge plane learns
a valuable new fact, or comes to a valuable realization. How is that
fact or realization disseminated? Is it pushed out to all interested
parties? If so, how do we know who the interested parties are? Is
the fact simply labeled and placed into the knowledge plane for
interested parties to discover? If so, how do the interested parties
know to look for it? Are there ways to intelligently summarize data
that make these push-pull tradeoffs easier?
How do we provide the right economic incentives? The networking
community has come to learn that the success of a distributed
system depends, in large part, on the economic incentives embedded
in the system’s design [11,12]. The knowledge plane is rife with
economic challenges. How do we motivate people to put
information into the knowledge plane? Much of the data in the
knowledge plane will be valuable – should the knowledge plane
provide mechanisms for people to buy and sell information (or
better, “knowledge”)? How do we avoid making the knowledge
plane protocols a point of economic competition (e.g., avoid the
vendor-specific enhancements to HTML problem)?
How do we deal with malicious and untrustworthy components?
There is no way that we can expect that all nodes in the KP are
trustworthy, competent or reliable. Broken nodes may inject
malformed observations, some nodes may lie about their behavior,
and some players may attempt to disrupt or confuse the KP, either as
a way to attack the network as a whole, or to gain some advantage
over others. How can the algorithms of the KP protect themselves,
filter out bad information, and reach valid conclusions in the
presence of uncertainty and misrepresentation? The KP system will
have to depend on approaches such as consensus, rating, and cross-
checking to detect mal-formed or malicious behavior. A design that
is robust to inconsistent inputs is necessary for success.
As proposed above, a model of trust should be a core building block
of the KP. Building a model of trust requires that there be some
persistent robust expression of identity. There is no requirement that
the identity be linked to a actual person (although for some purposes
this may be preferred); the minimum requirement is that identity not
be forged or stolen, so that one can build up a consistent model of
trust based on prior observations of that identity.

6. Summary
This paper proposed to augment a network with a knowledge plane,
a new higher-level artifact that addresses issues of “knowing what is
going on” in the network. At an abstract level, this is a system for
gathering observations, constraints and assertions, and applying
rules to these to generate observations and responses. At the
physical level, this is a system built out of parts that run on hosts and
servers within the network. It is a loosely coupled distributed system
of global scope.
The grander goal is to build a new generation of network, a network
that can drive its own deployment and configuration, that can
diagnose its own problems, and make defensible decisions about
how to resolve them.
Previous attempts to do “high-level network management” have not
been very successful; one possible reason is that previous projects
have not been able to find the correct high-level abstractions. The
hypothesis behind the KP is that there exist suitable ways to abstract
detailed behavior, and to talk about goals, plans, constraints and
methods at a high level. The knowledge plane is much more than a

9

data-base of facts—it is a construct that embodies cognitive tools
and learning

7. Acknowledgements
This research was supported in part by the U.S. Defense Advanced
Research Projects Agency under contracts F30602-00-2-0553 and
F30602-00-C-0087 (this document is approved for public release,
distribution unlimited). The authors thank the SIGCOMM reviewers
and the many participants in the DARPA Knowledge Plane Study
for discussions and comments that have contributed greatly to the
development of our perspective.

8. REFERENCES
[1] D.D. Clark, “The Design Philosophy of the DARPA Internet

Protocols,” Proc. ACM SIGCOMM ’88, pp. 102-111.
[2] D.S. Isenberg, “The Rise of the Stupid Network,” Computer

Telephony, Aug 1997, pp. 16-26.
[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference. Morgan Kaufmann, San
Mateo, CA, 1988.

[4] T. Bayes, “An Essay towards solving a Problem in the
Doctrine of Chances,” Philosophical Trans. Royal Society of
London 53 (1763), pp. 370-418.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart and D. Terry, “Epidemic
Algorithms for Replicated Database Management,” Proc.
ACM PODC ’87, pp. 1-12.

[6] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank
aggregation methods for the Web,” Proc. 10th Intl. Conference
on World Wide Web, pp. 613-622 (2001).

[7] J. Wescott, Automated Network Management, BBN Report
No. 5641. BBN Technologies (1984).

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, The
PageRank Citation Ranking: Bringing Order to the Web.
Stanford Digital Library Project (1998).

[9] V. Paxson, J. Mahdavi, A. Adams and M. Mathis, “An
Architecture for Large Scale Internet Measurement,” IEEE
Communications Magazine 36 (1998), pp. 48-54.

[10] J. Kleinberg, “The small-world phenomena: an algorithmic
perspective,” Proc. 32nd ACM Symp. Theory of Computing
(2000), pp. 163-170.

[11] L. McKnight and J. Bailey, ed. Internet Economics. MIT
Press (1997).

[12] D.D. Clark, J. Wroclawski, K.R. Sollins, and R. Braden,
“Tussle in Cyberspace: Defining Tomorrow’s Internet,” Proc.
ACM SIGCOMM 2002, pp. 347-356.

[13] M. Mathis, “Diagnosing Internet Congestion with a Transport
Layer Performance Tool,” Proc. INET ‘96,

[14] J. Padhye and S. Floyd, “Identifying the TCP Behavior of
Web Servers,” Proc. ACM SIGCOMM 2001.

[15] V.N. Padmanabhan, L. Qiu and H.J. Wang, “Passive Network
Tomography Using Bayesian Inference”, Proc. Internet
Measurement Workshop 2002.

[16] R. Davis, H. Shrobe, and P. Szolovits, “What is a Knowledge
Representation?” AI Magazine, 14(1):17-33 (1993).

[17] S. Hangal and M. Lam, “Tracking down software bugs using
automatic anomaly detection,” Proc. International
Conference on Software Engineering ’02.

[18] P. Langley and J. E. Laird, “Cognitive Architectures:
Research Issues and Challenges”. Draft of October 31, 2002.

[19] T. Dietterich and P. Langley, “Machine Learning for
Cognitive Networks: Technology Assessment and Research
Challenges”. Draft of May 11, 2003.

[20] T. Dietterich, “Learning and Reasoning”. Unpublished article
of May 26, 2003.

[21] V. Kumar, “Algorithms for Constraint Satisfaction Problems:
A Survey”. The AI Magazine, 13, pp. 32-44 (1992).

[22] P. Stone and M. Veloso, “Multiagent Systems: A Survey
from a Machine Learning Perspective”, Autonomous Robots,
8(3):345-383 (2000).

[23] M. Sloman, “Policy Driven Management for Distributed
Systems,” Jour. Network and Systems Management, vol 2, no
4, Dec 1994, pp. 333-360.

[24] R. Chadha, G. Lapiotis, S. Wright, guest eds., "Policy-Based
Networking", IEEE Network special issue, March/April 2002,
Vol. 16 Issue 2.

10

